JPH07134117A - Foreign matter detecting method by vertical ultrasonic inspection - Google Patents

Foreign matter detecting method by vertical ultrasonic inspection

Info

Publication number
JPH07134117A
JPH07134117A JP5307563A JP30756393A JPH07134117A JP H07134117 A JPH07134117 A JP H07134117A JP 5307563 A JP5307563 A JP 5307563A JP 30756393 A JP30756393 A JP 30756393A JP H07134117 A JPH07134117 A JP H07134117A
Authority
JP
Japan
Prior art keywords
inspected
reflected wave
phase
acoustic impedance
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5307563A
Other languages
Japanese (ja)
Inventor
Satoru Kureishi
哲 暮石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5307563A priority Critical patent/JPH07134117A/en
Publication of JPH07134117A publication Critical patent/JPH07134117A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/09Analysing solids by measuring mechanical or acoustic impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To easily and surely detect a foreign matter existing in the inside of an examination specimen by ultrasonic inspection. CONSTITUTION:A medium 3 having acoustic impedance Z3 is closely stuck to the bottom face of an examination material 1 wherein the impedance Z3 satisfies the following; Z1<Z3 when Z1>Z2, an Z1>Z3 when Z1<Z2 wherein Z1 and Z2 stand for acaustic impedance of the examination specimen 1 and a foreign matter 2, respectively. The reflected wave from the foreign matter 2 has reverse phase to the reflected wave from the bottom face of the examination material 1. Since the reflected wave from the bottom face is already known, the reflected wave with reverse phase to that of the former wave is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼材中に存在する非金
属介在物のような、被検査材中に存在する異材質部を、
垂直超音波探傷により検出する異材質部検出方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dissimilar material portion existing in a material to be inspected, such as a non-metallic inclusion existing in a steel material,
The present invention relates to a method for detecting a dissimilar material portion which is detected by vertical ultrasonic flaw detection.

【0002】[0002]

【従来の技術】鋼材中に存在するアルミナ等の非金属介
在物を検出する方法として、垂直超音波探傷を用いるも
のが提案されている。その原理を図1(A)により説明
する。
2. Description of the Related Art A method using vertical ultrasonic flaw detection has been proposed as a method for detecting non-metallic inclusions such as alumina present in steel materials. The principle will be described with reference to FIG.

【0003】被検査材1である鋼材の表面から裏面へ超
音波パルスPを垂直に入射すると、まず、表面からの反
射波S(表面エコー)が得られる。超音波の進行路に異
材質部2である非金属介在物がある場合は、次に、その
異材質部2からの反射波F(欠陥エコー)が得られ、そ
の後、底面からの反射波B(底面エコー)が得られる。
When an ultrasonic pulse P is vertically incident from the front surface to the back surface of a steel material to be inspected 1, first, a reflected wave S (surface echo) from the front surface is obtained. If there is a non-metallic inclusion that is the dissimilar material portion 2 in the traveling path of the ultrasonic wave, then a reflected wave F (defect echo) from the dissimilar material portion 2 is obtained, and then a reflected wave B from the bottom surface. (Bottom echo) is obtained.

【0004】実際の鋼材検査では、これらのエコーのな
かから欠陥エコーFのみを取り出す必要がある。そのた
めに使用されるのがゲートである。ゲートは、表面エコ
ーSを受信した直後から底面エコーBを受信する直前ま
での範囲に設定され、この期間のエコーのみを通過させ
ることにより、欠陥エコーFを選択的にキャッチする。
ゲートの起点および範囲は、つまみで任意に調整され
る。
In the actual steel material inspection, it is necessary to extract only the defect echo F from these echoes. The gate is used for this purpose. The gate is set in the range from immediately after receiving the surface echo S to immediately before receiving the bottom echo B, and selectively passes the echo of this period to selectively catch the defective echo F.
The starting point and range of the gate are arbitrarily adjusted with the knob.

【0005】[0005]

【発明が解決しようとする課題】このような超音波探傷
を用いた異材質部の検出では、被検査材の表面から底面
までの距離、すなわち肉厚が変わると、それに応じてゲ
ートの範囲を調整する必要がある。
In the detection of the dissimilar material portion using such ultrasonic flaw detection, when the distance from the surface to the bottom surface of the material to be inspected, that is, the wall thickness changes, the range of the gate is changed accordingly. Need to be adjusted.

【0006】例えば、ゲートの範囲を固定したままで、
その設定対象より肉厚の小さい被検査材を検査した場合
は、図1(B)に示すように、ゲートの範囲内に底面エ
コーBが侵入し、欠陥エコーFと底面エコーBとの区別
がつかなくなる。逆に、設定対象より肉厚の大きい被検
査材を検査した場合は、図1(C)に示すように、ゲー
トの範囲外で欠陥エコーFが生じる場合があり、検査も
れが生じる。
For example, with the range of the gate fixed,
When the material to be inspected having a smaller thickness than the target to be set is inspected, as shown in FIG. 1 (B), the bottom surface echo B enters the range of the gate, and the defect echo F and the bottom surface echo B are distinguished from each other. It won't work. On the contrary, when the material to be inspected having a larger thickness than the target to be inspected is inspected, a defect echo F may occur outside the range of the gate as shown in FIG.

【0007】被検査材の種類によって肉厚が変わるよう
な場合は問題ないが、被検査材が複雑な形状で、1つの
材料内で肉厚が変わるような場合は、その肉厚変化に応
じて頻繁なゲート範囲の調整が必要となるので、現実問
題として前記方法の適用が困難となる。
There is no problem when the thickness changes depending on the type of the material to be inspected, but when the thickness of the material to be inspected is complicated and the thickness changes within one material, the thickness changes depending on the change. Since it is necessary to adjust the gate range frequently and frequently, it is difficult to apply the method as a practical problem.

【0008】本発明の目的は、1つの被検査材において
肉厚が変わるような場合も、その内部に存在する異材質
部を簡単かつ確実に検出できる超音波探傷による異材質
部検出方法を提供することにある。
An object of the present invention is to provide a method for detecting a different material portion by ultrasonic flaw detection which can easily and surely detect a different material portion existing inside one inspected material even if the thickness of the material changes. To do.

【0009】[0009]

【課題を解決するための手段】本発明の異材質部検出方
法は、被検査材の表面から底面へ超音波を垂直に入射
し、その反射波に基づいて被検査材中を探傷する垂直超
音波探傷により、被検査材の音響インピーダンスと異な
る音響インピーダンスをもつ被検査材中の異材質部を検
出する方法であって、被検査材の音響インピーダンスを
1 、被検査材中の異材質部の音響インピーダンスをZ
2 とするとき、Z1 に対する大小関係がZ1 に対するZ
2 の大小関係と逆になる音響インピーダンスZ3 をもつ
媒質、具体的に言えばZ1 <Z2 のときはZ1 >Z3
なり、Z1 >Z2 のときはZ1 <Z3 となる媒質を被検
査材の底面に密接させ、被検査材の底面からの反射波に
対して位相が反転した反射波を検出することを特徴とす
る。
SUMMARY OF THE INVENTION A method for detecting a foreign material portion according to the present invention is a vertical superposition method for vertically injecting an ultrasonic wave from the surface of a material to be inspected to the bottom surface thereof and detecting flaws in the material to be inspected based on the reflected wave. A method for detecting a different material portion in an inspected material having an acoustic impedance different from that of the inspected material by acoustic flaw detection, wherein the acoustic impedance of the inspected material is Z 1 , and the different material portion in the inspected material is Acoustic impedance of Z
When the 2, Z magnitude relationship Z 1 is for Z 1
Medium with 2 magnitude relationship and the acoustic impedance Z 3 to be reversed, Z 3 next <Z 1 when the Z 2> Z 1 Specifically, the Z 1 <Z 3 when the Z 1> Z 2 Is characterized in that the medium is brought into close contact with the bottom surface of the material to be inspected and a reflected wave whose phase is inverted with respect to the reflected wave from the bottom surface of the material to be inspected is detected.

【0010】上記媒質を被検査材の底面に密接させて、
被検査材の表面から底面へ超音波を垂直に入射すると、
その底面からの反射波の位相が一義的に決まり、且つ、
その位相に対して、異材質部からの反射波の位相は逆相
になる。従って、被検査材の底面からの反射波に対して
位相が反転した反射波を検出することにより、被検査材
中の異材質部が検出される。
The medium is brought into close contact with the bottom surface of the material to be inspected,
When ultrasonic waves are vertically incident from the surface to the bottom of the inspected material,
The phase of the reflected wave from the bottom surface is uniquely determined, and
The phase of the reflected wave from the dissimilar material part is opposite to the phase. Therefore, by detecting the reflected wave whose phase is inverted with respect to the reflected wave from the bottom surface of the inspection material, the dissimilar material portion in the inspection material is detected.

【0011】[0011]

【作用】以下に、本発明方法における検出原理を図2を
参照して詳細に説明する。
The principle of detection in the method of the present invention will be described in detail below with reference to FIG.

【0012】被検査材1が鋳鉄(以下Fe)、被検査材
1中の異材質部2がアルミナ介在物(以下Al2 3
のときに、媒質3として水を選択した場合を考える〔図
2(A)〕。
The inspected material 1 is cast iron (hereinafter Fe), and the foreign material portion 2 in the inspected material 1 is an alumina inclusion (hereinafter Al 2 O 3 ).
At this time, consider the case where water is selected as the medium 3 [FIG. 2 (A)].

【0013】一般に、物質Aの底面に物質Bを密接させ
て、物質Aの表面から底面へ超音波を入射したときの物
質Aと物質Bとの境界面における超音波の音圧反射率r
A-Bは、 rA-B =(ZB −ZA )/(ZA +ZB ) で表わされる。ZA は物質Aの音響インピーダンス、Z
B は物質Bの音響インピーダンスである。そして、その
反射波は、r>0のときは入射波と同相になり、r<0
のときは入射波と逆相になる。
In general, when the substance B is brought into close contact with the bottom surface of the substance A and an ultrasonic wave is incident from the surface of the substance A to the bottom surface, the sound pressure reflectance r of the ultrasonic wave at the interface between the substance A and the substance B is r.
AB is represented by r AB = (Z B -Z A ) / (Z A + Z B). Z A is the acoustic impedance of substance A, Z
B is the acoustic impedance of substance B. The reflected wave is in phase with the incident wave when r> 0, and r <0.
When, the phase is opposite to that of the incident wave.

【0014】今、入射波を(+)位相として、前述した
被検査材1がFe、異材質部2がAl2 3 、媒質3が
水の場合を考えると、 被検査材1(Fe)の音響インピーダンスZ1 =40×106
kg/m2・S 異材質部2(Al2O3)の音響インピーダンスZ2 =43×10
6 kg/m2・S 媒質3(水)の音響インピーダンスZ3 =1.48×106 kg
/m2・S であるから、被検査材1と媒質3との境界面における音
圧反射率r1-3 は r1-3 =−0.928<0 となる。すなわち、Z1 >Z3 ゆえにr1-3 <0とな
る。そのため、被検査材1の底面からの反射波は、入射
波に対して位相が反転した(−)位相に一義的に固定さ
れる。
Considering the case where the material to be inspected 1 is Fe, the different material portion 2 is Al 2 O 3 and the medium 3 is water, with the incident wave as (+) phase, the material 1 to be inspected (Fe) Acoustic impedance Z 1 = 40 × 10 6
kg / m 2 · S Different material part 2 (Al 2 O 3 ) acoustic impedance Z 2 = 43 × 10
6 kg / m 2 · S Acoustic impedance of medium 3 (water) Z 3 = 1.48 × 10 6 kg
Since / m 2 · S, the sound pressure reflectance r 1-3 at the interface between the material 1 to be inspected and the medium 3 is r 1-3 = −0.928 <0. That is, r 1-3 <0 because Z 1 > Z 3 . Therefore, the reflected wave from the bottom surface of the material 1 to be inspected is uniquely fixed to the (−) phase in which the phase is inverted with respect to the incident wave.

【0015】一方、被検査材1と異材質部2との境界面
における音圧反射率r1-2 は、 r1-2 =0.036>0 となる。すなわち、Z1 <Z2 ゆえにr1-2 >0とな
る。そのため、異材質部2からの反射波は、入射波と同
位相の(+)位相となり、被検査材1の底面からの反射
波とは逆相になる。
On the other hand, the sound pressure reflectance r 1-2 at the boundary surface between the inspected material 1 and the dissimilar material portion 2 is r 1-2 = 0.036> 0. That is, r 1-2 > 0 because Z 1 <Z 2 . Therefore, the reflected wave from the different material portion 2 has the same phase (+) phase as the incident wave, and has the opposite phase to the reflected wave from the bottom surface of the inspected material 1.

【0016】従って、この場合は、入射波と同位相の反
射波を検出すれば、基本的にはゲートなしでその反射波
を被検査材の底面からの反射波と区別でき、異材質部2
の検出が可能となる。
Therefore, in this case, if a reflected wave having the same phase as the incident wave is detected, the reflected wave can be basically distinguished from the reflected wave from the bottom surface of the material to be inspected without a gate, and the different material portion 2
Can be detected.

【0017】すなわち、Z1 <Z2 のとき、Z1 >Z3
となる媒質3を選択して、入射波と同位相の反射波を検
出すれば、異材質部2が検出される。
That is, when Z 1 <Z 2 , Z 1 > Z 3
The different material portion 2 is detected by selecting the medium 3 to be the same and detecting the reflected wave having the same phase as the incident wave.

【0018】次に、Z1 とZ2 の大小関係が逆の場合、
すなわちZ1 >Z2 の場合を考える。この場合は、Z1
とZ3 の大小関係を逆にし、Z1 <Z3 とする必要があ
る。その例として、被検査材1が18−8ステンレス鋼
(以下ST)、異材質部2がAl2 3 で、媒質3とし
て金(以下Au)を選択した場合を挙げる〔図2
(B)〕。
Next, when the magnitude relation between Z 1 and Z 2 is opposite,
That is, consider the case of Z 1 > Z 2 . In this case, Z 1
It is necessary to reverse the magnitude relationship between Z 1 and Z 3 so that Z 1 <Z 3 . As an example, a case where the material to be inspected 1 is 18-8 stainless steel (hereinafter ST), the dissimilar material portion 2 is Al 2 O 3 and gold (hereinafter Au) is selected as the medium 3 is shown [Fig.
(B)].

【0019】 被検査材1(ST)の音響インピーダンスZ1 =45.7×10
6 kg/m2・S 異材質部2(Al2O3)の音響インピーダンスZ2 =43×10
6 kg/m2・S 媒質3(Au)の音響インピーダンスZ3 =62.6×106 kg
/m2・S であるから、被検査材1と媒質3との境界面における音
圧反射率r1-3 は r1-3 =0.156>0 となる。そのため、被検査材1の底面からの反射波は、
入射波と同位相の(+)位相に一義的に固定される。
Acoustic impedance of test material 1 (ST) Z 1 = 45.7 × 10
6 kg / m 2 · S Acoustic impedance of different material part 2 (Al 2 O 3 ) Z 2 = 43 × 10
6 kg / m 2 · S Acoustic impedance of medium 3 (Au) Z 3 = 62.6 × 10 6 kg
Since / m 2 · S, the sound pressure reflectance r 1-3 at the boundary surface between the material 1 to be inspected and the medium 3 is r 1-3 = 0.156> 0. Therefore, the reflected wave from the bottom surface of the inspected material 1 is
It is uniquely fixed to the same (+) phase as the incident wave.

【0020】一方、被検査材1と異材質部2との境界面
における音圧反射率r1-2 は、 r1-2 =−0.030<0 となる。そのため、異材質部2からの反射波は、入射波
に対して位相が反転した(−)位相となり、この場合
も、その位相は、被検査材1の底面からの反射波の位相
に対して反転したものとなる。
On the other hand, the sound pressure reflectance r 1-2 at the boundary surface between the material 1 to be inspected and the dissimilar material portion 2 is r 1-2 = -0.030 <0. Therefore, the reflected wave from the dissimilar material portion 2 has a negative (-) phase with respect to the incident wave, and in this case also, the phase is relative to the phase of the reflected wave from the bottom surface of the inspected material 1. It will be inverted.

【0021】従って、この場合は、入射波に対して位相
が反転した反射波を検出することにより、異材質部2が
検出される。
Therefore, in this case, the different material portion 2 is detected by detecting the reflected wave whose phase is inverted with respect to the incident wave.

【0022】以上の説明から明らかなように、Z1 に対
する大小関係がZ1 に対するZ2 の大小関係と逆になる
3 をもつ媒質を被検査材の底面に密着させて、被検査
材の底面からの反射波に対して位相が反転した反射波を
検出することにより、被検査材の異材質部が検出され
る。
[0022] As apparent from the above description, a medium magnitude relationship Z 1 has a Z 3 comprising a magnitude relationship opposite Z 2 with respect to Z 1 in close contact to the bottom surface of the test material, of the test material The dissimilar material portion of the material to be inspected is detected by detecting the reflected wave whose phase is inverted with respect to the reflected wave from the bottom surface.

【0023】具体的には、入射波を(+)位相とすれ
ば、Z1 <Z2 のときはZ1 >Z3 となる媒質を選ん
で、入射波と同じ(+)位相の反射波を検出すればよ
く、Z1 >Z2 のときはZ1 <Z3 となる媒質を選ん
で、入射波とは逆の(−)位相の反射波を検出すればよ
い。
Specifically, if the incident wave has a (+) phase, when Z 1 <Z 2 , a medium satisfying Z 1 > Z 3 is selected, and a reflected wave having the same (+) phase as the incident wave is selected. When Z 1 > Z 2 , a medium satisfying Z 1 <Z 3 is selected, and a reflected wave having a (−) phase opposite to the incident wave may be detected.

【0024】[0024]

【実施例】次に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0025】図3に本発明法の実施に適した検出装置の
構成を示す。図4に動作を説明するための信号波形を示
す。
FIG. 3 shows the structure of a detector suitable for carrying out the method of the present invention. FIG. 4 shows signal waveforms for explaining the operation.

【0026】本検出装置は、超音波を発振する発振器1
0を有する。その超音波は、プローブ11から1周期の
交流パルスとして被検査材1の表面に直角に発信され
る。
The detection apparatus is an oscillator 1 that oscillates ultrasonic waves.
Has 0. The ultrasonic waves are emitted from the probe 11 as an AC pulse of one cycle at a right angle to the surface of the inspection object 1.

【0027】被検査材1はここでは鋼管であり、その材
質が炭素鋼、低合金鋼の場合は、その被検査材1を媒質
3としての水等に浸漬することにより、その媒質を被検
査材1の底面(管内面)に密接させる。ステンレス鋼の
場合には、Au,Pt等を被検査材1の底面(管内面)
に密接させる必要がある。この密接は、例えば管内にA
u,Pt等の薄肉管状体を挿入し、この管状体を拡管プ
ラグを用いて冷間で拡管抽伸して管内面に密着させるこ
とにより行う。
The material 1 to be inspected is a steel pipe here, and when the material is carbon steel or low alloy steel, the material 1 to be inspected is immersed in water or the like as the medium 3 to inspect the medium. The material 1 is brought into close contact with the bottom surface (inner surface of the tube). In the case of stainless steel, Au, Pt, etc. are used as the bottom surface of the inspection object 1 (inner surface of the pipe).
Need to be closely related to. This closeness is, for example,
This is performed by inserting a thin tubular body of u, Pt, or the like, and cold-expanding this tubular body using an expansion plug to bring it into close contact with the inner surface of the pipe.

【0028】ここでは、被検査材1である鋼管の材質は
炭素鋼、低合金鋼であり、媒質3としては水が選択され
ている。また、プローブ11から発信される1周期の超
音波交流パルスは、正信号の後に負信号が続く(+)位
相である。この状況は、前述した検出原理の第1のケー
スに相当し、Z1 <Z2 かつZ1 >Z3 であるので、被
検査材1の底面からの反射波は(−)位相、被検査材1
の内部に存在する異材質部からの反射波は(+)位相と
なる。
Here, the material of the steel pipe as the material to be inspected 1 is carbon steel or low alloy steel, and water is selected as the medium 3. The ultrasonic AC pulse of one cycle transmitted from the probe 11 has a positive signal followed by a negative signal (+) phase. This situation corresponds to the first case of the above-described detection principle, and Z 1 <Z 2 and Z 1 > Z 3 , so that the reflected wave from the bottom surface of the inspection object 1 has the (−) phase and the inspection object. Material 1
The reflected wave from the dissimilar material portion existing inside the is of (+) phase.

【0029】プローブ11から発信された超音波は、媒
質3を通過した後、被検査材1の表面(管外面)から底
面(管内面)に垂直入射され、その表面、内部の異材質
部、底面で順番に反射されて同一のプローブ11に受信
される。プローブ11に受信された各反射波は電気信号
に変換され、ゲート回路12に入る。
After passing through the medium 3, the ultrasonic waves emitted from the probe 11 are vertically incident from the surface (outer surface of the tube) of the material to be inspected 1 to the bottom surface (inner surface of the tube), and the surface, the dissimilar material portion inside, The light is sequentially reflected on the bottom surface and received by the same probe 11. Each reflected wave received by the probe 11 is converted into an electric signal and enters the gate circuit 12.

【0030】ゲート回路12では、図1(D)に示すよ
うに、表面エコーSの受信直後に始点を設定し、且つ、
底面エコーBの受信後までゲートの範囲を充分に延長し
て、被検査材1の肉厚変動により欠陥エコーFの受信タ
イミングが遅くなっても、その欠陥エコーFがゲートの
範囲内を通るようにする。これにより、通常はゲート回
路12を欠陥エコーF、すなわち異材質部からの反射波
と、底面エコーB、すなわち被検査材1の底面(管内
面)からの反射波とが通過する。
In the gate circuit 12, as shown in FIG. 1D, the starting point is set immediately after the reception of the surface echo S, and
The range of the gate is sufficiently extended until the bottom echo B is received, and even if the reception timing of the defect echo F is delayed due to the variation in the thickness of the inspected material 1, the defect echo F passes through the range of the gate. To As a result, the defect echo F, that is, the reflected wave from the different material portion and the bottom surface echo B, that is, the reflected wave from the bottom surface (inner surface of the pipe) of the inspection object 1 normally pass through the gate circuit 12.

【0031】ゲート回路12を通った信号は、増幅器1
3で増幅された後、検波器14および位相測定器15に
並列に送られる。
The signal passed through the gate circuit 12 is supplied to the amplifier 1
After being amplified by 3, the signal is sent to the detector 14 and the phase measuring device 15 in parallel.

【0032】位相判定器15では、図4(A)に示すよ
うに、予め(+)側、(−)側に設定された位相判定レ
ベルにより、正信号と負信号のどちらが先に検出される
かを判定し、その結果によって受信された反射波が、底
面からの反射波か異材質部からの反射波かを判定する。
ここでは、底面からの反射波は(−)位相となるので、
負信号、正信号の順に検出され、異材質部からの反射波
は(+)位相となるので、正信号、負信号の順に検出さ
れ、後者の場合に欠陥判定信号がONとなる。
In the phase determiner 15, as shown in FIG. 4 (A), either the positive signal or the negative signal is detected first according to the phase determination levels preset on the (+) side and the (-) side. It is determined whether the reflected wave received from the result is the reflected wave from the bottom surface or the reflected wave from the different material portion.
Here, the reflected wave from the bottom has a (-) phase, so
Since the negative signal and the positive signal are detected in this order, and the reflected wave from the different material portion has the (+) phase, the positive signal and the negative signal are detected in that order, and in the latter case, the defect determination signal is turned ON.

【0033】一方、検波器14は信号の大きさを判定す
るため、負信号を正信号に反転させて、大きさ判定器1
6に送る。大きさ判定器16では、図4(B)に示すよ
うに、予め設定された判定レベルと信号を比較して、そ
の大きさを判定する。
On the other hand, the detector 14 inverts the negative signal into the positive signal in order to determine the magnitude of the signal, and the magnitude determiner 1
Send to 6. As shown in FIG. 4B, the size determiner 16 compares the signal with a preset determination level to determine the size.

【0034】そして、位相判定器15および大きさ判定
器16の下段側に接続した欠陥判定器17で、位相判定
器15からの欠陥判定信号と大きさ判定器16からの大
きさ判定信号とを監視し、大きさ判定器16からの大き
さ判定信号がON時のみ、位相判定器15からの欠陥判
定信号がONかOFFかをチェックして、大きさ判定O
N信号が、底面からの反射波によるものか異材質部から
の反射波によるものかを判定する。異材質部からの反射
波によるものである場合はアラーム信号を出力し、そう
でない場合はアラーム信号を出力しない。
Then, in the defect judging device 17 connected to the lower side of the phase judging device 15 and the size judging device 16, the defect judging signal from the phase judging device 15 and the size judging signal from the size judging device 16 are combined. Only when the size determination signal from the size determination unit 16 is ON, the defect determination signal from the phase determination unit 15 is checked whether it is ON or OFF, and the size determination O
It is determined whether the N signal is due to the reflected wave from the bottom surface or the reflected wave from the different material portion. If it is due to the reflected wave from the dissimilar material part, an alarm signal is output, otherwise, no alarm signal is output.

【0035】かくして、実質的にゲートに依存すること
なく、被検査材1中の異材質部が検出される。
Thus, the dissimilar material portion in the inspected material 1 is detected substantially without depending on the gate.

【0036】また、被検査材1である鋼管の材質がステ
ンレス鋼の場合は、媒質3としてAu,Pt等を選択す
る。これらの媒質3は、前述した冷間抽伸等により管内
面に密着させる。この状況は、前述した検出原理の第2
のケースに相当し、Z1 >Z2 かつZ1 <Z3 であるの
で、プローブ11から発信される1周期の超音波交流パ
ルスを(+)位相とすれば、被検査材1の底面からの反
射波は(+)位相、異材質部からの反射波は(−)位相
となる。従って、この場合は、(−)位相の反射波を検
出することにより、異材質部の検出が可能となる。
When the material of the steel pipe to be inspected 1 is stainless steel, Au, Pt or the like is selected as the medium 3. These media 3 are brought into close contact with the inner surface of the tube by the cold drawing or the like described above. This situation corresponds to the second detection principle described above.
Since Z 1 > Z 2 and Z 1 <Z 3 are satisfied, if one cycle of the ultrasonic AC pulse transmitted from the probe 11 is (+) phase, The reflected wave of () has a (+) phase, and the reflected wave from the different material portion has a (-) phase. Therefore, in this case, the different material portion can be detected by detecting the reflected wave of the (−) phase.

【0037】いずれの場合も、一つの被検査材1におい
て肉厚が変化しても、ゲートの範囲を変える必要がない
ので、設定条件を固定したままで検査を極めて簡単に行
うことができる。
In any case, even if the thickness of one inspected material 1 changes, it is not necessary to change the range of the gate, so that the inspection can be performed very easily with the set conditions fixed.

【0038】[0038]

【発明の効果】以上に説明した通り、本発明の超音波探
傷による材質部検出方法は、被検査材と異材質部との音
響インピーダンスの大小関係より、被検査材の底面に密
接させる媒質を選定し、異材質部からの反射波と底面か
らの反射波とが互いに逆相となるようにすることによ
り、2種類の反射波を区別して、ゲートによることなく
異材質部を正確に検出する。従って、1つの被検査材に
おいて肉厚が変わるような場合も設定条件の変更が不要
となり、単一の設定条件でその検査を能率よく行うこと
ができる。
As described above, according to the method of detecting a material portion by ultrasonic flaw detection of the present invention, the medium to be brought into close contact with the bottom surface of the material to be inspected is determined by the magnitude relationship of the acoustic impedances of the material to be inspected and the different material portion. By selecting and making the reflected wave from the dissimilar material part and the reflected wave from the bottom face have mutually opposite phases, two types of reflected waves can be distinguished and the dissimilar material part can be accurately detected without using the gate. . Therefore, even if the thickness of one inspected material changes, it is not necessary to change the setting conditions, and the inspection can be efficiently performed under a single setting condition.

【図面の簡単な説明】[Brief description of drawings]

【図1】超音波探傷による検出原理およびゲートを説明
するための模式図である。
FIG. 1 is a schematic diagram for explaining a detection principle and a gate by ultrasonic flaw detection.

【図2】本発明法における検出原理を説明するための模
式図である。
FIG. 2 is a schematic diagram for explaining the detection principle in the method of the present invention.

【図3】本発明法の実施に適した検出装置の構成を示す
系統図である。
FIG. 3 is a system diagram showing a configuration of a detection device suitable for carrying out the method of the present invention.

【図4】検出装置の機能を説明するための波形図であ
る。
FIG. 4 is a waveform diagram for explaining the function of the detection device.

【符号の説明】[Explanation of symbols]

1 被検査材 2 異材質部 3 媒質 1 Inspected material 2 Dissimilar material part 3 Medium

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検査材の表面から底面へ超音波を垂直
に入射し、その反射波に基づいて被検査材中を探傷する
垂直超音波探傷により、被検査材の音響インピーダンス
と異なる音響インピーダンスをもつ被検査材中の異材質
部を検出する方法であって、 被検査材の音響インピーダンスをZ1 、被検査材中の異
材質部の音響インピーダンスをZ2 とするとき、Z1
対する大小関係がZ1 に対するZ2 の大小関係と逆にな
る音響インピーダンスZ3 をもつ媒質を被検査材の底面
に密接させ、 被検査材の底面からの反射波に対して位相が反転した反
射波を検出することを特徴とする垂直超音波探傷による
異材質部検出方法。
1. An acoustic impedance different from the acoustic impedance of a material to be inspected by vertical ultrasonic flaw detection in which an ultrasonic wave is vertically incident from the surface to the bottom of the material to be inspected and the inside of the material is inspected based on the reflected wave. a method of detecting a different material part in the inspection member having, Z 1 and the acoustic impedance of the test material, when the acoustic impedance of the different material portions in the inspection member and Z 2, large and small with respect to Z 1 A medium having an acoustic impedance Z 3 whose relationship is opposite to the magnitude relationship of Z 2 with respect to Z 1 is brought into close contact with the bottom surface of the inspected material, and a reflected wave whose phase is inverted with respect to the reflected wave from the bottom surface of the inspected material is generated. A method for detecting a different material portion by vertical ultrasonic flaw detection, which is characterized by detecting.
JP5307563A 1993-11-11 1993-11-11 Foreign matter detecting method by vertical ultrasonic inspection Pending JPH07134117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307563A JPH07134117A (en) 1993-11-11 1993-11-11 Foreign matter detecting method by vertical ultrasonic inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5307563A JPH07134117A (en) 1993-11-11 1993-11-11 Foreign matter detecting method by vertical ultrasonic inspection

Publications (1)

Publication Number Publication Date
JPH07134117A true JPH07134117A (en) 1995-05-23

Family

ID=17970590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307563A Pending JPH07134117A (en) 1993-11-11 1993-11-11 Foreign matter detecting method by vertical ultrasonic inspection

Country Status (1)

Country Link
JP (1) JPH07134117A (en)

Similar Documents

Publication Publication Date Title
US5085082A (en) Apparatus and method of discriminating flaw depths in the inspection of tubular products
US6490927B2 (en) Method for detecting multiple types of corrosion
US4619143A (en) Apparatus and method for the non-destructive inspection of solid bodies
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
SE8602533D0 (en) ULTRASONIC METHOD AND DEVICE FOR DETECTING AND MEASURING DEFECTS IN METAL MEDIA
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
US5681996A (en) Ultrasonic device for inspection of metal parts
EP0139317A2 (en) Apparatus and method for the non-destructive inspection of solid bodies
JPS6128863A (en) Nondestructive inspection method of processing member by ultrasonic wave and device thereof
Salzburger EMAT's and its Potential for Modern NDE-State of the Art and Latest Applications
JP2000241397A (en) Method and apparatus for detecting surface defect
JPH07134117A (en) Foreign matter detecting method by vertical ultrasonic inspection
CN107966493A (en) A kind of ultrasonic examination decision method of rolled steel defect
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
CA2286501A1 (en) Method for non-destructive detection for foreign matter in medium using waveform of ultrasonic wave
JP3478178B2 (en) Ultrasonic flaw detection method and apparatus
GB2124379A (en) Improvements in or relating to ultrasonic testing
JPH07248317A (en) Ultrasonic flaw detecting method
JPH06118068A (en) Nondestructive inspection device and method for material
JPH0278949A (en) Ultrasonic flaw detecting device
JP3542173B2 (en) Ultrasonic flaw detection method
JPS61210953A (en) Ultrasonic flaw inspector
JPH0136064B2 (en)
JPS5686351A (en) Ultrasonic flaw detector
JPH0498125A (en) Method and device for detecting liquid level by use of ultrasonic wave and device therefor