JPH07134108A - Thermal conductivity coefficient measuring method for low thermally conductive sheet - Google Patents

Thermal conductivity coefficient measuring method for low thermally conductive sheet

Info

Publication number
JPH07134108A
JPH07134108A JP27954193A JP27954193A JPH07134108A JP H07134108 A JPH07134108 A JP H07134108A JP 27954193 A JP27954193 A JP 27954193A JP 27954193 A JP27954193 A JP 27954193A JP H07134108 A JPH07134108 A JP H07134108A
Authority
JP
Japan
Prior art keywords
thermal conductivity
strip
sheet
thin wire
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27954193A
Other languages
Japanese (ja)
Inventor
Mitsuru Tokuda
満 徳田
Masakazu Kato
雅一 加藤
Hiroshi Kiyohashi
広 幾世橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP27954193A priority Critical patent/JPH07134108A/en
Publication of JPH07134108A publication Critical patent/JPH07134108A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To provide a method to measure easily and precisely the thermal conductivity coefficient of a low thermally conductive sheet such as a sheet of paper, a film made of resin, etc., by using only one sheet. CONSTITUTION:Regarding a thermal conductivity measuring method for a low thermally conductive sheet to measure the thermal conductivity of the low thermally conductive sheet 2 by measuring the temporary temperature change of a heat radiating source and near the source when heat is transmitted by the thermal conductivity to the low thermally conductive sheet 2, which is an object to be measured, from the heat radiating source; the heat radiating source is a strip-like metal thin wire 11 heated by electricity application and the strip-like metal thin wire 11 is formed on the surface of a standard substance 3 whose thermal conductivity is already known. The low thermally conductive sheet 2 is brought into contact with the surface of the standard substance 3 including the strip-like metal thin wire 11 and the temporary temperature change in the heat radiating source and near the heat radiating source is measured by measuring the change of the electric resistance of the strip-like metal thin wire 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紙や樹脂製フィルムな
ど、熱伝導率が10W/(m・K)より低い低熱伝導性
シートの熱伝導率を測定する方法に関し、特に前記低熱
伝導性シートを多数枚重ね合わせることなく、ただ1枚
の熱伝導率を測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thermal conductivity of a low thermal conductive sheet having a thermal conductivity of less than 10 W / (mK) such as a paper or a resin film, and particularly to the low thermal conductivity. The present invention relates to a method for measuring the thermal conductivity of only one sheet without stacking a large number of sheets.

【0002】[0002]

【従来の技術】従来、シート状物質の熱伝導率を測定す
る方法としては、パルス加熱法、周期加熱法および熱線
プローブ法などが知られている。
2. Description of the Related Art Conventionally, a pulse heating method, a periodic heating method, a heat ray probe method and the like have been known as methods for measuring the thermal conductivity of a sheet-like substance.

【0003】パルス加熱法は、短冊状シートの試料上に
加熱源および温度センサーをある距離をもって形成し、
試料をレーザー光等でパルス的に加熱したときの試料面
上の温度観測点における温度の応答により試料の熱伝導
率を測定する方法である。一方、周期加熱法は、短冊状
シートの試料の一部に光を照射し、周期的に加熱し、加
熱部分から離れた点での温度の応答の観測により試料の
温度伝導率を求め、間接的に熱伝導率を測定する方法で
ある。
In the pulse heating method, a heating source and a temperature sensor are formed at a certain distance on a strip-shaped sample,
This is a method of measuring the thermal conductivity of a sample by the temperature response at a temperature observation point on the sample surface when the sample is heated in a pulsed manner by laser light or the like. On the other hand, the periodic heating method irradiates a part of the sample of the strip-shaped sheet with light, periodically heats it, and obtains the temperature conductivity of the sample by observing the temperature response at a point apart from the heated part. It is a method of measuring the thermal conductivity.

【0004】また、熱線プローブ法(ボックスプローブ
法ともいわれている)は重ねたシート状の試料に細い電
熱線を押し当てて加熱し、その時の電熱線の中央の温度
変化を熱電対を用いて測定することにより試料の熱伝導
率を測定する方法である。
In the hot wire probe method (also called box probe method), a thin heating wire is pressed against stacked sheet-like samples to heat them, and the temperature change at the center of the heating wire at that time is measured by using a thermocouple. This is a method of measuring the thermal conductivity of the sample by measuring.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
は次のような問題があり、シート状物質の熱伝導率測定
は極めて難しい。
The above-mentioned prior art has the following problems, and it is extremely difficult to measure the thermal conductivity of a sheet-like substance.

【0006】まず、パルス加熱法、および周期加熱法の
問題点に付いて述べる。
First, problems of the pulse heating method and the periodic heating method will be described.

【0007】これらの方法では、シート状物質が透明、
あるいは反射率が高くて光を吸収しない場合には、光が
熱に変換されないので、温度上昇が小さく十分な測定が
できない。そこで、従来、このようなシート状物質では
その表面に薄いカーボン膜をスプレー塗工して、光の吸
収を生じさせていた。その際、このカーボン塗膜を薄く
均一に形成する必要がある。カーボン塗膜が厚いと熱が
主にこのカーボン塗膜に流れ、シート状物質の熱伝導率
が正確に求められない。特に、熱伝導率が小さいシート
状物質の場合はこの傾向が大きくなるので、カーボン塗
膜の厚さは1μm程度以下にしなければならない。しか
し、このような薄い塗膜を均一に密着性よく、かつシー
トに反りが生じないように形成するのは非常に難しい。
In these methods, the sheet material is transparent,
Alternatively, when the reflectance is high and light is not absorbed, the light is not converted into heat, so the temperature rise is small and sufficient measurement cannot be performed. Therefore, conventionally, a thin carbon film has been spray-coated on the surface of such a sheet-like substance to cause light absorption. At that time, it is necessary to form this carbon coating thinly and uniformly. If the carbon coating film is thick, heat mainly flows to this carbon coating film, and the thermal conductivity of the sheet material cannot be accurately determined. Particularly, in the case of a sheet-like substance having a small thermal conductivity, this tendency becomes large, and therefore the thickness of the carbon coating film must be about 1 μm or less. However, it is very difficult to form such a thin coating film with good adhesion and without warping of the sheet.

【0008】さらに、紙のような液体を吸収しやすいシ
ートの場合は、スプレー塗工によりカーボン成分が紙の
内部にまで浸透するので、紙そのものの熱伝導率を求め
ることができない。また、別の方法で紙の表面だけに光
吸収層を形成できたとしても、紙の表面粗さの故、均一
に薄い層を形成することは困難である。
Further, in the case of a sheet which easily absorbs a liquid such as paper, the carbon component permeates into the inside of the paper by spray coating, so that the thermal conductivity of the paper itself cannot be obtained. Even if the light absorption layer can be formed only on the surface of the paper by another method, it is difficult to form a thin layer uniformly because of the surface roughness of the paper.

【0009】このように、パルス加熱法および周期加熱
法においては被測定シートの表面を予め精密に処理して
おく必要がある。これは難しく、手間が掛かるものであ
る。また、シートの厚さが薄かったり、シートの表面が
多孔状態や表面粗度が大きい状態であったりして、適切
な表面処理ができない場合があり、熱伝導率が測定でき
るシートが制限される問題がある。
As described above, in the pulse heating method and the periodic heating method, it is necessary to preliminarily precisely process the surface of the sheet to be measured. This is difficult and time consuming. In addition, the thickness of the sheet is thin, or the surface of the sheet is in a porous state or a state where the surface roughness is large, so that appropriate surface treatment may not be possible, and the sheet whose thermal conductivity can be measured is limited. There's a problem.

【0010】次に、熱線プローブ法の問題点について述
べる。通常、この方法で使用される電熱線の直径は0.
1〜1mmである。これに対して被測定シートである紙
の厚さは通常40〜80μm、樹脂フィルムの厚さは3
〜50μmである。この方法で精度よく熱伝導率を求め
るには、被測定シートの厚さは前記電熱線の直径より大
きいことが必要である。しかるに、前述のように被測定
シートの厚さは前記熱線の直径よりも小さいものが多い
ために、この方法による被測定シートの正確な熱伝導率
の測定を困難にしている。
Next, problems of the hot wire probe method will be described. Usually, the diameter of the heating wire used in this method is 0.
It is 1 to 1 mm. On the other hand, the thickness of the paper to be measured is usually 40 to 80 μm, and the thickness of the resin film is 3
˜50 μm. In order to obtain the thermal conductivity accurately by this method, the thickness of the sheet to be measured needs to be larger than the diameter of the heating wire. However, as described above, since the thickness of the measured sheet is often smaller than the diameter of the heating wire, it is difficult to measure the accurate thermal conductivity of the measured sheet by this method.

【0011】そこで、従来、この方法を用いた紙などの
被測定シートの熱伝導率測定においては、シートを20
〜50枚重ねたものの熱伝導率を測定し、これをもとに
シートの熱伝導率を求めている。しかし、この場合には
シートとシートの間に僅かな空隙ができ、そこの空気層
が断熱層として機能するので、熱伝導率は小さめに測定
されてしまう。また、前記空隙の度合いが一様でないた
めに被測定シートの正確な熱伝導率は求められていな
い。
Therefore, conventionally, when measuring the thermal conductivity of a sheet to be measured such as paper using this method, 20 sheets of the sheet have been used.
The thermal conductivity of a stack of up to 50 sheets is measured, and the thermal conductivity of the sheet is determined based on the measured thermal conductivity. However, in this case, a slight gap is formed between the sheets, and the air layer there functions as a heat insulating layer, so that the thermal conductivity is measured to be small. Further, since the degree of the voids is not uniform, the accurate thermal conductivity of the measured sheet has not been obtained.

【0012】また、この熱線プローブ法においては電熱
線の温度測定を熱電対を用いて測定しているが、熱伝導
率が小さい被測定シートの場合は、被測定シートに伝わ
る熱よりも熱電対を伝わって逃げる熱のほうが多くな
り、熱伝導率測定の精度が悪くなる。
Further, in the hot wire probe method, the temperature of the heating wire is measured by using a thermocouple. However, in the case of the measured sheet having a small thermal conductivity, the thermocouple is more than the heat transmitted to the measured sheet. Since more heat is conducted and escapes, the accuracy of the thermal conductivity measurement deteriorates.

【0013】以上の問題点に鑑み、本発明は、紙や樹脂
製フィルムのような低熱伝導性シートの熱伝導率を該シ
ート1枚で精度よく簡便に測定する方法を提供すること
を目的とする。
In view of the above problems, it is an object of the present invention to provide a method for accurately and simply measuring the thermal conductivity of a low thermal conductivity sheet such as paper or resin film with one sheet. To do.

【0014】[0014]

【課題を解決するための手段】本発明の低熱伝導性シー
トの熱伝導率測定方法は、発熱源から被測定物たる低熱
伝導性シートに熱伝導により熱を与えたとき、該発熱源
およびその近傍の過渡的な温度変化を測定することによ
り、該低熱伝導性シートの熱伝導率を求める低熱伝導性
シートの熱伝導率測定方法において、前記発熱源は通電
加熱した帯状金属細線であり、該帯状金属細線は熱伝導
率が既知の基準物質の表面上に形成されており、該帯状
金属細線を含む該基準物質の表面には前記低熱伝導性シ
ートが接触しており、前記発熱源およびその近傍の過渡
的な温度変化の測定は、該帯状金属細線の電気抵抗値の
変化を測定することによりなされることを特徴とする。
The method for measuring the thermal conductivity of a low thermal conductive sheet according to the present invention is such that when heat is applied from a heat source to a low thermal conductive sheet which is an object to be measured, the heat source and the In the method for measuring the thermal conductivity of a low thermal conductivity sheet for determining the thermal conductivity of the low thermal conductivity sheet by measuring a transient temperature change in the vicinity, the heat source is a strip-shaped metal thin wire that is electrically heated, The strip-shaped thin metal wire is formed on the surface of a reference material having a known thermal conductivity, and the low-thermal-conductivity sheet is in contact with the surface of the reference material including the strip-shaped thin metal wire, and the heat source and its source. The measurement of the transient temperature change in the vicinity is performed by measuring the change of the electric resistance value of the strip-shaped metal thin wire.

【0015】また、請求項2の低熱伝導性シートの熱伝
導率測定方法は、請求項1に記載の低熱伝導性シートの
熱伝導率測定方法において、前記帯状金属細線を通電加
熱するために一定電力を供給する電源は該帯状金属細線
の電気抵抗値の変化に関わりなく一定電力が供給できる
電源であり、かつ、該電源は電力供給を開始した直後の
電力の立上がりにおいて電力の設定値を越えることな
く、0.1マイクロ秒以上、1ミリ秒以下の時間で、ほ
ぼ設定した電力値に達することを特徴とする。
The method for measuring the thermal conductivity of the low thermal conductivity sheet according to claim 2 is the same as the method for measuring the thermal conductivity of the low thermal conductivity sheet according to claim 1, wherein the strip-shaped metal thin wire is heated to a constant temperature. The power supply that supplies power is a power supply that can supply constant power regardless of changes in the electrical resistance value of the strip-shaped metal thin wire, and the power supply exceeds the set value of power at the rise of power immediately after starting power supply. It is characterized in that it almost reaches the set power value in a time of 0.1 microsecond or more and 1 millisecond or less.

【0016】請求項3の低熱伝導性シートの熱伝導率測
定方法は、請求項1に記載の低熱伝導性シートの熱伝導
率測定方法において、前記帯状金属細線は線幅1〜20
μm、長さ1〜20mmで厚さ0.05〜1μmの金属
薄膜からなることを特徴とする。
According to a third aspect of the present invention, there is provided a method for measuring thermal conductivity of a low thermal conductivity sheet according to the first aspect of the present invention, wherein the strip-shaped thin metal wire has a line width of 1 to 20.
It is characterized by comprising a metal thin film having a thickness of 1 to 20 mm and a thickness of 0.05 to 1 μm.

【0017】また、請求項4の低熱伝導性シートの熱伝
導率測定方法は、請求項1に記載の低熱伝導性シートの
熱伝導率測定方法において、前記帯状金属細線を含む該
基準物質の表面に厚さ0.1〜1μmの低熱伝導性絶縁
物の薄膜を形成することを特徴とする。
A method for measuring the thermal conductivity of the low thermal conductivity sheet according to claim 4 is the method for measuring the thermal conductivity of the low thermal conductivity sheet according to claim 1, wherein the surface of the reference material containing the strip-shaped metal thin wire is included. Is characterized in that a thin film of a low thermal conductive insulator having a thickness of 0.1 to 1 μm is formed.

【0018】[0018]

【作用】本発明によれば、低熱伝導性シートの表面に熱
伝導率が既知の基準物質を密着させてその間に発熱源で
ある帯状金属細線を介在させることによって、精度よく
前記帯状金属細線の電気抵抗値を測定することにより、
1枚の低熱伝導性シートの熱伝導率を正確に、かつ一意
的に測定することができる。
According to the present invention, a reference substance having a known thermal conductivity is brought into close contact with the surface of the low thermal conductivity sheet, and a strip-shaped metal thin wire which is a heat source is interposed therebetween, whereby the strip-shaped metal thin wire can be accurately formed. By measuring the electric resistance value,
The thermal conductivity of one low thermal conductivity sheet can be accurately and uniquely measured.

【0019】さらにまた、定電力電源を用いて電力設定
値を越えない電力を帯状金属細線に供給して発熱させた
り、前記帯状金属細線の幅、長さ、厚さ所定範囲に設定
することにより、低熱伝導性シートの熱伝導率を極めて
正確に測定することができる。
Furthermore, by supplying electric power which does not exceed the set power value to the strip-shaped metal thin wire by a constant power source to generate heat, or by setting the width, length and thickness of the strip-shaped metal thin wire within a predetermined range. The thermal conductivity of the low thermal conductivity sheet can be measured extremely accurately.

【0020】また、帯状金属細線を含めた基準物質と低
熱伝導性シートとの間には、低熱伝導性絶縁物の薄膜を
介在させても同様にして1枚の低熱伝導性シートの熱伝
導率を正確に測定することができる。
Further, even if a thin film of a low thermal conductive insulator is interposed between the reference material including the strip-shaped metal fine wire and the low thermal conductive sheet, the thermal conductivity of one low thermal conductive sheet is similarly obtained. Can be measured accurately.

【0021】[0021]

【実施例】次に、図面を参照しながら本発明について説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0022】図1は本発明の測定原理を示す熱伝導モデ
ルである。この図は発熱線1が低熱伝導性シートからな
る被測定シート2と熱伝導率が既知の基準物質3に挟み
込まれた構成であり、その断面図を示す図である。ここ
で被測定シート2および基準物質3の平面サイズは発熱
線1の直径に比べて十分に大きいとする。
FIG. 1 is a heat conduction model showing the measurement principle of the present invention. This figure shows a cross-sectional view of a configuration in which a heating wire 1 is sandwiched between a measured sheet 2 made of a low thermal conductivity sheet and a reference substance 3 having a known thermal conductivity. Here, it is assumed that the plane sizes of the measurement target sheet 2 and the reference substance 3 are sufficiently larger than the diameter of the heating wire 1.

【0023】このとき、被測定シート2の熱伝導率λは
次式(1)により表される。
At this time, the thermal conductivity λ of the measured sheet 2 is expressed by the following equation (1).

【0024】 ここで、qは発熱線1の単位長さ、単位時間当たりの発
熱量、tは加熱を開始してからの時間であり、lntは
tの自然対数、Tは発熱線1の温度、λR は基準物質3
の熱伝導率である。
[0024] Here, q is the unit length of the heating wire 1, the amount of heat generated per unit time, t is the time from the start of heating, lnt is the natural logarithm of t, T is the temperature of the heating wire 1, and λ R Is reference substance 3
Is the thermal conductivity of.

【0025】式(1)の微分項は対数時間に対する温度
上昇の勾配であり、この勾配が測定できれば被測定シー
ト2の熱伝導率λを求めることができる。
The differential term of the equation (1) is a slope of temperature rise with respect to logarithmic time, and if this slope can be measured, the thermal conductivity λ of the measured sheet 2 can be obtained.

【0026】図2は本発明の実施例における被測定シー
ト2の熱伝導率測定方法を説明するために、前記発熱線
となる細線のパターンの一例を示す平面図である。ガラ
ス、あるいはシリコーンゴムなどの熱伝導率が既知の基
準物質3の表面にアルミニウム、ニッケルあるいはタン
タルなどの金属膜を0.1〜1μmの厚さで形成する。
次に、リソグラフィ法等により金属膜をパターニング
し、帯状金属細線11、電流供給用パッド15、電圧測
定用パッド16を形成する。なお、細線11のサイズは
幅wが1〜20μm、長さLが1〜20mmで、アスペ
クト比L/wは50〜20000のものを使用する。
FIG. 2 is a plan view showing an example of a fine wire pattern serving as the heating line in order to explain the method of measuring the thermal conductivity of the measured sheet 2 in the embodiment of the present invention. A metal film of aluminum, nickel, tantalum, or the like is formed to a thickness of 0.1 to 1 μm on the surface of a reference material 3 such as glass or silicone rubber having a known thermal conductivity.
Next, the metal film is patterned by a lithography method or the like to form the strip-shaped metal thin wire 11, the current supply pad 15, and the voltage measurement pad 16. The fine wire 11 has a width w of 1 to 20 μm, a length L of 1 to 20 mm, and an aspect ratio L / w of 50 to 20,000.

【0027】その後、細線11を含む基準物質3の表面
に被測定シート2を載せ、密着させる。図2のa−a´
に沿って切断したときの断面図を図3に示す。なお、細
線11の電気抵抗値の温度による変化は予め測定してお
く。
After that, the measured sheet 2 is placed on the surface of the reference substance 3 including the fine wire 11 and brought into close contact therewith. Aa ′ in FIG.
FIG. 3 shows a sectional view taken along the line. The change in the electric resistance value of the thin wire 11 with temperature is measured in advance.

【0028】このように準備された試料を用いて、図4
に示す測定系により被測定シート2の熱伝導率が測定さ
れる。この図の定電力電源17は電流供給用プローブ2
5を通して細線11に電流を流し、細線11を加熱する
と共に、電圧測定用プローブ26を通して細線11にか
かる電圧を逐次検出することによって細線11に供給さ
れる電力が設定値に保持されるように供給電流をコント
ロールできる電源である。また、細線11に流れる電
流、およびかかる電圧は電流・電圧測定装置18によっ
て計測され、計算機により細線11の電気抵抗値、さら
にその時の細線11の温度を算出する。これに加え、前
記計算機19では細線11に供給された電力、および細
線11の単位長さ・単位時間当たりの発熱量が算出され
る。
Using the sample thus prepared, as shown in FIG.
The thermal conductivity of the measured sheet 2 is measured by the measuring system shown in FIG. The constant power source 17 in this figure is the probe 2 for current supply.
A current is supplied to the thin wire 11 through 5 to heat the thin wire 11, and the voltage applied to the thin wire 11 is sequentially detected through the voltage measuring probe 26 so that the power supplied to the thin wire 11 is supplied at a set value. It is a power supply that can control the current. The current flowing in the thin wire 11 and the applied voltage are measured by the current / voltage measuring device 18, and the electric resistance value of the thin wire 11 and the temperature of the thin wire 11 at that time are calculated by a computer. In addition to this, the computer 19 calculates the electric power supplied to the thin wire 11 and the heat generation amount of the thin wire 11 per unit length / unit time.

【0029】ここで、前記定電力電源17の内部の機能
を図5に示すブロックダイヤグラムを用いて説明する。
まず、入力電圧値は電圧検出器31によって検出され積
算器33に送られる。一方、電流出力器36によって出
力される電流値は電流検出器32を用いて検出され、こ
れも積算器33に送られる。積算器33は前記電圧値と
前記電流値を積算し、電力値に変換して比較器34に送
る。比較器34では前記電力値と電力設定値35とを比
較することによって、電力設定値35に一致するように
出力電流値を決め、電流出力器36に送る。こうして、
逐次制御された電流が電流出力器36から外部に出力さ
れる。
Here, the internal function of the constant power source 17 will be described with reference to the block diagram shown in FIG.
First, the input voltage value is detected by the voltage detector 31 and sent to the integrator 33. On the other hand, the current value output by the current output device 36 is detected using the current detector 32, and this is also sent to the integrator 33. The integrator 33 integrates the voltage value and the current value, converts them into power values, and sends them to the comparator 34. The comparator 34 compares the power value with the power setting value 35 to determine an output current value so as to match the power setting value 35, and sends the output current value to the current output device 36. Thus
The sequentially controlled current is output from the current output device 36 to the outside.

【0030】こうして細線加熱の直後からの微小時間に
おける細線温度の過渡的な変化を測定することができ
る。図6はこのようにして求められた時間経過に対する
細線11の温度上昇を示すグラフの一例である。グラフ
から直線部分の勾配dT/dlntを求め、これと発熱
量q(qは定電力電源17の使用により一定値とな
る)、および基準物質3の熱伝導率λR を前述の式
(1)に代入することにより、一意的に被測定シート2
の熱伝導率を求めることができる。
In this way, it is possible to measure the transient change in the temperature of the thin wire in a minute time immediately after heating the thin wire. FIG. 6 is an example of a graph showing the temperature rise of the thin wire 11 with respect to the elapsed time thus obtained. The gradient dT / dlnt of the straight line portion is obtained from the graph, and the calorific value q (q becomes a constant value by the use of the constant power source 17) and the thermal conductivity λ R of the reference substance 3 are calculated by the above equation (1). By assigning to
The thermal conductivity of can be calculated.

【0031】さて、ここで本発明に係る定電力電源17
について説明を加える。前述のように定電力電源17は
出力電力を一定値に制御できるものであるが、厚みが1
mm以下の薄いシートの熱伝導率測定においては、さら
に次の事項が重要であることが発明者の鋭意研究によっ
て明らかになった。
Now, here, the constant power source 17 according to the present invention
Will be added. As described above, the constant power source 17 can control the output power to a constant value, but has a thickness of 1
In the measurement of the thermal conductivity of a thin sheet having a thickness of not more than mm, the following matters have been further clarified by the inventors' earnest research.

【0032】以下、図を参照しながら説明する。A description will be given below with reference to the drawings.

【0033】図7は前記定電力電源17にて電力供給を
開始した直後の出力電力の立上がりを示すグラフであ
る。この図で曲線aは本発明に係わる定電力電源17に
よるもの、曲線bは従来の定電力電源によるものであ
る。また、Ps は電力の設定値、to は出力電力が設定
値Ps の9割に達するまでの立上がり時間である。ま
ず、従来の定電力電源による出力電力の立上がりは、曲
線bに示すように出力直後に設定値Ps をはるかに越え
るオーバーシュートが発生し、その後、設定値Ps に達
するまでに設定値Ps の前後で振れるリンギングが生じ
ていた。このような定電力電源を用いて細線11を加熱
すると、初期のオーバーシュートによる異常加熱、およ
びリンギングによる細線温度の変動等が発生した。この
ため、前記図6に示すような直線的な温度上昇部分を有
するグラフは得ることができず、被測定シート2の熱伝
導率を求めることは困難であった。これは従来の定電力
電源ではミリ秒以下のオーダーでの立上がりの安定性が
考慮されていないためであると思われる。
FIG. 7 is a graph showing the rise of the output power immediately after the power supply by the constant power source 17 is started. In this figure, curve a is for the constant power source 17 according to the present invention, and curve b is for the conventional constant power source. Further, P s is a set value of electric power, and t o is a rise time until the output power reaches 90% of the set value P s . First, the rise in the output power by the conventional constant power supply, overshoot far exceeds the setting value P s immediately after the output as shown by the curve b is generated, then the set value P to reach a set value P s There was ringing before and after s . When the thin wire 11 was heated using such a constant power source, abnormal heating due to initial overshoot, fluctuation of the thin wire temperature due to ringing, and the like occurred. Therefore, a graph having a linear temperature rising portion as shown in FIG. 6 could not be obtained, and it was difficult to obtain the thermal conductivity of the measured sheet 2. This seems to be because the conventional constant-power power supply does not consider the stability of rising on the order of milliseconds or less.

【0034】そこで、前記図7の曲線aの特性を有する
定電力電源17を新たに作り、本発明を実現した。な
お、この定電力電源17の立上がり時間to は0.1μ
s以上、1ms以下である。to の下限値は定電力電源
の実現可能な性能の限界であり、to の上限値は熱伝導
率が測定可能なシートの厚さを、後述のPET(ポリエ
チレンテレフタレート)フィルムの場合で10μm以上
にするために必要とされる値である。
Therefore, the constant power source 17 having the characteristic of the curve a in FIG. 7 is newly made to realize the present invention. The rise time t o of the constant power source 17 is 0.1 μm.
It is s or more and 1 ms or less. The lower limit of t o is the limit of the performance that can be realized by the constant power source, and the upper limit of t o is the thickness of the sheet whose thermal conductivity can be measured, and is 10 μm in the case of the PET (polyethylene terephthalate) film described below. This is the value required to do the above.

【0035】さらに、本発明に係る定電力電源17の出
力電力の変動は±1%以内に収められている。変動値が
この値を越えると、前記図6に示すような滑らかな曲線
が得られず、直線区間の識別が難しくなるため熱伝導率
を求めることが困難になる。以上述べたように、定電力
電源17は本発明を特徴付ける重要な要素である。
Further, the fluctuation of the output power of the constant power source 17 according to the present invention is kept within ± 1%. If the fluctuation value exceeds this value, a smooth curve as shown in FIG. 6 cannot be obtained, and it becomes difficult to identify the straight line section, and thus it becomes difficult to obtain the thermal conductivity. As described above, the constant power source 17 is an important element that characterizes the present invention.

【0036】実施例1 この熱伝導率測定方法を用いて、厚さ10μmのPET
フィルムの測定を行なった場合について実施例を説明す
る。
Example 1 Using this method for measuring thermal conductivity, PET having a thickness of 10 μm was used.
An example will be described for the case where the film is measured.

【0037】図2(平面図)および図8(断面図)に示
すように、幅wが5μm、長さLが10mm、膜厚が
0.3μmのニッケル膜からなる細線11を石英ガラス
基板(板厚1.0mm)からなる基準物質3の表面に形
成する。
As shown in FIG. 2 (plan view) and FIG. 8 (cross-sectional view), a fine wire 11 made of a nickel film having a width w of 5 μm, a length L of 10 mm and a film thickness of 0.3 μm is formed on a quartz glass substrate ( It is formed on the surface of the reference substance 3 having a plate thickness of 1.0 mm).

【0038】次に、細線11の電気抵抗値の温度による
変化を測定した後、細線11を含む基準物質3の表面に
被測定シート2であるPETフィルムを載せる。更に、
このPETフィルムを均一に広げるために、この上にカ
バー材4を置く。カバー材4は表面が滑らかで平らな板
材で、その熱伝導率が被測定膜のそれと明かに異なるも
のを選ぶ。本実施例では基準物質3と同じ石英ガラス基
板を用いた。最後に重量約40gの重り5をカバー材4
の上に載せた。
Next, after measuring the change in the electric resistance value of the thin wire 11 due to the temperature, the PET film which is the sheet 2 to be measured is placed on the surface of the reference substance 3 including the thin wire 11. Furthermore,
In order to spread this PET film uniformly, the cover material 4 is placed on it. The cover material 4 is a flat plate material having a smooth surface and its thermal conductivity is clearly different from that of the film to be measured. In this example, the same quartz glass substrate as the reference material 3 was used. Finally, attach the weight 5 weighing about 40 g to the cover material 4
I put it on top.

【0039】このように準備した試料系の細線11を加
熱し、細線11の温度上昇(T)と対数で表わされる経
過時間(lnt)を求めた。その結果を図9に示す。こ
の図の直線ABの勾配からPETフィルムの熱伝導率を
求めることができる。なお、図のA点以前の部分は基準
物質とPETフィルムの間に生じる微小空隙を示してお
り、同じく、B点以降の部分はPETフィルムとカバー
材の間に生じる微小空隙を示している。
The thin wire 11 of the sample system thus prepared was heated, and the temperature rise (T) of the thin wire 11 and the elapsed time (lnt) expressed in logarithm were obtained. The result is shown in FIG. The thermal conductivity of the PET film can be obtained from the slope of the straight line AB in this figure. The portion before the point A in the figure shows the minute voids generated between the reference substance and the PET film, and the portion after the point B shows the minute voids generated between the PET film and the cover material.

【0040】図9の直線部分をわかり易くするために、
縦軸を温度勾配としたグラフを図10に示す。このグラ
フより細線11の加熱を開始した直後から約25〜40
msの時間範囲では、温度勾配が一定になっていること
がわかる(図中の直線AB部分参照)。この温度勾配の
一定値を前述の式(1)のdT/dlntに代入するこ
とによって、PETフィルムの熱伝導率λ=0.12W
/(m・K)を求めた。
In order to make the straight line portion of FIG. 9 easy to understand,
A graph in which the vertical axis has a temperature gradient is shown in FIG. From this graph, about 25-40 immediately after the heating of the thin wire 11 is started.
It can be seen that the temperature gradient is constant in the ms time range (see the straight line AB portion in the figure). By substituting the constant value of this temperature gradient for dT / dlnt in the above-mentioned formula (1), the thermal conductivity λ of the PET film λ = 0.12 W
/ (M · K) was calculated.

【0041】このように本発明では樹脂フィルムの表面
にカーボン膜等を塗工処理することなく、厚さ10μm
という薄い樹脂フィルム1枚の熱伝導率を精度よく簡便
に測定することができる。
As described above, according to the present invention, the thickness of the resin film is 10 μm without being coated with a carbon film or the like.
That is, the thermal conductivity of one thin resin film can be accurately and easily measured.

【0042】実施例2 この熱伝導率測定方法を用いて、ワープロ用印字用紙と
して市販されている厚さ約70μmの熱転写用紙の熱伝
導率測定を行なった場合について実施例を説明する。
Example 2 An example will be described in which the thermal conductivity of a thermal transfer paper having a thickness of about 70 μm, which is commercially available as a word processor printing paper, is measured by using this thermal conductivity measuring method.

【0043】図2(平面図)および図11(断面図)に
示すように、幅wが10μm、長さLが10mmで膜厚
が0.5μmのアルミニウム膜からなる細線11を7059
ガラス基板(コーニング社製・バリウムほう珪酸ガラス
板、板厚0.7mm)からなる基準物質3の表面に形成
する。次に、細線11を含む基準物質3の表面に、電流
供給用パッド15および電圧測定用パッド16を覆わな
いように厚さ1μmの二酸化ケイ素膜からなる保護層6
を形成した。
As shown in FIG. 2 (plan view) and FIG. 11 (cross-sectional view), a thin wire 11 made of an aluminum film having a width w of 10 μm, a length L of 10 mm and a film thickness of 0.5 μm is 7059.
It is formed on the surface of the reference substance 3 made of a glass substrate (made by Corning, barium borosilicate glass plate, plate thickness 0.7 mm). Next, a protective layer 6 made of a silicon dioxide film having a thickness of 1 μm is formed on the surface of the reference material 3 including the thin wires 11 so as not to cover the current supply pad 15 and the voltage measurement pad 16.
Was formed.

【0044】この上に被測定シート2である熱転写用紙
を載せ、さらに、この熱転写用紙を均一に広げるために
カバー材4を置く。カバー材4としては基準物質と同じ
7059ガラス基板を用いた。最後に重量約40gの重り5
をカバー材4の上に載せた。前記保護層6を設けるの
は、被測定シート2により細線11が傷付いたり、断線
したりすることを防止するためである。なお、細線11
の電気抵抗値の温度による変化は前記保護層6を形成し
た後に予め測定しておく。
A thermal transfer sheet, which is the sheet to be measured 2, is placed on this, and a cover material 4 is placed to spread the thermal transfer sheet evenly. Same as reference material for cover material 4
A 7059 glass substrate was used. Finally, a weight of about 40g 5
Was placed on the cover material 4. The protective layer 6 is provided to prevent the fine wire 11 from being damaged or broken by the sheet 2 to be measured. The thin wire 11
The change of the electric resistance value due to temperature is measured in advance after forming the protective layer 6.

【0045】このように準備した試料系の細線11を加
熱し、経過時間(t)に対する細線11の温度上昇
(T)を測定した。この結果を対数で表わされる経過時
間(lnt)に対する温度勾配dT/dlntで表わし
図12のグラフに示す。このグラフより細線11の加熱
を開始した直後から約25〜80msの時間範囲では、
温度勾配が一定になっていることがわかる(図中の直線
CDの部分参照)。この温度勾配の値から、被測定シー
ト2である熱転写用紙の熱伝導率λ=0.31W/(m
・K)を求めた。なお、前記保護層の厚さは1μm以下
と薄く熱容量が小さいのでミリ秒オーダー以上での温度
変化の測定にはほとんど影響しない。
The thin wire 11 of the sample system thus prepared was heated, and the temperature rise (T) of the thin wire 11 with respect to the elapsed time (t) was measured. This result is represented by the temperature gradient dT / dlnt with respect to the elapsed time (lnt) represented by logarithm and is shown in the graph of FIG. From this graph, in the time range of about 25 to 80 ms immediately after the heating of the thin wire 11 is started,
It can be seen that the temperature gradient is constant (see the straight line CD portion in the figure). From the value of this temperature gradient, the thermal conductivity λ = 0.31 W / (m
・ K) was calculated. Since the thickness of the protective layer is as thin as 1 μm or less and the heat capacity is small, it has almost no influence on the measurement of temperature change on the order of milliseconds or more.

【0046】以上のように本発明では紙の表面にカーボ
ン膜等を塗工処理する必要がないので、紙のみの熱伝導
率を精度よく簡便に測定できる。また、紙を十数枚重ね
て測定する必要がないので、紙と紙との間の空隙が測定
に影響することがなく、紙1枚の熱伝導率を精度よく測
定することができる。更に、細線の幅wに対する長さL
は十分に長くとっているので細線の両端からの熱損失は
十分に無視でき、よって高い精度で熱伝導率を測定でき
る。
As described above, according to the present invention, since it is not necessary to coat the surface of the paper with a carbon film or the like, the thermal conductivity of only the paper can be measured accurately and easily. In addition, since it is not necessary to measure ten or more sheets of paper in piles, the gap between the sheets of paper does not affect the measurement, and the thermal conductivity of one sheet of paper can be accurately measured. Furthermore, the length L with respect to the width w of the thin wire
Is sufficiently long, the heat loss from both ends of the thin wire can be neglected sufficiently, and therefore the thermal conductivity can be measured with high accuracy.

【0047】なお、本発明は前記実施例に限定されるも
のではなく、必要に応じて変更することができる。
The present invention is not limited to the above embodiment, but can be modified as necessary.

【0048】[0048]

【発明の効果】以上説明したように本発明は、紙や樹脂
フィルムなどの低熱伝導性シートの熱伝導率を簡単な解
析式を用いて一意的に求めることができる測定方法であ
り、被測定シートに前処理をしたり、被測定シートを多
数枚重ね合わせたりする必要がなく、精度よく、かつ簡
便に被測定シート1枚のみの熱伝導率を測定することが
できる等の効果を奏する。
INDUSTRIAL APPLICABILITY As described above, the present invention is a measuring method capable of uniquely obtaining the thermal conductivity of a low thermal conductive sheet such as paper or resin film by using a simple analytic formula. There is no need to pretreat the sheet or to superimpose a large number of sheets to be measured, and it is possible to measure the thermal conductivity of only one sheet to be measured accurately and easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測定原理を示す熱伝導モデルの断面図FIG. 1 is a sectional view of a heat conduction model showing the measurement principle of the present invention.

【図2】本発明の実施例における被測定シートの熱伝導
率測定方法を説明するための細線パターンの一例を示す
平面図
FIG. 2 is a plan view showing an example of a fine line pattern for explaining the method for measuring the thermal conductivity of the measurement target sheet in the example of the present invention.

【図3】図2のa−a´に沿って切断した断面図FIG. 3 is a cross-sectional view taken along line aa ′ of FIG.

【図4】本発明の実施例における熱伝導率測定方法を説
明するための測定系の構成を示す図
FIG. 4 is a diagram showing a configuration of a measurement system for explaining a thermal conductivity measurement method in an example of the present invention.

【図5】定電力電源の内部機能を説明するためのブロッ
クダイヤグラム
FIG. 5 is a block diagram for explaining internal functions of a constant power source.

【図6】時間経過に対する細線の温度上昇の一例を示す
グラフ
FIG. 6 is a graph showing an example of temperature rise of a thin wire with time.

【図7】定電力電源にて電力供給を開始した直後の電力
の立上がりを示すグラフ
FIG. 7 is a graph showing the rise of electric power immediately after starting the electric power supply from the constant electric power source.

【図8】本発明の第1実施例を示す細線部分の断面図FIG. 8 is a sectional view of a thin line portion showing the first embodiment of the present invention.

【図9】本発明の第1実施例における時間経過に対する
細線の温度上昇を示すグラフ
FIG. 9 is a graph showing the temperature rise of the thin line with the passage of time in the first embodiment of the present invention.

【図10】本発明の第1実施例における時間経過に対す
る細線の温度勾配の変化を示すグラフ
FIG. 10 is a graph showing changes in temperature gradient of a thin line with time in the first embodiment of the present invention.

【図11】本発明の第2実施例を示す細線部分の断面図FIG. 11 is a sectional view of a thin line portion showing a second embodiment of the present invention.

【図12】本発明の第2実施例における時間経過に対す
る細線の温度勾配の変化を示すグラフ
FIG. 12 is a graph showing changes in the temperature gradient of the thin line with the passage of time in the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 発熱線 2 被測定シート 3 基準物質 4 カバー材 5 重り 6 保護層 11 細線 15 電流供給用パッド 16 電圧測定用パッド 17 定電力電源 18 電流・電圧測定装置 19 計算機 25 電流供給用プローブ 26 電圧測定用プローブ 27 電流電圧変換器 31 電圧検出器 32 電流検出器 33 積算器 34 比較器 35 電力設定値 36 電流出力器 1 Heating Line 2 Measured Sheet 3 Reference Material 4 Cover Material 5 Weight 6 Protective Layer 11 Fine Wire 15 Current Supply Pad 16 Voltage Measurement Pad 17 Constant Power Supply 18 Current / Voltage Measuring Device 19 Calculator 25 Current Supply Probe 26 Voltage Measurement Probe 27 Current-voltage converter 31 Voltage detector 32 Current detector 33 Accumulator 34 Comparator 35 Power setting value 36 Current output device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 幾世橋 広 宮城県仙台市太白区松が丘40−21 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ikuyo Hashi Hiro 40-40 Matsugaoka, Taishiro-ku, Sendai City, Miyagi Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発熱源から被測定物たる低熱伝導性シー
トに熱伝導により熱を与えたとき、該発熱源およびその
近傍の過渡的な温度変化を測定することにより、該低熱
伝導性シートの熱伝導率を求める低熱伝導性シートの熱
伝導率測定方法において、前記発熱源は通電加熱した帯
状金属細線であり、該帯状金属細線は熱伝導率が既知の
基準物質の表面上に形成されており、該帯状金属細線を
含む該基準物質の表面には前記低熱伝導性シートが接触
しており、前記発熱源およびその近傍の過渡的な温度変
化の測定は、該帯状金属細線の電気抵抗値の変化を測定
することによりなされることを特徴とする低熱伝導性シ
ートの熱伝導率測定方法。
1. When heat is applied from a heat source to a low thermal conductive sheet as an object to be measured by heat conduction, a transient temperature change of the heat source and its vicinity is measured to measure the low thermal conductive sheet. In the method for measuring the thermal conductivity of a low thermal conductivity sheet for obtaining the thermal conductivity, the heat source is an electrically heated strip-shaped metal thin wire, and the strip-shaped metal thin wire is formed on the surface of a reference material whose thermal conductivity is known. The low thermal conductivity sheet is in contact with the surface of the reference material containing the strip-shaped metal fine wire, and the transient temperature change of the heat source and the vicinity thereof is measured by measuring the electrical resistance value of the strip-shaped metal thin wire. The method for measuring thermal conductivity of a low thermal conductive sheet, comprising:
【請求項2】 前記帯状金属細線を通電加熱するために
一定電力を供給する電源は該帯状金属細線の電気抵抗値
の変化に関わりなく一定電力が供給できる電源であり、
かつ、該電源は電力供給を開始した直後の電力の立上が
りにおいて電力の設定値を越えることなく、0.1マイ
クロ秒以上、1ミリ秒以下の時間で、ほぼ設定した電力
値に達することを特徴とする請求項1に記載の低熱伝導
性シートの熱伝導率測定方法。
2. A power source for supplying a constant power to electrically heat the strip-shaped metal thin wire, which is a power supply capable of supplying a constant power regardless of a change in an electric resistance value of the strip-shaped metal thin wire,
Moreover, the power source does not exceed the set value of the power at the rise of the power immediately after starting the power supply, and reaches almost the set power value in a time of 0.1 microsecond or more and 1 millisecond or less. The method for measuring thermal conductivity of a low thermal conductive sheet according to claim 1.
【請求項3】 前記帯状金属細線は線幅1〜20μm、
長さ1〜20mmで厚さ0.05〜1μmの金属薄膜か
らなることを特徴とする請求項1に記載の低熱伝導性シ
ートの熱伝導率測定方法。
3. The strip metal thin wire has a line width of 1 to 20 μm,
The method for measuring thermal conductivity of a low thermal conductivity sheet according to claim 1, wherein the method comprises a metal thin film having a length of 1 to 20 mm and a thickness of 0.05 to 1 μm.
【請求項4】 前記帯状金属細線を含む該基準物質の表
面に厚さ0.1〜1μmの低熱伝導性絶縁物の薄膜を形
成することを特徴とする請求項1に記載の低熱伝導性シ
ートの熱伝導率測定方法。
4. The low thermal conductive sheet according to claim 1, wherein a thin film of a low thermal conductive insulator having a thickness of 0.1 to 1 μm is formed on the surface of the reference material including the strip-shaped metal thin wires. Method for measuring thermal conductivity of.
JP27954193A 1993-11-09 1993-11-09 Thermal conductivity coefficient measuring method for low thermally conductive sheet Withdrawn JPH07134108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27954193A JPH07134108A (en) 1993-11-09 1993-11-09 Thermal conductivity coefficient measuring method for low thermally conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27954193A JPH07134108A (en) 1993-11-09 1993-11-09 Thermal conductivity coefficient measuring method for low thermally conductive sheet

Publications (1)

Publication Number Publication Date
JPH07134108A true JPH07134108A (en) 1995-05-23

Family

ID=17612435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27954193A Withdrawn JPH07134108A (en) 1993-11-09 1993-11-09 Thermal conductivity coefficient measuring method for low thermally conductive sheet

Country Status (1)

Country Link
JP (1) JPH07134108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142662A (en) * 1998-06-16 2000-11-07 New Jersey Institute Of Technology Apparatus and method for simultaneously determining thermal conductivity and thermal contact resistance
CN102128856A (en) * 2011-01-04 2011-07-20 武汉理工大学 Sea ice heat conducting coefficient measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142662A (en) * 1998-06-16 2000-11-07 New Jersey Institute Of Technology Apparatus and method for simultaneously determining thermal conductivity and thermal contact resistance
CN102128856A (en) * 2011-01-04 2011-07-20 武汉理工大学 Sea ice heat conducting coefficient measuring instrument

Similar Documents

Publication Publication Date Title
TW463065B (en) Thermally tunable optical devices
JP3175887B2 (en) measuring device
JP2007248220A (en) Heat conductivity measuring method, its measuring instrument, and gas component ratio measuring instrument
JP3434694B2 (en) Differential scanning calorimeter
US4117712A (en) Emissimeter and method of measuring emissivity
JP2000074862A (en) Method for measuring seebeck coefficient by alternating current heating, and structure of measuring sample used therefor
JPH07134108A (en) Thermal conductivity coefficient measuring method for low thermally conductive sheet
Nishimura et al. Measurement of in-plane thermal and electrical conductivities of thin film using a micro-beam sensor: A feasibility study using gold film
JPH07120422A (en) Measuring method for thermal conductivity of thin film or thick film
Hammerschmidt et al. Transient Hot Strip On-a-Chip
JP2570478B2 (en) Thin film thermal conductivity measurement method
JPH0712771A (en) Gas detector
JP4042816B2 (en) Moisture content detection sensor
KR101070998B1 (en) Heat capacity measurement device at high temperature
US12007349B2 (en) Fast humidity sensor and a method for calibrating the fast humidity sensor
JP2789882B2 (en) Thin film thermophysical property measurement method
JP3065862B2 (en) Flow rate detecting device and flow rate detecting method
JP2920510B2 (en) A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition
JP2734831B2 (en) Thin film thermophysical property measurement method
JPH0769221B2 (en) Temperature sensing material, temperature sensor and temperature measuring method
JP2580011B2 (en) Droplet particle size measuring device
JP2866929B2 (en) Measurement method of thermal constant of substance by heating the wall of cylindrical measuring cell
JPH032848Y2 (en)
JPH04116464A (en) Fluid velocity sensor
JPH0513461B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130