JPH0713350A - Cleaning of substrate for electrophotographic photoreceptor - Google Patents

Cleaning of substrate for electrophotographic photoreceptor

Info

Publication number
JPH0713350A
JPH0713350A JP17382393A JP17382393A JPH0713350A JP H0713350 A JPH0713350 A JP H0713350A JP 17382393 A JP17382393 A JP 17382393A JP 17382393 A JP17382393 A JP 17382393A JP H0713350 A JPH0713350 A JP H0713350A
Authority
JP
Japan
Prior art keywords
cleaning
cleaning tank
substrate
ultrasonic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17382393A
Other languages
Japanese (ja)
Inventor
Katsuyori Matsubara
勝頼 松原
Tateshi Mayahara
立志 馬屋原
Yasuhide Takashita
泰秀 高下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP17382393A priority Critical patent/JPH0713350A/en
Publication of JPH0713350A publication Critical patent/JPH0713350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cleaning method in which the sufficient cleaning power is secured and the coating film fault of a photosensitive layer is not generated, in the ultrasonic cleaning in water or in the aqueous group detergent for a substrate for electrophotographic photosensitive body. CONSTITUTION:A cleaning method for a base body for an electrophotographic photosensitive body is characterized that water or an aqueous group detergent is accommodated into a cleaning tank 1 having an ultrasonic vibrator element 6 arranged on the inside side surface, and a base body 3 for an electrophotographic photosensitive body is installed on a rotary board 7 which is installed in a turnable manner on the bottom plate of an elevator 8 which is supported on the elevator device installed outside the cleaning tank 1 and revolves by receiving the transmission from a driving means, and the elevator 8 is lowered into the cleaning tank 1, and the substrate 3 is ultrasonic-cleaned by operating the vibrator element 6, revolving the rotary board 7 in the circumferential direction by the driving means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真感光体用基体
の洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a substrate for an electrophotographic photoreceptor.

【0002】[0002]

【従来の技術】電子写真感光体は、基体上にセレンなど
の無機質の光導電性感光層、あるいは有機質の電荷発生
物質および電荷輸送物質を含有する感光層が設けられる
が、感光層形成前の基体の洗浄状態により感光層の塗膜
欠陥が発生するため、基体の洗浄には十分な洗浄力が要
求される。その洗浄方法として、超音波振動を基体表面
に作用させる方法がある。この場合、洗浄剤としては主
として塩素系またはフロン系有機溶剤が使用されてい
る。
2. Description of the Related Art An electrophotographic photoreceptor is provided with an inorganic photoconductive photosensitive layer such as selenium or a photosensitive layer containing an organic charge generating substance and a charge transporting substance on a substrate. Since a coating film defect of the photosensitive layer occurs depending on the cleaning state of the substrate, sufficient cleaning power is required for cleaning the substrate. As the cleaning method, there is a method of applying ultrasonic vibration to the surface of the substrate. In this case, a chlorine-based or CFC-based organic solvent is mainly used as the cleaning agent.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、塩素系
またはフロン系有機溶剤は環境破壊物質として大気およ
び水中への排出規制が強く要請されている。例えば、ト
リクロルエチレン、パークロルエチレンなどの有機溶剤
は水質汚濁物質として規制されており、また、フロン、
塩化メチレンなどはオゾン層破壊物質として使用制限を
設けている。
However, chlorine-based or freon-based organic solvents are strongly required to be regulated as emissions into the atmosphere and water as environmentally destructive substances. For example, organic solvents such as trichlorethylene and perchlorethylene are regulated as water pollutants.
Restrictions on the use of methylene chloride as ozone-depleting substances are set.

【0004】一方、超音波洗浄では、被洗浄物表面に超
音波振動を作用させることにより洗浄力を向上させてい
るが、金属またはガラス製品の洗浄で知られている水系
洗浄剤中での超音波の作用は、有機溶剤中での作用に比
較して格段に強く、キャビテーションが発生しやすい。
また、洗浄力を洗浄剤による力と超音波による作用とに
分けた場合、超音波による作用の方が大きな部分を占め
ている。すなわち洗浄力が大きく異なって来る。このた
め、水系洗浄剤中における超音波洗浄を行う場合、被洗
浄物に対し超音波を一定に作用させてやることが必要で
ある。
On the other hand, in ultrasonic cleaning, the cleaning power is improved by applying ultrasonic vibration to the surface of the object to be cleaned. The action of sound waves is much stronger than the action in an organic solvent, and cavitation is likely to occur.
In addition, when the cleaning power is divided into the cleaning power and the ultrasonic wave, the ultrasonic wave occupies a larger part. That is, the detergency differs greatly. Therefore, when performing ultrasonic cleaning in a water-based cleaning agent, it is necessary to apply ultrasonic waves to the object to be cleaned constantly.

【0005】ところが、水系洗浄剤中における超音波洗
浄の作用は強力である反面、洗浄槽内における空間的位
置における強度の均一性に欠ける。特に超音波周波数が
一定の場合、洗浄槽内に定在波が発生して空間的位置に
より超音波による作用の強い場所と弱い場所が固定され
てしまう。例えば、被洗浄物と超音波振動子(以下、振
動子ともいう)との距離が近いと超音波による作用が強
く、逆に振動子との距離が遠いと作用が弱い。また、被
洗浄物の振動子に面した表面は作用が強く、振動子に面
していない表面は作用が弱い。さらに、定在波が発生し
ている場合、定在波の腹の部分で作用が強く定在波の節
の部分で作用が弱い。
However, while the action of ultrasonic cleaning in a water-based cleaning agent is strong, it lacks uniformity in strength at spatial positions in the cleaning tank. In particular, when the ultrasonic frequency is constant, a standing wave is generated in the cleaning tank, and the position where the action of ultrasonic waves is strong and the position where the ultrasonic wave is weak are fixed depending on the spatial position. For example, when the distance between the object to be cleaned and the ultrasonic oscillator (hereinafter, also referred to as an oscillator) is short, the action of ultrasonic waves is strong, and conversely, when the distance from the oscillator is long, the action is weak. Further, the surface of the object to be cleaned which faces the vibrator has a strong action, and the surface which does not face the vibrator has a weak action. Furthermore, when a standing wave is generated, the action is strong at the antinode of the standing wave and weak at the node of the standing wave.

【0006】また、水中ではわずかな超音波の出力変化
においても超音波の作用が大きく変わってくるため、水
系洗浄剤中において超音波の作用を安定させることは難
しい。例えば、周囲温度の変化などによる発振器自体の
出力変化は超音波の作用の強さを変化させる。
Further, the action of ultrasonic waves greatly changes in water even with a slight change in the output of ultrasonic waves, so it is difficult to stabilize the action of ultrasonic waves in an aqueous cleaning agent. For example, a change in the output of the oscillator itself due to a change in ambient temperature changes the strength of ultrasonic waves.

【0007】また、洗浄槽の中における振動子と被洗浄
物との距離の違い、洗浄剤の液深の違い、洗浄剤の液温
度の違いまたは洗浄剤の溶存酸素の違いは、発振器から
見た振動子を含めた洗浄槽の音響インピーダンスを変え
てしまい、よって発振器出力が変わってしまう。
Further, the difference in the distance between the vibrator and the object to be cleaned in the cleaning tank, the difference in the cleaning agent liquid depth, the difference in the cleaning agent liquid temperature, or the difference in the cleaning agent dissolved oxygen is observed from the oscillator. The acoustic impedance of the cleaning tank including the oscillator is changed, which changes the oscillator output.

【0008】電子写真感光体用基体の超音波洗浄におい
て、上記したような超音波の作用の違いが発生してしま
うと、洗浄力の違いとなり、ひいては基体上に形成され
る感光層の塗膜欠陥を発生させてしまう。
In the ultrasonic cleaning of the electrophotographic photoconductor substrate, if the above-mentioned difference in the action of ultrasonic waves occurs, the cleaning power also becomes different, and by extension, the coating film of the photosensitive layer formed on the substrate. It causes defects.

【0009】本発明の目的は、電子写真感光体用基体の
水または水系洗浄剤(以下、単に水系洗浄剤という)中
での超音波洗浄において、上記従来技術の問題点を招来
させることなく、十分な洗浄力を確保し感光層の塗膜欠
陥を来さない洗浄方法を得ることにある。
An object of the present invention is to ultrasonically clean a substrate for an electrophotographic photoreceptor in water or a water-based cleaning agent (hereinafter, simply referred to as a water-based cleaning agent) without causing the above-mentioned problems of the prior art. Another object of the present invention is to obtain a cleaning method that secures sufficient cleaning power and does not cause coating film defects on the photosensitive layer.

【0010】[0010]

【課題を解決するための手段】本発明によれば、上記目
的を達成するため、電子写真感光体用基体の洗浄方法と
して次の三つの方法が提供される。第一は、超音波振動
子を内部側面に配置した洗浄槽に水系洗浄剤を収容し、
該洗浄槽外部に設けた昇降装置に支持されたエレベータ
ーの底板に回転自在に取り付けられ、かつ、駆動手段か
ら伝達を受けて回転する回転台に電子写真感光体用基体
を載置して、該洗浄槽内にエレベーターを下降させ、前
記駆動手段により該回転台を円周方向に回転させながら
前記超音波振動子を作用させて該基体を超音波洗浄する
ことを特徴とする電子写真感光体用基体の洗浄方法であ
る。第二は、超音波振動子を内部側面および底面に配置
した洗浄槽に水系洗浄剤を収容し、該洗浄槽外部に設け
た昇降装置に支持されたエレベーターの底板に回転自在
に取り付けられた回転台に電子写真感光体用基体を載置
して、該洗浄槽内にエレベーターを下降させ、一方、該
エレベーターの底板の裏面には、前記洗浄槽底面の超音
波振動子から発する超音波エネルギーを回転運動に変換
する変換装置を該回転台と連結して設け、前記洗浄槽底
面の超音波振動子を作動させることにより該変換装置を
介して該回転台を円周方向に回転させ、同時に前記洗浄
槽側面の超音波振動子を作動させて該基体を超音波洗浄
することを特徴とする電子写真感光体用基体の洗浄方法
である。第三は、超音波振動子を内部側面に配置した洗
浄槽に水系洗浄剤を収容し、該洗浄槽外部に設けた昇降
装置に支持されたエレベーターの底板に回転自在に取り
付けられた回転台に電子写真感光体用基体を載置して、
該洗浄槽内にエレベーターを下降させ、一方は、該エレ
ベーター底板の裏面には、水系洗浄剤の循環によって生
じる水流により回転する回転部を有する回転装置が該回
転台と同一軸に連結して設けあり、該洗浄槽外部に設け
たポンプにより水系洗浄剤を循環させることにより該回
転装置を介して該回転台を円周方向に回転させ、同時に
前記洗浄槽側面の超音波振動子を作動させて該基体を超
音波洗浄することを特徴とする電子写真感光体用基体の
洗浄方法である。
According to the present invention, in order to achieve the above object, the following three methods are provided as a method for cleaning a substrate for an electrophotographic photoreceptor. The first is to store the water-based cleaning agent in a cleaning tank in which an ultrasonic transducer is placed on the inner side surface,
The electrophotographic photoconductor substrate is placed on a rotary table that is rotatably attached to a bottom plate of an elevator supported by an elevating device provided outside the cleaning tank, and that is rotated by receiving a transmission from a driving unit. An electrophotographic photosensitive member characterized by lowering an elevator into a cleaning tank and ultrasonically cleaning the substrate by operating the ultrasonic vibrator while rotating the rotary table in the circumferential direction by the driving means. This is a method of cleaning a substrate. Second, the ultrasonic transducer is placed on the inner side surface and the bottom surface of the cleaning tank, and the water-based cleaning agent is stored in the cleaning tank. The elevator is rotatably attached to the bottom plate of the elevator supported by the lifting device provided outside the cleaning tank. The electrophotographic photoreceptor substrate is placed on a table, and the elevator is lowered into the cleaning tank. On the other hand, the back surface of the bottom plate of the elevator is provided with ultrasonic energy generated from the ultrasonic vibrator on the bottom surface of the cleaning tank. A conversion device for converting into rotary motion is provided in connection with the rotary table, and the ultrasonic table on the bottom surface of the cleaning tank is operated to rotate the rotary table in the circumferential direction via the conversion device, and at the same time, A method for cleaning a substrate for an electrophotographic photosensitive member is characterized in that the substrate is ultrasonically cleaned by operating an ultrasonic vibrator on the side surface of the cleaning tank. Thirdly, a rotary table rotatably attached to a bottom plate of an elevator supported by an elevating device provided outside the cleaning tank, in which a cleaning tank in which an ultrasonic transducer is disposed on the inner side is contained. Place the substrate for electrophotographic photoreceptor,
The elevator is lowered into the washing tank, and on the one hand, on the back surface of the elevator bottom plate, there is provided a rotating device having a rotating portion which is rotated by the water flow generated by the circulation of the water-based cleaning agent, connected to the same shaft as the rotating base. Yes, by circulating an aqueous cleaning agent by a pump provided outside the cleaning tank, the rotary table is rotated in the circumferential direction through the rotating device, and at the same time, the ultrasonic transducer on the side surface of the cleaning tank is operated. A method for cleaning a substrate for an electrophotographic photoreceptor, which comprises cleaning the substrate with ultrasonic waves.

【0011】[0011]

【作用】上記第一の方法は、電動機等の駆動手段の回転
を洗浄槽内に伝達することにより基体を洗浄槽内の超音
波振動子と対面する位置において周方向に回転させるこ
とができ、これにより基体表面のすべての面と超音波振
動子との距離が一定となり、超音波による作用が基体表
面の全面に対して均一となり均一な洗浄力が得られるも
のである。上記第二の方法は、洗浄槽の底面に設けた超
音波振動子の振動を駆動源とすることにより洗浄槽内に
おいて基体を周方向に回転させることができ、これによ
り第一の方法と同様、均一な洗浄力が得られるものであ
る。さらに、上記第三の方法では洗浄剤の循環によって
発生する水流を駆動源とすることにより洗浄槽内におい
て基体を周方向に回転させることができ、これにより第
一の方法と同様、均一な洗浄力が得られるものである。
According to the first method, the substrate can be rotated in the circumferential direction at the position facing the ultrasonic transducer in the cleaning tank by transmitting the rotation of the driving means such as the electric motor into the cleaning tank. As a result, the distance between all the surfaces of the substrate and the ultrasonic transducer becomes constant, the action of ultrasonic waves is uniform over the entire surface of the substrate, and uniform cleaning power can be obtained. In the second method, the substrate can be rotated in the circumferential direction in the cleaning tank by using the vibration of the ultrasonic vibrator provided on the bottom surface of the cleaning tank as a driving source, and thus the same as the first method. The uniform cleaning power can be obtained. Further, in the third method, the substrate can be rotated in the circumferential direction in the cleaning tank by using the water flow generated by the circulation of the cleaning agent as a driving source, which enables uniform cleaning as in the first method. It is something that can gain strength.

【0012】[0012]

【実施例】以下に本発明を実施例により具体的に説明す
る。 〔実施例1〕図1(a)において、水系洗浄剤5を収容
した洗浄槽1の内部側面には超音波振動子6が配置され
ており、被洗浄物である基体3は、洗浄槽外に設けられ
た昇降装置(図示せず)に支持されたエレベーター8の
底板18に回転自在に取け付けられた回転台7に載置さ
れて洗浄槽内に下降され、エレベーター8上部に設けら
れた電動機2の回転を伝達するシャフト9、その先端に
取り付けられたスプロケット10、チェーン11、回転
台7に連結されたスプロケット12により周方向4に回
転する。このように基体3を回転させることにより基体
3のすべての表面は振動子6に対面することができる。
また、この時エレベーター8を鉛直方向13に揺動させ
ることにより、基体3を回転させながら鉛直方向に揺動
させることができる。水系洗浄剤5としては、主として
ポリエチレングリコールアルキルフェニルエーテル、リ
ン酸ナトリウム、脂肪酸エステル、グリコール酸塩から
なる洗浄剤を水に希釈して使用し、液温をヒーター(図
示せず)により40℃に保ち、基体3には外径φ80m
m、長さ340mm、厚さ1.0mmのアルミニウム系
基体を用いて回転台7に載置し、超音波周波数が48K
Hzの発振器40を用い、基体3を周方向4に30rp
mにて回転させると同時にエレベータ8を昇降装置によ
り鉛直方向13に揺動幅50mmにて揺動させながら6
0秒間、浸漬超音波洗浄を行い、次いで純水シャワー装
置にてすすいだ後、温風乾燥機にて基体表面に付着して
いる純水を乾燥させた。次に、この超音波洗浄後の基体
3上に、アルコール可溶性ポリアミド樹脂100グラム
をメタノール1500グラムに溶解させた溶液を浸漬法
で塗布し、100℃で5分間乾燥させて膜厚0.1μm
の下引き層を形成した。次にこの下引き層上に、ビスア
ゾ顔料5グラムおよびシクロヘキサノン800グラムを
ボールミル中で10時間混合分散して得た高粘度のクリ
ーム状の分散液にメチルイソブチルケトン1300グラ
ムを加えて希釈した塗布液を浸漬法で塗布し、100℃
で10分間乾燥させて膜厚0.3μmの電荷発生層を形
成した。この塗膜は光沢のある均一な平滑膜であった。
次に電荷輸送物質300グラム、ポリカーボネート樹脂
800グラムおよびメチレンクロライド1000グラム
の均一溶液を調製して塗布液とし、この塗布液を上記電
荷発生層の上に、浸漬法で塗布し、120℃で30分間
乾燥して膜厚50μmの電荷輸送層を形成した。こうし
て得られた機能分離型電子写真感光体を−6.0KVス
コロトロン方式のコロナ帯電、ハロゲンランプによる画
像露光、乾式トナーによる現像、普通紙への画像転写お
よびブレードまたはマグブラシによるクリーニングの構
成から成る複写機にセットし、図1(b)に示すように
円筒状感光体を周方向に90度ずつ縦方向に4分割した
領域I、II、III、IVの画像上の欠陥数を計数した。
EXAMPLES The present invention will be specifically described below with reference to examples. [Example 1] In Fig. 1 (a), an ultrasonic transducer 6 is arranged on the inner side surface of a cleaning tank 1 containing a water-based cleaning agent 5, and a substrate 3 to be cleaned is placed outside the cleaning tank. Is mounted on a rotary table 7 rotatably mounted on a bottom plate 18 of an elevator 8 supported by a lifting device (not shown) provided on the elevator 8, lowered into the cleaning tank, and installed on the upper portion of the elevator 8. The shaft 9 for transmitting the rotation of the electric motor 2, the sprocket 10 attached to the tip of the shaft 9, the chain 11, and the sprocket 12 connected to the turntable 7 rotate in the circumferential direction 4. By rotating the base body 3 in this manner, all the surfaces of the base body 3 can face the vibrator 6.
At this time, by swinging the elevator 8 in the vertical direction 13, the base body 3 can be swung in the vertical direction while rotating. As the water-based cleaning agent 5, a cleaning agent mainly composed of polyethylene glycol alkylphenyl ether, sodium phosphate, fatty acid ester, and glycolate is diluted with water and used, and the liquid temperature is set to 40 ° C. by a heater (not shown). Keep the outer diameter φ80m on the base 3.
m, a length of 340 mm, and a thickness of 1.0 mm are used to mount the aluminum base on the turntable 7, and the ultrasonic frequency is 48K.
30 Hz in the circumferential direction 4 by using the oscillator 40 of Hz.
6 at the same time as rotating the elevator 8 in the vertical direction 13 with a swing width of 50 mm by the lifting device.
Immersion ultrasonic cleaning was performed for 0 seconds, followed by rinsing with a pure water shower device, and then the pure water adhering to the substrate surface was dried with a warm air dryer. Next, a solution prepared by dissolving 100 g of alcohol-soluble polyamide resin in 1500 g of methanol is applied onto the substrate 3 after ultrasonic cleaning by a dipping method, and dried at 100 ° C. for 5 minutes to give a film thickness of 0.1 μm.
To form an undercoat layer. Next, on this undercoat layer, 5 g of bisazo pigment and 800 g of cyclohexanone were mixed and dispersed in a ball mill for 10 hours to obtain a highly viscous cream-like dispersion liquid, and 1300 g of methyl isobutyl ketone was added to dilute the coating liquid. Is applied by the dipping method and the temperature is 100 ℃
And dried for 10 minutes to form a charge generation layer having a film thickness of 0.3 μm. The coating film was a glossy and uniform smooth film.
Next, a uniform solution of 300 g of the charge transport material, 800 g of the polycarbonate resin and 1000 g of methylene chloride was prepared as a coating solution, and the coating solution was coated on the above charge generating layer by a dipping method, and then at 30 ° C. at 30 ° C. After drying for a minute, a charge transport layer having a film thickness of 50 μm was formed. The function-separated electrophotographic photoconductor thus obtained is composed of a -6.0 KV scorotron type corona charging, image exposure with a halogen lamp, development with dry toner, image transfer onto plain paper, and cleaning with a blade or a mag brush. 1B, the number of defects on the images of the regions I, II, III, and IV in which the cylindrical photosensitive member was divided into four in the vertical direction by 90 degrees in the circumferential direction as shown in FIG. 1B was counted.

【0013】〔実施例2〕図2(a)において、水系洗
浄剤5を収容した洗浄槽1内の側面に振動子6、底面に
振動子14が配置されており、基体3は、洗浄槽外に設
けられた昇降装置(図示せず)に支持されたエレベータ
ー8の底板18に回転自在に取り付けられた回転台7に
載置されて洗浄槽内に下降され、エレベーター8の底板
18の裏面(洗浄槽底面側)に設けた超音波エネルギー
を回転運動に変換する装置20により振動子14から発
し水中を伝播してくる超音波エネルギーを回転運動に変
換し、該変換装置20と連結されている回転台7をそれ
により回転させることにより基体3を周方向に回転す
る。これにより基体3のすべての表面は洗浄槽側面の振
動子6に対面する。また、このときエレベーター8を鉛
直方向13に揺動させることにより基体3を回転させな
がら鉛直方向に揺動させることができる。図2(b)お
よび図2(c)は、該超音波エネルギー−回転運動変換
装置20の詳細図である。図2(b)においてステイタ
ー21は中空円筒状であり、上部はホーン部22の先端
に近づくほど細くなっている。ホーン部22は鉛直方向
に対し一定角度23傾斜して一定間隔で設けられてお
り、図2(c)に示すようにローター25と接してい
る。またステイター21の底面24は平面となっており
洗浄槽下部からの超音波を受けている。ローター25は
円盤状で底面27は平面となっており、ステイター21
のホーン部22の上面と接している。この装置20の動
作は、まず底面24で受けた超音波振動はステイター2
1の内部を伝播し、ホーン部22で増幅される。このと
きホーン部22は鉛直方向に対し一定角度23傾いた方
向に伸縮26するが、伸びるときの力28の水平方向の
成分29により、ローター25およびローター25と同
一軸に連結された回転台7は周方向に回転する。このと
きの回転数、回転トルクはステイター21の底面24に
受ける超音波周波数、超音波出力、ホーン部22の形
状、傾き角度23、ステイター21の材質、ローター2
5の材質、ステイター21とローター25の鉛直方向の
接触圧力等により決定されるが、本例では超音波周波数
28KHz、超音波出力600W、ホーン部の形状はホ
ーンの根元から先端になるにしたがって細くなる割合が
指数関数的であるもの、傾き角度23は35度、ステイ
ター21の材質は銅、ローター25の材質はSUS30
4、ステイター21とローター25の鉛直方向の接触圧
力は0.5Kg/cm2として行った。そのほかは実施
例1と同様にして超音波洗浄を行い、画像上の欠陥数を
計数した。
[Embodiment 2] In FIG. 2A, a vibrator 6 is arranged on the side surface and a vibrator 14 is arranged on the bottom surface in a cleaning tank 1 containing an aqueous cleaning agent 5, and the base 3 is a cleaning tank. The bottom surface of the bottom plate 18 of the elevator 8 is placed on a rotary table 7 rotatably attached to a bottom plate 18 of the elevator 8 supported by an elevating device (not shown) provided outside and lowered into the cleaning tank. The ultrasonic energy generated from the vibrator 14 and propagating in the water is converted into rotary motion by the device 20 for converting the ultrasonic energy into the rotary motion provided on the (bottom side of the cleaning tank) and is connected to the conversion device 20. The base 3 is rotated in the circumferential direction by rotating the rotating base 7 thereby. As a result, all the surfaces of the substrate 3 face the vibrator 6 on the side surface of the cleaning tank. At this time, the elevator 8 is swung in the vertical direction 13 so that the base 3 can be swung in the vertical direction while being rotated. 2B and 2C are detailed views of the ultrasonic energy-rotational motion conversion device 20. In FIG. 2B, the stater 21 has a hollow cylindrical shape, and the upper part thereof becomes thinner toward the tip of the horn part 22. The horn portions 22 are inclined at a constant angle 23 with respect to the vertical direction and are provided at regular intervals, and are in contact with the rotor 25 as shown in FIG. The bottom surface 24 of the statuser 21 is flat and receives ultrasonic waves from the lower part of the cleaning tank. The rotor 25 has a disk shape and the bottom surface 27 has a flat surface.
Is in contact with the upper surface of the horn portion 22. The operation of this device 20 is such that the ultrasonic vibration received on the bottom surface 24
1 propagates inside and is amplified by the horn unit 22. At this time, the horn portion 22 expands and contracts 26 in a direction inclined at a constant angle 23 with respect to the vertical direction, but due to the horizontal component 29 of the force 28 at the time of expansion, the rotor 25 and the rotary table 7 connected to the same axis as the rotor 25. Rotates in the circumferential direction. The rotation speed and the rotation torque at this time are the ultrasonic frequency received by the bottom surface 24 of the starter 21, the ultrasonic output, the shape of the horn portion 22, the inclination angle 23, the material of the stator 21, the rotor 2
5, the contact pressure of the stator 21 and the rotor 25 in the vertical direction, etc. are determined. In this example, the ultrasonic frequency is 28 KHz, the ultrasonic output is 600 W, and the shape of the horn portion becomes smaller from the root to the tip of the horn. The ratio is exponential, the tilt angle 23 is 35 degrees, the material of the starter 21 is copper, and the material of the rotor 25 is SUS30.
4. The contact pressure of the stator 21 and the rotor 25 in the vertical direction was set to 0.5 Kg / cm 2 . Otherwise, ultrasonic cleaning was performed in the same manner as in Example 1, and the number of defects on the image was counted.

【0014】〔実施例3〕図3(a)および図3(b)
において、水系洗浄剤5を収容した洗浄槽1内には洗浄
槽側面に振動子6が配置され、基体3は、洗浄槽外に設
けられた昇降装置(図示せず)に支持されたエレベータ
ー8の底板18に回転自在に取り付けられた回転台7に
載置されて、洗浄槽内に下降され、エレベーター8の底
板18の裏面(洗浄槽底面側)に設けた水流を回転運動
に変換する装置30により回転台7を回転させる。これ
により基体3のすべての表面は洗浄槽側面の振動子6に
対面することができる。また、このときエレベーター8
を鉛直方向に揺動させることにより基体3を回転させな
がら鉛直方向13に揺動させることができる。水流を回
転運動に変換する装置30は、洗浄槽外部に設けたポン
プ31により水系洗浄剤5を循環し発生する水流32が
ベーン33に当たり、ベーン33と同一軸に連結された
回転台7を周方向に回転させる。このときの回転数、回
転トルクは水流32の水量、ベーン33の形状、枚数等
により決定されるが、本例では水流32の水量を20リ
ットル/min、ベーン33の形状を直線状、枚数を6
枚とした。そのほかは実施例1と同様にして超音波洗浄
を行い、画像上の欠陥数を計数した。
[Embodiment 3] FIGS. 3A and 3B.
In the cleaning tank 1, the vibrator 6 is disposed on the side surface of the cleaning tank in the cleaning tank 1 containing the water-based cleaning agent 5, and the substrate 3 is lifted by an elevator 8 supported by an elevating device (not shown) provided outside the cleaning tank. A device that is placed on a turntable 7 rotatably attached to a bottom plate 18 of the elevator, is lowered into the cleaning tank, and converts a water flow provided on the back surface (bottom surface of the cleaning tank) of the bottom plate 18 of the elevator 8 into rotational motion. The turntable 7 is rotated by 30. As a result, all the surfaces of the substrate 3 can face the vibrator 6 on the side surface of the cleaning tank. Also, at this time, the elevator 8
By swinging in the vertical direction, it is possible to swing in the vertical direction 13 while rotating the base body 3. The device 30 for converting a water flow into a rotary motion is such that a water flow 32 generated by circulating the water-based cleaning agent 5 by a pump 31 provided outside the cleaning tank hits a vane 33, and rotates around a rotary table 7 connected to the vane 33 on the same axis. Rotate in the direction. The rotation speed and the rotation torque at this time are determined by the amount of water in the water stream 32, the shape of the vanes 33, the number of vanes, etc. In this example, the amount of water in the water stream 32 is 20 liters / min, the shape of the vanes 33 is linear, and the number of vanes 33 is 6
It was a piece. Otherwise, ultrasonic cleaning was performed in the same manner as in Example 1, and the number of defects on the image was counted.

【0015】〔実施例4〕実施例1において、基体3の
回転開始位置を基体3の領域Iの部分の中心が振動子正
面となるようにし、回転数を0.5rpmとして、その
ほかは実施例1と同様にして超音波洗浄を行い、画像上
の欠陥数を計数した。
[Embodiment 4] In Embodiment 1, the rotation start position of the substrate 3 is set so that the center of the region I of the substrate 3 is the front face of the vibrator, and the rotation speed is 0.5 rpm. Ultrasonic cleaning was performed in the same manner as in 1, and the number of defects on the image was counted.

【0016】〔比較例1〕実施例1において、基体3を
回転させず基体3の領域Iの部分の中心が振動子正面と
なるようにし、その他は実施例1と同様にして超音波洗
浄を行い、画像上の欠陥数を計数した。
Comparative Example 1 In Example 1, ultrasonic cleaning was performed in the same manner as in Example 1 except that the substrate 3 was not rotated and the center of the region I of the substrate 3 was the front face of the vibrator. Then, the number of defects on the image was counted.

【0017】〔実施例5〕発振器40の電源41側に電
力計42を接続し、発振器40の入力電力を表示させた
(図4および図1参照)。この場合、水系洗浄剤5の液
温を35℃および45℃の2水準とし、それぞれの液温
における電力計42の指示値が1000Wになるように
発振器40の出力を調整した。その他は実施例1と同様
にして超音波洗浄を行い、画像上の欠陥数を計数した。
[Embodiment 5] A power meter 42 was connected to the power source 41 side of the oscillator 40 to display the input power of the oscillator 40 (see FIGS. 4 and 1). In this case, the liquid temperature of the water-based cleaning agent 5 was set to two levels of 35 ° C. and 45 ° C., and the output of the oscillator 40 was adjusted so that the indicated value of the power meter 42 at each liquid temperature was 1000 W. Otherwise, ultrasonic cleaning was performed in the same manner as in Example 1, and the number of defects on the image was counted.

【0018】〔実施例6〕実施例5において、電力計4
2の代わりに電流計を使用し、指示値が7.5Aとなる
ように調整し、その他は実施例5と同様にして超音波洗
浄を行い、画像上の欠陥数を計数した。
[Sixth Embodiment] In the fifth embodiment, the power meter 4 is used.
An ammeter was used in place of 2, and adjustment was made so that the indicated value was 7.5 A. Others were ultrasonically cleaned in the same manner as in Example 5, and the number of defects on the image was counted.

【0019】〔実施例7〕実施例1における発振器40
と超音波振動子6の間に高周波電力計44を結線し、高
周波発振電力を表示させた(図5および図1参照)。こ
の場合、水系洗浄剤の液温を35℃および45℃の2水
準とし、それぞれの液温において高周波電力計44の指
示値が600Wになるように発振器40の出力を調整し
た。その他は実施例1と同様にして超音波洗浄を行い、
画像上の欠陥数を計数した。
[Seventh Embodiment] The oscillator 40 according to the first embodiment.
A high-frequency power meter 44 was connected between the ultrasonic transducer 6 and the ultrasonic transducer 6 to display the high-frequency oscillation power (see FIGS. 5 and 1). In this case, the liquid temperature of the water-based cleaning agent was set to two levels of 35 ° C. and 45 ° C., and the output of the oscillator 40 was adjusted so that the indicated value of the high frequency power meter 44 was 600 W at each liquid temperature. Otherwise, ultrasonic cleaning is performed in the same manner as in Example 1,
The number of defects on the image was counted.

【0020】〔実施例8〕実施例7において、高周波電
力計44の代わりに電流計を使用し、指示値が4.5A
となるように調整した。その他は実施例7と同様にして
超音波洗浄を行い、画像上の欠陥数を計数した。
[Embodiment 8] In Embodiment 7, an ammeter is used instead of the high frequency power meter 44, and the indicated value is 4.5 A.
Was adjusted so that Otherwise, ultrasonic cleaning was performed in the same manner as in Example 7, and the number of defects on the image was counted.

【0021】〔実施例9〕実施例1における洗浄槽1内
に圧電変換素子45を置き、圧電変換素子45の電気的
出力を洗浄槽1の外部に設けた表示装置46にて表示さ
せた(図6および図1参照)。水系洗浄剤の液温を35
℃および45℃の2水準とし、それぞれの液温において
表示装置46の指示値が5mV/Vとなるように発振器
40の出力調整を行った。その他は実施例1と同様にし
て超音波洗浄を行い、画像上の欠陥数を計数した。
[Embodiment 9] The piezoelectric conversion element 45 is placed in the cleaning tank 1 in the embodiment 1, and the electric output of the piezoelectric conversion element 45 is displayed on the display device 46 provided outside the cleaning tank 1 ( (See FIGS. 6 and 1). Set the liquid temperature of the water-based cleaning agent to 35
The output of the oscillator 40 was adjusted so that the indicated value of the display device 46 would be 5 mV / V at two liquid temperatures of 45 ° C. and 45 ° C., respectively. Otherwise, ultrasonic cleaning was performed in the same manner as in Example 1, and the number of defects on the image was counted.

【0022】〔比較例2〕実施例5において、出力調整
を行わないこととし、その他は実施例1と同様にして超
音波洗浄を行い、画像上の欠陥数を計数した。
[Comparative Example 2] In Example 5, ultrasonic adjustment was performed in the same manner as in Example 1 except that the output adjustment was not performed, and the number of defects on the image was counted.

【0023】〔実施例10〕実施例1における発振器4
0と振動子6との間に高周波電力計50を電気的に結線
し、発振器40の高周波発振電力を高周波電力計50内
部の電力測定部51により計測し、その出力を設定器5
3との値と比較器52にて比較し、その自動制御出力5
4を発振器40に入力する(図7および図1参照)。発
振器40は内部の出力設定器43(本例では可変抵抗
器)にモーター55が機械的に連結されており、自動制
御出力54によりモーター55は、内部にPIDオート
チューニング回路を有し、PIDパラメーターを最適値
に設定できるモータードライバー56により駆動され、
出力設定器43を変化させ、発振器40の出力は設定器
53に応じた出力となる。本例では発振器40の出力が
600Wになるよう設定器53を設定し、水系洗浄剤5
の液温を35℃および45℃の2水準とし、その他は実
施例1と同様にして超音波洗浄を行い、画像上の欠陥数
を計数した。
[Embodiment 10] Oscillator 4 in Embodiment 1
0 and the vibrator 6 are electrically connected to a high-frequency power meter 50, the high-frequency oscillation power of the oscillator 40 is measured by the power measuring unit 51 inside the high-frequency power meter 50, and the output thereof is set by the setting device 5.
3 is compared with the value in the comparator 52, and the automatic control output 5
4 is input to the oscillator 40 (see FIGS. 7 and 1). In the oscillator 40, a motor 55 is mechanically connected to an internal output setting device 43 (a variable resistor in this example), and the motor 55 has a PID auto-tuning circuit inside due to an automatic control output 54, and a PID parameter Is driven by a motor driver 56 that can set
By changing the output setting device 43, the output of the oscillator 40 becomes an output according to the setting device 53. In this example, the setting device 53 is set so that the output of the oscillator 40 becomes 600 W, and the water-based cleaning agent 5
The liquid temperature was set to two levels, 35 ° C. and 45 ° C., ultrasonic cleaning was performed in the same manner as in Example 1 except for the above, and the number of defects on the image was counted.

【0024】〔実施例11〕実施例1における発振器4
0と振動子6の間に高周波電力計50を電気的に結線
し、発振器40の高周波発振電力を高周波電力計50内
部の電力測定部51により計測し、その出力を設定器5
3との値と比較器52にて比較し、その自動制御出力5
4をインピーダンス整合器60に入力する(図8参
照)。インピーダンス整合器60は、LC回路による内
部のインピーダンス調整器61(本例ではバリアブルコ
ンデンサー)にモータ62が機械的に連結され、自動制
御出力54によりモーター62は、内部にPIDオート
チューニング回路を有し、PIDパラメーターを最適値
に設定できるモータードライバー63により駆動され、
インピーダンス調整器61を変化させ、発振器40から
見た音響インピーダンスを変化させ、発振器40の出力
は設定器53に応じた出力となる。本例では発振器40
の出力が600Wになるよう設定器53を設定し、水系
洗浄剤5の液温を35℃および45℃の2水準とし、そ
の他は実施例1と同様にして超音波洗浄を行い、画像上
の欠陥数を計数した。
[Embodiment 11] Oscillator 4 in Embodiment 1
0 and the vibrator 6 are electrically connected to a high-frequency power meter 50, the high-frequency oscillation power of the oscillator 40 is measured by the power measuring unit 51 inside the high-frequency power meter 50, and the output thereof is set by the setter 5.
3 is compared with the value in the comparator 52, and the automatic control output 5
4 is input to the impedance matching device 60 (see FIG. 8). In the impedance matching device 60, a motor 62 is mechanically connected to an internal impedance adjuster 61 (variable capacitor in this example) by an LC circuit, and the motor 62 has a PID auto tuning circuit inside due to an automatic control output 54. , Is driven by a motor driver 63 that can set the PID parameters to optimum values,
The impedance adjuster 61 is changed to change the acoustic impedance viewed from the oscillator 40, and the output of the oscillator 40 becomes an output according to the setter 53. In this example, the oscillator 40
Is set to 600 W, the liquid temperature of the water-based cleaning agent 5 is set to two levels of 35 ° C. and 45 ° C., and ultrasonic cleaning is performed in the same manner as in Example 1 except for the above. The number of defects was counted.

【0025】〔実施例12〕実施例1における発振器4
0と振動子6との間に高周波電力計50を電気的に結線
し、発振器40の高周波発振電力を高周波電力計50内
部の電力測定部51により計測し、その出力を設定器5
3との値と比較器52にて比較し、その自動制御出力5
4を内部にPIDオートチューニング回路を有し、PI
Dパラメーターを最適値に設定できるモーターコントロ
ーラー70に入力する(図9参照)。振動子6はモータ
ー71に機械的に連結され、回転運動を水平運動に変換
するスライド装置72により基体3との水平距離を調整
する方向74に前後に動く移動台73の上に固定され、
基体3と振動子6との距離が変化することにより発振器
40から見た音響インピーダンスを変化させ、発振器4
0の出力は設定器53に応じた出力となる。本例では発
振器40の出力が600Wになるよう設定器53を設定
し、水系洗浄剤5の液温を35℃および45℃の2水準
とし、その他は実施例1と同様にして超音波洗浄を行
い、画像上の欠陥数を計数した。
[Embodiment 12] Oscillator 4 in Embodiment 1
0 and the vibrator 6 are electrically connected to a high-frequency power meter 50, the high-frequency oscillation power of the oscillator 40 is measured by the power measuring unit 51 inside the high-frequency power meter 50, and the output thereof is set by the setting device 5.
3 is compared with the value in the comparator 52, and the automatic control output 5
4 has a PID auto-tuning circuit inside, and PI
The D parameter is input to the motor controller 70 that can set the optimum value (see FIG. 9). The vibrator 6 is mechanically connected to a motor 71, and is fixed on a moving table 73 that moves back and forth in a direction 74 that adjusts a horizontal distance from the base body 3 by a slide device 72 that converts a rotary motion into a horizontal motion.
By changing the distance between the substrate 3 and the vibrator 6, the acoustic impedance viewed from the oscillator 40 is changed, and the oscillator 4
The output of 0 becomes an output according to the setter 53. In this example, the setting device 53 is set so that the output of the oscillator 40 is 600 W, the liquid temperature of the water-based cleaning agent 5 is set to two levels of 35 ° C. and 45 ° C., and ultrasonic cleaning is performed in the same manner as in Example 1. Then, the number of defects on the image was counted.

【0026】〔実施例13〕実施例1における発振器4
0と振動子6との間に高周波電力計50を電気的に結線
し、発振器40の高周波発振電力を高周波電力計50内
部の電力測定部51により計測し、その出力を設定器5
3との値と比較器52にて比較し、その自動制御出力5
4を洗浄槽液深調節器80に入力する(図10参照)。
洗浄槽液深83は、ストックタンク85内の洗浄剤を増
液ポンプ81および減液ポンプ82により洗浄槽1に送
液したり戻したりすることにより上下方向84に増減
し、発振器40から見た音響インピーダンスを変化さ
せ、発振器40の出力は設定器53に応じた出力とな
る。本例では発振器40の出力が600Wになるよう設
定器53を設定し、水系洗浄剤5の液温を35℃および
45℃の2水準とし、その他は実施例1と同様にして超
音波洗浄を行い、画像上の欠陥数を計数した。
[Embodiment 13] Oscillator 4 in Embodiment 1
0 and the vibrator 6 are electrically connected to a high-frequency power meter 50, the high-frequency oscillation power of the oscillator 40 is measured by the power measuring unit 51 inside the high-frequency power meter 50, and the output thereof is set by the setting device 5.
3 is compared with the value in the comparator 52, and the automatic control output 5
4 is input to the cleaning tank liquid depth controller 80 (see FIG. 10).
The washing tank liquid depth 83 increases and decreases in the vertical direction 84 by sending and returning the washing agent in the stock tank 85 to and from the washing tank 1 by the increasing liquid pump 81 and the decreasing liquid pump 82, and viewed from the oscillator 40. By changing the acoustic impedance, the output of the oscillator 40 becomes an output according to the setter 53. In this example, the setting device 53 is set so that the output of the oscillator 40 is 600 W, the liquid temperature of the water-based cleaning agent 5 is set to two levels of 35 ° C. and 45 ° C., and ultrasonic cleaning is performed in the same manner as in Example 1. Then, the number of defects on the image was counted.

【0027】〔実施例14〕実施例1における発振器4
0と振動子6との間に高周波電力計50を電気的に結線
し、発振器40の高周波発振電力を高周波電力計50内
部の電力測定部51により計測し、その出力を設定器5
3との値と比較器52にて比較し、そのフィードバック
出力54を溶存酸素量調節器90に入力する(図11参
照)。水系洗浄剤5はポンプ93により洗浄槽1、エジ
ェクター95、ポンプ93、反応槽94の順番で循環し
ており、水素発生装置91により発生する水素を溶存酸
素量調節器90により調整させるバルブ92の開度に応
じてエジェクター95より吸引混入し、ポンプ93によ
り撹拌し、酸素/水素反応樹脂が充填された反応槽94
に送られ、溶存酸素は水素と反応し水となり、溶存酸素
が減らされる。このとき、水素供給量が少ないと逆に撹
拌効果により溶存酸素量は上昇する。このように溶存酸
素量は水素供給量により調節され、発振器40から見た
音響インピーダンスを変化させ、発振器40の出力は設
定器53に応じた出力となる。本例では発振器40の出
力が600Wになるように設定器53を設定し、水系洗
浄液5の液温を35℃および45℃の2水準とし、その
他は実施例1と同様にして超音波洗浄を行い、画像上の
欠陥数を計数した。
[Embodiment 14] Oscillator 4 in Embodiment 1
0 and the vibrator 6 are electrically connected to a high-frequency power meter 50, the high-frequency oscillation power of the oscillator 40 is measured by the power measuring unit 51 inside the high-frequency power meter 50, and the output thereof is set by the setting device 5.
The value of 3 and the value of 3 are compared by the comparator 52, and the feedback output 54 is input to the dissolved oxygen amount controller 90 (see FIG. 11). The water-based cleaning agent 5 is circulated in the order of the cleaning tank 1, the ejector 95, the pump 93, and the reaction tank 94 by the pump 93, and the valve 92 for adjusting the hydrogen generated by the hydrogen generator 91 by the dissolved oxygen amount controller 90. A reaction tank 94 which is sucked and mixed from an ejector 95 according to the opening degree, stirred by a pump 93, and filled with an oxygen / hydrogen reaction resin.
, The dissolved oxygen reacts with hydrogen to become water, and the dissolved oxygen is reduced. At this time, when the hydrogen supply amount is small, the dissolved oxygen amount is increased due to the stirring effect. In this way, the dissolved oxygen amount is adjusted by the hydrogen supply amount, the acoustic impedance seen from the oscillator 40 is changed, and the output of the oscillator 40 becomes an output according to the setter 53. In this example, the setting device 53 is set so that the output of the oscillator 40 becomes 600 W, the liquid temperature of the water-based cleaning liquid 5 is set to two levels of 35 ° C. and 45 ° C., and ultrasonic cleaning is performed in the same manner as in the first embodiment. Then, the number of defects on the image was counted.

【0028】〔実施例15〕実施例1における発振器4
0の電源41側に電力計100を接続し、発振器40へ
の入力電力を内部の電力測定部101により計測し、設
定器103との値と比較器102にて比較し、その自動
制御出力104を発振器40に入力する(図12参
照)。発振器40は内部の出力設定器43(本例では可
変抵抗器)にモーター55が機械的に連結されており、
自動制御出力104によりモーター55はモータードラ
イバー56により駆動され、出力設定器43を変化さ
せ、発振器40の出力は設定器53に応じた出力とな
る。本例では発振器40の出力が600Wになるよう設
定器53を設定し、水系洗浄液5の液温を35℃および
45℃の2水準とし、その他は実施例1と同様にして超
音波洗浄を行い、画像上の欠陥数を計数した。
[Embodiment 15] Oscillator 4 in Embodiment 1
The power meter 100 is connected to the power source 41 side of 0, the input power to the oscillator 40 is measured by the internal power measuring unit 101, the value with the setter 103 is compared with the comparator 102, and its automatic control output 104 Is input to the oscillator 40 (see FIG. 12). In the oscillator 40, a motor 55 is mechanically connected to an internal output setting device 43 (variable resistor in this example),
The motor 55 is driven by the motor driver 56 by the automatic control output 104, the output setting device 43 is changed, and the output of the oscillator 40 becomes an output according to the setting device 53. In this example, the setting device 53 is set so that the output of the oscillator 40 is 600 W, the liquid temperature of the water-based cleaning liquid 5 is set to two levels of 35 ° C. and 45 ° C., and ultrasonic cleaning is performed in the same manner as in the first embodiment. , The number of defects on the image was counted.

【0029】〔実施例16〕実施例1における洗浄槽1
内に圧電変換素子111を置き、洗浄槽1の外部に設置
した超音波音圧計110と接続して、圧電変換素子11
1の電気的出力を設定器113との値と比較器112に
て比較し、その自動制御出力114を発振器40に入力
する(図13参照)。発振器40は内部の出力設定器4
3(本例では可変抵抗器)にモーター55が機械的に連
結されており、自動制御出力114によりモーター55
はモータードライバー56により駆動され、出力設定器
43を変化させ、発振器40の出力は設定器53に応じ
た出力となる。本例では発振器40の出力が600Wに
なるよう設定器53を設定し、水系洗浄液5の液温を3
5℃および45℃の2水準とし、その他は実施例1と同
様にして超音波洗浄を行い、画像上の欠陥数を計数し
た。
[Example 16] Cleaning tank 1 in Example 1
The piezoelectric conversion element 111 is placed inside and is connected to the ultrasonic sound pressure meter 110 installed outside the cleaning tank 1 to provide the piezoelectric conversion element 11
The electrical output of 1 is compared with the value of the setter 113 by the comparator 112, and the automatic control output 114 is input to the oscillator 40 (see FIG. 13). The oscillator 40 is an internal output setting device 4
The motor 55 is mechanically connected to the motor 3 (variable resistor in this example), and the motor 55 is automatically driven by the automatic control output 114.
Is driven by the motor driver 56 to change the output setter 43, and the output of the oscillator 40 becomes an output according to the setter 53. In this example, the setting device 53 is set so that the output of the oscillator 40 is 600 W, and the liquid temperature of the water-based cleaning liquid 5 is set to 3
Ultrasonic cleaning was performed in the same manner as in Example 1 except that the levels were 5 ° C. and 45 ° C., and the number of defects on the image was counted.

【0030】〔実施例17〕実施例1における発振器4
0として発振周波数が図14に示す中心周波数48KH
zに対し±4KHzの幅での周波数変調を掃引周期τが
0.5秒にてかけられるものとし、その他は実施例1と
同様にして超音波洗浄を行い、画像上の欠陥数を計数し
た。
[Embodiment 17] Oscillator 4 in Embodiment 1
The oscillation frequency is 0 and the center frequency is 48 KH shown in FIG.
Frequency modulation with a width of ± 4 KHz was applied to z with a sweep period τ of 0.5 second, and otherwise, ultrasonic cleaning was performed in the same manner as in Example 1 and the number of defects on the image was counted. .

【0031】〔実施例18〕実施例17における変調周
波数の幅を中心周波数48KHzに対し±0.1KHz
とし、その他は実施例17と同様にして超音波洗浄を行
い、画像上の欠陥数を計数した。
[Embodiment 18] The width of the modulation frequency in Embodiment 17 is ± 0.1 KHz with respect to the center frequency of 48 KHz.
Then, ultrasonic cleaning was performed in the same manner as in Example 17 except for the above, and the number of defects on the image was counted.

【0032】〔実施例19〕実施例17における変調周
波数の幅を中心周波数48KHzに対し±10KHzと
し、その他は実施例17と同様にして超音波洗浄を行
い、画像上の欠陥数を計数した。
[Embodiment 19] The width of the modulation frequency in Embodiment 17 was set to ± 10 KHz with respect to the center frequency of 48 KHz, and the ultrasonic cleaning was carried out in the same manner as in Embodiment 17, except that the number of defects on the image was counted.

【0033】〔実施例20〕実施例17における周波数
変調を掃引周期τを1秒とし、その他は実施例17と同
様にして超音波洗浄を行い、画像上の欠陥数を計数し
た。
[Embodiment 20] The frequency modulation in Embodiment 17 was performed by setting the sweep period τ to 1 second and the ultrasonic cleaning was performed in the same manner as in Embodiment 17, except that the number of defects on the image was counted.

【0034】以上の実施例および比較例の画像上の欠陥
の計数結果を表1−(1)〜(3)に示す。なお、本発
明は上記実施例に限られるものではなく、例えば、上記
実施例では基体3は洗浄槽において縦方向にして洗浄し
たがもちろん横方向で洗浄することも可能である。ま
た、超音波振動子6はその振動面が水平方向、垂直方向
その他の方向でも可能であり、使用台数も2台以上で行
うことも可能である。その他、実施例1において電動機
2は洗浄槽外部に設置されたが洗浄槽内部、例えば洗浄
槽の底部に取付け、軸封されたシャフトにより洗浄槽内
に駆動を伝えてもよい。また、実施例2において超音波
振動は水中伝播としたが金属等の固体のみの伝播として
もよい。また、実施例5から実施例16における電流
計、電力計、高周波電力計または超音波音圧計は、発振
器、インピーダンス整合器、距離調節器、洗浄槽液深調
節または溶存酸素量調節器とその機能をどちらかに含め
ることも可能である。
The results of counting defects on the images of the above Examples and Comparative Examples are shown in Tables 1- (1) to (3). The present invention is not limited to the above-described embodiment. For example, in the above-mentioned embodiment, the substrate 3 is washed in the cleaning tank in the vertical direction, but it is also possible to perform the cleaning in the horizontal direction. Further, the ultrasonic transducers 6 can be oscillated in the horizontal direction, the vertical direction, and other directions, and the number of units used can be two or more. Besides, although the electric motor 2 is installed outside the cleaning tank in the first embodiment, it may be mounted inside the cleaning tank, for example, at the bottom of the cleaning tank, and the drive can be transmitted to the inside of the cleaning tank by the shaft sealed. Further, although ultrasonic vibration is propagated in water in the second embodiment, it may be propagated only in solid such as metal. Further, the ammeter, the power meter, the high-frequency power meter, or the ultrasonic sound pressure meter in the fifth to sixteenth embodiments includes an oscillator, an impedance matching device, a distance controller, a cleaning tank liquid depth controller or a dissolved oxygen amount controller and its function. Can be included in either.

【0035】[0035]

【表1−(1)】 [Table 1- (1)]

【0036】表1−(1)から明らかなように、実施例
1〜3に示す本発明の三つの方法によれば、いずれも基
体の各領域とも欠陥数が少なく、均一な超音波洗浄が行
われることが分かる。ただ、比較例1や実施例4に見ら
れるように、基体を回転させなかったり回転数を小さく
し過ぎたりしたときは欠陥数が大きく、しかも領域間の
バラツキが大きく、洗浄が不均一でかつ不十分となるこ
と、従って、一定の洗浄時間に一定の回転数とすること
が望ましいことが分かる。実験によれば基体の回転数を
X(rpm)、超音波洗浄時間をT(秒)とすると、6
0/T<Xとなる式を満足させる範囲とすることが好ま
しいことが判明した。
As is apparent from Table 1- (1), according to the three methods of the present invention shown in Examples 1 to 3, the number of defects in each region of the substrate is small, and uniform ultrasonic cleaning is performed. I know that it will be done. However, as seen in Comparative Example 1 and Example 4, when the substrate is not rotated or the rotation speed is too small, the number of defects is large, the variation between regions is large, and the cleaning is uneven. It can be seen that it becomes insufficient and therefore it is desirable to have a constant number of rotations for a constant cleaning time. According to the experiment, when the rotation speed of the substrate is X (rpm) and the ultrasonic cleaning time is T (second), 6
It has been found that it is preferable to set the range to satisfy the expression of 0 / T <X.

【0037】[0037]

【表1−(2)】 [Table 1- (2)]

【0038】また、表1−(2)から明らかなように、
実施例5〜実施例9によれば、超音波発振器に入力され
る電流(電力)、高周波発振電流(電力)、超音波音圧
等を手動調節することにより洗浄槽の周囲温度の変化、
洗浄液の液深、液温、洗浄液中に溶存酸素量の違いによ
る超音波発振器の出力変化等が起きても均一な洗浄が行
われるよう制御できることが分かる。さらに、実施例1
0〜16によれば、上記超音波発振器の出力変化等を自
動制御できることが分かる。
Further, as is clear from Table 1- (2),
According to Examples 5 to 9, changes in the ambient temperature of the cleaning tank by manually adjusting the current (power) input to the ultrasonic oscillator, the high frequency oscillation current (power), the ultrasonic sound pressure, and the like,
It can be seen that control can be performed so that uniform cleaning can be performed even if the output of the ultrasonic oscillator changes due to differences in the cleaning liquid depth, liquid temperature, and the amount of dissolved oxygen in the cleaning liquid. Furthermore, Example 1
According to 0 to 16, it can be seen that the output change of the ultrasonic oscillator can be automatically controlled.

【0039】[0039]

【表1−(3)】 [Table 1- (3)]

【0040】さらにまた、表1−(3)から明らかなよ
うに、実施例17〜20によれば、超音波周波数が時系
列的に変調された発振器を用いたり、変調周波数の幅、
あるいは周波数変調の掃引周期を特定の範囲に設けたり
することにより、洗浄槽内の定在波の発生が防止され、
均一な洗浄を行えることができる。
Furthermore, as is clear from Table 1- (3), according to Examples 17 to 20, the oscillator in which the ultrasonic frequency is time-series modulated is used, or the width of the modulation frequency is changed.
Alternatively, by setting the frequency modulation sweep period in a specific range, the occurrence of standing waves in the cleaning tank can be prevented,
Uniform washing can be performed.

【0041】[0041]

【発明の効果】以上のように本発明によれば、電子写真
感光体用基体の水系洗浄剤中での超音波洗浄方法におい
て、洗浄力に優れ、感光層の塗膜欠陥を非常に少なくさ
せる超音波洗浄方法が得られる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, in the ultrasonic cleaning method for the electrophotographic photoreceptor substrate in the aqueous cleaning agent, the cleaning power is excellent and the coating layer defects of the photosensitive layer are significantly reduced. An ultrasonic cleaning method is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の超音波洗浄方法を実施するた
めの装置構成を示す正面断面図、(b)は円筒状基体の
正面断面図およびA−A線断面図である。
FIG. 1A is a front sectional view showing an apparatus configuration for carrying out an ultrasonic cleaning method of the present invention, and FIG. 1B is a front sectional view of a cylindrical substrate and a sectional view taken along the line AA.

【図2】(a)は本発明の別の超音波洗浄方法を実施す
るための装置構成を示す正面断面図、(b)は超音波エ
ネルギー−回転運動変換装置の上面図および正面拡大
図、(c)は該回転運動変換装置のB視方向の拡大図で
ある。
FIG. 2 (a) is a front sectional view showing an apparatus configuration for carrying out another ultrasonic cleaning method of the present invention, and FIG. 2 (b) is a top view and an enlarged front view of an ultrasonic energy-rotational motion conversion apparatus. (C) is an enlarged view of the rotational motion converter in the B direction.

【図3】(a)は本発明のさらに別の超音波洗浄方法を
実施する装置構成を示す正面断面図、(b)は水流−回
転運動変換装置のC−C線断面図である。
FIG. 3 (a) is a front sectional view showing an apparatus configuration for carrying out still another ultrasonic cleaning method of the present invention, and FIG. 3 (b) is a sectional view taken along line CC of the water flow-rotational motion converting apparatus.

【図4】本発明のさらに別の超音波洗浄方法の概略を説
明するための装置構成図である。
FIG. 4 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図5】本発明のさらに別の超音波洗浄方法の概略を説
明するための装置構成図である。
FIG. 5 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図6】本発明のさらに別の超音波洗浄方法の概略を説
明するための装置構成図である。
FIG. 6 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図7】本発明のさらに別の超音波洗浄方法の概略を説
明するための装置構成図である。
FIG. 7 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図8】本発明のさらに別の超音波洗浄方法の概略を説
明するための装置構成図である。
FIG. 8 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図9】本発明のさらに別の超音波洗浄方法の概略を説
明するための装置構成図である。
FIG. 9 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図10】本発明のさらに別の超音波洗浄方法の概略を
説明するための装置構成図である。
FIG. 10 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図11】本発明のさらに別の超音波洗浄方法の概略を
説明するための装置構成図である。
FIG. 11 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図12】本発明のさらに別の超音波洗浄方法の概略を
説明するための装置構成図である。
FIG. 12 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図13】本発明のさらに別の超音波洗浄方法の概略を
説明するための装置構成図である。
FIG. 13 is an apparatus configuration diagram for explaining the outline of still another ultrasonic cleaning method of the present invention.

【図14】超音波発振器の発振周波数を示すグラフであ
る。
FIG. 14 is a graph showing an oscillation frequency of an ultrasonic oscillator.

【符号の説明】[Explanation of symbols]

1 洗浄槽 2 電動機 3 円筒状基体 6 超音波振動子 7 回転台 8 エレベーター 20 超音波エネルギー−回転運動変換装置 22 超音波ホーンの一部 30 水流−回転運動変換装置 31 ベーン 40 超音波発振器 1 Cleaning Tank 2 Electric Motor 3 Cylindrical Substrate 6 Ultrasonic Transducer 7 Rotating Table 8 Elevator 20 Ultrasonic Energy-Rotary Motion Converter 22 Ultrasonic Horn Part 30 Water Flow-Rotary Motion Converter 31 Vanes 40 Ultrasonic Oscillator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超音波振動子を内部側面に配置した洗浄
槽に水または水系洗浄剤を収容し、該洗浄槽外部に設け
た昇降装置に支持されたエレベーターの底板に回転自在
に取り付けられ、かつ、駆動手段から伝達を受けて回転
する回転台に電子写真感光体用基体を載置して、該洗浄
槽内にエレベーターを下降させ、前記駆動手段により該
回転台を円周方向に回転させながら前記超音波振動子を
作動させて該基体を超音波洗浄することを特徴とする電
子写真感光体用基体の洗浄方法。
1. A cleaning tank having an ultrasonic transducer disposed on the inner side surface thereof contains water or a water-based cleaning agent, and is rotatably attached to a bottom plate of an elevator supported by an elevating device provided outside the cleaning tank. Further, the electrophotographic photosensitive member substrate is placed on a rotary table which is rotated by receiving the transmission from the driving means, the elevator is lowered in the cleaning tank, and the rotary table is rotated in the circumferential direction by the driving means. A method of cleaning a substrate for an electrophotographic photosensitive member, which comprises ultrasonically cleaning the substrate while operating the ultrasonic vibrator.
【請求項2】 超音波振動子を内部側面および底部に配
置した洗浄槽に水または水系洗浄剤を収容し、該洗浄槽
外部に設けた昇降装置に支持されたエレベーターの底板
に回転自在に取り付けられた回転台に電子写真感光体用
基体を載置して、該洗浄槽内にエレベーターを下降さ
せ、一方、該エレベーターの底板の裏面には、前記洗浄
槽底面の超音波振動子から発する超音波エネルギーを回
転運動に変換する変換装置を該回転台と連結して設け、
前記洗浄槽底面の超音波振動子を作動させることにより
該変換装置を介して該回転台を円周方向に回転させ、同
時に前記洗浄槽側面の超音波振動子を作動させて該基体
を超音波洗浄することを特徴とする電子写真感光体用基
体の洗浄方法。
2. An ultrasonic transducer is provided in a cleaning tank having an inner side surface and a bottom portion for accommodating water or a water-based cleaning agent, and is rotatably attached to a bottom plate of an elevator supported by a lifting device provided outside the cleaning tank. The substrate for electrophotographic photoreceptor is placed on the rotating table, and the elevator is lowered into the cleaning tank. On the other hand, on the back surface of the bottom plate of the elevator, the ultrasonic wave generated from the ultrasonic transducer on the bottom surface of the cleaning tank is used. A conversion device for converting sonic energy into rotary motion is provided in connection with the rotary table,
By operating the ultrasonic vibrator on the bottom surface of the cleaning tank, the rotary table is rotated in the circumferential direction through the converter, and at the same time, the ultrasonic vibrator on the side surface of the cleaning tank is operated to ultrasonically rotate the substrate. A method for cleaning a substrate for an electrophotographic photoreceptor, which comprises cleaning.
【請求項3】 超音波振動子を内部側面に配置した洗浄
槽に水または水系洗浄剤を収容し、該洗浄槽外部に設け
た昇降装置に支持されたエレベーターの底板に回転自在
に取り付けられた回転台に電子写真感光体用基体を載置
して、該洗浄槽内にエレベーターを下降させ、一方、該
エレベーター底板の裏面には、水または水系洗浄剤の循
環によって生じる水流により回転する回転部を有する回
転装置を該回転台と同一軸に連結して設け、該洗浄槽外
部に設けたポンプにより水系洗浄剤を循環することによ
り該回転装置を介して該回転台を円周方向に回転させ、
同時に前記洗浄槽側面の超音波振動子を作動させて該基
体を超音波洗浄することを特徴とする電子写真感光体用
基体の洗浄方法。
3. An ultrasonic transducer is installed in a cleaning tank having an inner side surface and contains water or a water-based cleaning agent, and is rotatably attached to a bottom plate of an elevator supported by an elevating device provided outside the cleaning tank. A substrate for an electrophotographic photosensitive member is placed on a turntable, and an elevator is lowered into the cleaning tank. On the other hand, on the back surface of the elevator bottom plate, a rotating unit that is rotated by a water flow generated by circulation of water or a water-based cleaning agent. A rotary device having a rotary shaft having the same structure as that of the rotary base, and a pump provided outside the cleaning tank to circulate an aqueous cleaning agent to rotate the rotary base in the circumferential direction through the rotary device. ,
At the same time, an ultrasonic vibrator on the side surface of the cleaning tank is operated to ultrasonically clean the substrate, and a method for cleaning a substrate for an electrophotographic photosensitive member.
JP17382393A 1993-06-21 1993-06-21 Cleaning of substrate for electrophotographic photoreceptor Pending JPH0713350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17382393A JPH0713350A (en) 1993-06-21 1993-06-21 Cleaning of substrate for electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17382393A JPH0713350A (en) 1993-06-21 1993-06-21 Cleaning of substrate for electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JPH0713350A true JPH0713350A (en) 1995-01-17

Family

ID=15967817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17382393A Pending JPH0713350A (en) 1993-06-21 1993-06-21 Cleaning of substrate for electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0713350A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288333A (en) * 2004-03-31 2005-10-20 Mitsubishi Materials Polycrystalline Silicon Corp Washing method and washing apparatus of polycrystalline silicon
JP2011022206A (en) * 2009-07-13 2011-02-03 Canon Inc Method for cleaning substrate for electrophotography
JP2014517155A (en) * 2011-06-24 2014-07-17 エーシーエム リサーチ (シャンハイ) インコーポレーテッド Method and apparatus for forming a uniform metal film on a substrate
CN114226177A (en) * 2021-11-25 2022-03-25 江苏海德莱特汽车部件有限公司 Car light multichannel surface machining composite set

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288333A (en) * 2004-03-31 2005-10-20 Mitsubishi Materials Polycrystalline Silicon Corp Washing method and washing apparatus of polycrystalline silicon
JP4692709B2 (en) * 2004-03-31 2011-06-01 三菱マテリアル株式会社 Cleaning method for polycrystalline silicon
JP2011022206A (en) * 2009-07-13 2011-02-03 Canon Inc Method for cleaning substrate for electrophotography
JP2014517155A (en) * 2011-06-24 2014-07-17 エーシーエム リサーチ (シャンハイ) インコーポレーテッド Method and apparatus for forming a uniform metal film on a substrate
US9666426B2 (en) 2011-06-24 2017-05-30 Acm Research (Shanghai) Inc. Methods and apparatus for uniformly metallization on substrates
CN114226177A (en) * 2021-11-25 2022-03-25 江苏海德莱特汽车部件有限公司 Car light multichannel surface machining composite set
CN114226177B (en) * 2021-11-25 2023-04-25 江苏海德莱特汽车部件有限公司 Car light multichannel surface machining composite set

Similar Documents

Publication Publication Date Title
US20050284509A1 (en) Ultrasonic cleaning apparatus
WO2005025717A1 (en) Agitation/deaeration device
JPH0713350A (en) Cleaning of substrate for electrophotographic photoreceptor
JP2006263697A (en) Method and apparatus for agitating/defoaming material to be agitated by using ultrasonic wave
JPH04213827A (en) Wafer surface washing unit for manufacture of semiconductor
JP2003320328A (en) Ultrasonic cleaning apparatus
JP4212903B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP2001281888A (en) Apparatus for manufacturing electrophotographic photoreceptor
KR101145850B1 (en) Cleaner for mask
JP2005012175A (en) Substrate processing equipment and method for processing substrate
JP2868679B2 (en) Fluid agitator
JP6865071B2 (en) Powder coating equipment and how to use it
JP2003197589A (en) Semiconductor cleaning apparatus
CN209868123U (en) Fluid sweeping device
JP2003234322A (en) Ultrasonic treatment apparatus for substrate and ultrasonic treatment method
JPS59142885A (en) Ultrasonic treating method and apparatus
JPH1176961A (en) Ultrasonic washing device
JP2804663B2 (en) Ultrasonic motor support structure
CN208643517U (en) A kind of optical element cleaning device
JP4958342B2 (en) Ultrasonic motor control circuit
JPH07313946A (en) Cleaning apparatus for magnetic disk substrate
JP2021003670A (en) Ultrasonic processing method and ultrasonic processor
JPH08272120A (en) Ultrasonic cleaning method for photosensitive drum aluminum pipe
JPH0670961B2 (en) How to apply photoresist
JPH0513396A (en) Cleaning method for semiconductor device