JPH07132891A - Laminar flow keeping type high-lift device - Google Patents

Laminar flow keeping type high-lift device

Info

Publication number
JPH07132891A
JPH07132891A JP28314093A JP28314093A JPH07132891A JP H07132891 A JPH07132891 A JP H07132891A JP 28314093 A JP28314093 A JP 28314093A JP 28314093 A JP28314093 A JP 28314093A JP H07132891 A JPH07132891 A JP H07132891A
Authority
JP
Japan
Prior art keywords
edge
leading
leading edge
lift
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28314093A
Other languages
Japanese (ja)
Inventor
Kanichi Amano
完一 天野
Makoto Hirahara
誠 平原
Koji Urabe
耕治 卜部
Tadayuki Tanioka
忠幸 谷岡
Sueji Ohashi
末治 大橋
Junichi Miyagawa
淳一 宮川
Yuichi Shinpo
雄一 真保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOKUKI KAIHATSU KYOKAI
Mitsubishi Heavy Industries Ltd
Original Assignee
NIPPON KOKUKI KAIHATSU KYOKAI
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOKUKI KAIHATSU KYOKAI, Mitsubishi Heavy Industries Ltd filed Critical NIPPON KOKUKI KAIHATSU KYOKAI
Priority to JP28314093A priority Critical patent/JPH07132891A/en
Publication of JPH07132891A publication Critical patent/JPH07132891A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To facilitate a change between a cruising condition and a high-lift condition by providing either of a frontal line slat or a leading-edge Krueger flap formed on the front of a wing leading-edge part made into an adhesive streamline laminar flow type profile when developing operation is made to a high-lift flight condition from a cruising flight condition. CONSTITUTION:A leading-edge profile outer plate 1 and a Krueger flap 6 form the front part lower surface of a main wing in a cruising condition, the leading- edge profile outer plate 1 forms a leading-edge having a large radius, that is, an adhesive streamline laminar flow type profile, and the Krueger flap 6 is moved to the front to form the Krueger flap in a high-lift condition. The development into a high-lift condition actually increases the leading-edge radius of the main-wing leading-edge part 5, consequently the path of a flow along a leading edge is lengthened to increase the movement quantity of the flow per unit time, that is, a flow velocity, to increase a velocity gradient. As a result, a boundary layer is thinned to become an adhesive streamline laminar flow to maintain a laminar flow over a broad region from the leading-edge lower part to the upper surface of the wing, generating a very large lift compared with a conventional turbulent type.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空機の主翼、フラップ
等の高揚力装置、詳しくはそれらの翼の前縁輪郭形状の
可変装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high lift device such as an aircraft main wing or flap, and more particularly to a device for changing the leading edge contour shape of those wings.

【0002】[0002]

【従来の技術】主として離着時に用いる従来の航空機の
高揚力装置は前縁高揚力装置と後縁高揚力装置に大別さ
れる。
2. Description of the Related Art Conventional high lift devices for aircraft, which are mainly used at the time of takeoff and landing, are roughly classified into a front edge high lift device and a trailing edge high lift device.

【0003】まず、従来の前縁高揚力装置は図5に示す
ように大きく以下の4種類に分類される。
First, the conventional leading edge high lift device is roughly classified into the following four types as shown in FIG.

【0004】(a).スラット (b).クルーガフラップ (c).前縁折り曲げ (d).クルーガフラップ(b)と前縁折り曲げ(c)
の組み合わせ (a)のスラットは、主翼01の前縁部が小さな翼型を
なすスラット02として翼本体とは別部品となってお
り、巡航状態においてはスラット02は翼本体に密着し
ているが、高揚力が必要とされる状態においては、翼本
体との間に隙間(スロット)をつくるように前下方に突
き出されるものである。スラット無しの場合には、大迎
角においては主翼01の下面から上面への流れが前縁を
回りきれずに剥離を起こしてしまうために揚力が増加し
ないのに対し、スラット02を用いると下面から上面へ
回り込む流れがスラット02と翼本体の間の隙間を通る
ことによって剥離を起こさなくなるために揚力が増加す
る。
(A). Slats (b). Kruga flap (c). Front edge bending (d). Kruga flap (b) and front edge bend (c)
The slat of combination (a) is a separate component from the wing body as a slat 02 having a small wing shape at the leading edge of the main wing 01. In the cruising state, the slat 02 is in close contact with the wing body. In a state where high lift is required, it is projected forward and downward so as to form a gap (slot) with the wing body. When there is no slat, the lift force does not increase because the flow from the lower surface to the upper surface of the main wing 01 does not go around the leading edge and separates at a large angle of attack. The lift force increases because the flow that wraps around to the upper surface passes through the gap between the slat 02 and the wing body and does not cause separation.

【0005】(b)のクルーガーフラップは、主翼01
の前縁の下面部分の一部をクルーガフラップ03として
前下方へ突き出す様にした装置で、主翼01の反りを増
大させるとともに、翼弦長を増大させ、さらに前縁半径
を大きくすることによって揚力を増加させるものであ
る。
The Kruger flap (b) has a main wing 01
This is a device in which a part of the lower surface of the leading edge of the No. 4 is projected as a Kruga flap 03 to the lower front. The warp of the main wing 01 is increased, the chord length is increased, and the leading edge radius is increased to increase the lift force. Is to increase.

【0006】(c)の前縁折り曲げは、主翼01の前縁
部を前縁折り曲げ部04として局所的に下方に折り曲げ
ることによって主翼01の反りを増大させるとともに、
前縁部の気流に対する角度を減少させ、気流の剥離を抑
制することによって揚力を増大させるものである。ま
た、下方に折り曲げられた前縁折り曲げ部04の形状輪
郭は、元の翼の前縁部分の輪郭を最大限に保持してい
る。
The leading edge bending of (c) increases the warp of the main wing 01 by locally bending the leading edge portion of the main wing 01 downward as the leading edge bending portion 04, and
The lift angle is increased by reducing the angle of the leading edge with respect to the air flow and suppressing the separation of the air flow. Further, the shape contour of the leading edge bent portion 04 bent downward holds the contour of the leading edge portion of the original blade to the maximum.

【0007】(d)は上記(b)と(c)の技術を組み
合わせ、その双方の効果を奏するようにしたものであ
る。
(D) is a combination of the above techniques (b) and (c) so that both effects can be obtained.

【0008】図4は、従来のクルーガフラップ型前縁高
揚力装置の稍詳細な図で、(a)は展開した状態の図、
(b)は収納した巡航状態の図である。主翼前縁部05
の下面から比較的長い翼弦長をもつクルーガフラップ0
6が、一般的にはリンク機構07を介してトルクチュー
ブ08の回転によって前方へ展開される。
FIG. 4 is a detailed view of a conventional Kruga flap type front edge high lift device, in which (a) is an expanded state,
(B) is a diagram of the stored cruise state. Wing leading edge 05
Kruga flap 0 with a relatively long chord length from the underside of the
6 is generally deployed forward by the rotation of the torque tube 08 via the link mechanism 07.

【0009】次に、従来の後縁高揚力装置は図6に示す
ように大きく以下の3種類に分類される。
Next, conventional trailing edge high lift devices are roughly classified into the following three types as shown in FIG.

【0010】(e)単純フラップ (f)スプリットフラップ (g)スロッテッドフラップ (e)の単純フラップは翼05の後縁部分を単純フラッ
プ06として、図(h)に示すように下方に折り曲げる
ことによって翼05の反りを大きくし、揚力を増大させ
るものであり、この場合、単純フラップ06の前縁部分
は気流には晒されない。
(E) Simple flap (f) Split flap (g) Slotted flap In the simple flap of (e), the trailing edge portion of the blade 05 is a simple flap 06, and it is bent downward as shown in FIG. Thereby increasing the warp of the wing 05 and increasing the lift, in which case the front edge portion of the simple flap 06 is not exposed to the air flow.

【0011】(f)のスプリットフラップは、翼05の
後縁部下面をスプリットフラップ07として、図6
(i)に示すように下方に開いて、翼後縁部の負圧を大
きくして、揚力を増大させるものであり、この場合もス
プリットフラップ07自体の前縁部の形状は変化しな
い。
In the split flap (f), the lower surface of the trailing edge of the blade 05 is split flap 07, as shown in FIG.
As shown in (i), the blade is opened downward to increase the negative pressure at the trailing edge of the blade to increase the lift. In this case as well, the shape of the leading edge of the split flap 07 itself does not change.

【0012】(g)のスロッテッドフラップは、翼05
に対し、スロッテッドフラップ08を図(j)に示すよ
うに下方へ折り曲げるのと同時に少し後方へ移動して翼
本体との間に隙間(スロット)を作り、この隙間を通し
て翼下面側の高い圧力の流れを翼の上面側に導き、上面
側の境界層にエネルギを与えることによって気流の剥離
を抑制し、揚力を増大させるものである。スロッテッド
フラップ08をさらに分割し、スロットを2カ所、3カ
所としたダブルスロッテッドフラップ、トリプルスロッ
テッドフラップも使用されるが、いずれの場合もスロッ
テッドフラップ自体の前縁部の形状は従来の翼前縁形状
に類似した輪郭を保持している。
The slotted flap (g) has wings 05
On the other hand, the slotted flap 08 is bent downward as shown in Fig. (J), and at the same time, it is moved slightly backward to form a gap (slot) between itself and the blade main body, and a high pressure on the lower surface of the blade is passed through this gap. Is directed to the upper surface side of the blade and energy is applied to the boundary layer on the upper surface side to suppress separation of the air flow and increase lift. The slotted flap 08 is further divided, and double slotted flaps and triple slotted flaps with two slots and three slots are also used, but in both cases, the shape of the front edge of the slotted flap itself is It retains a contour similar to the leading edge of the wing.

【0013】なお、上記中、「前縁高揚力装置」及び
「後縁高揚力装置」は主翼に対して言う。従って、たと
えばフラップの「前縁」とは後縁高揚力装置におけるフ
ラップの前縁を指す。
In the above description, the "leading edge high lift device" and the "rear edge high lift device" refer to the main wing. Thus, for example, the "leading edge" of a flap refers to the leading edge of the flap in a trailing edge high lift device.

【0014】[0014]

【発明が解決しようとする課題】上記従来の前縁高揚力
装置及び後縁高揚力装置には解決すべき次の課題があっ
た。
The conventional leading edge high lift device and trailing edge high lift device described above have the following problems to be solved.

【0015】即ち、従来の技術では、前縁高揚力装置で
あるスラット及びクルーガフラップや後縁高揚力装置で
あるスロッテッドフラップを展開した際に、隙間(スロ
ット)の後方に残された部分の前縁形状は、元の形状の
輪郭から殆どはみ出ることなく、最大限にこれを保持し
ている。このため、残された前縁部分は前縁半径が小さ
く、流れの付着線から上面側への加速量が小さいために
流れの付着流線は乱流型となり、翼上面側が乱流領域と
なり、厚い乱流境界層が発達するために最大揚力は限ら
れる。また、翼の前縁部分の速度勾配によっては、流れ
が前縁部分で再層流化現象を起こす場合もあるが、この
場合にも付着線から厚い乱流境界層が発達しており、ま
た再層流域も小さく、最大揚力は限られるという問題が
あった。
That is, in the prior art, when the slats and the Kruga flaps, which are the leading edge high lift devices, and the slotted flaps, which are the trailing edge high lift devices, are deployed, the portions left behind the gap (slot) are removed. The leading edge shape retains it to the maximum extent, with almost no protrusion from the contour of the original shape. Therefore, the remaining leading edge portion has a small leading edge radius, and the amount of acceleration from the flow attachment line to the upper surface side is small, so the flow attachment streamline is turbulent, and the blade upper surface side is a turbulent region. The maximum lift is limited due to the development of thick turbulent boundary layers. In addition, depending on the velocity gradient at the leading edge of the blade, the flow may cause a relaminarization phenomenon at the leading edge, but in this case as well, a thick turbulent boundary layer develops from the attachment line, and There was a problem that the re-lapping basin was also small and the maximum lift was limited.

【0016】この場合、スラット、クルーガフラップや
スロッテッドフラップの働きは、翼の反りを増す上述の
本来の働きに加えて、残された翼前縁部分との間に隙間
を作り、この隙間を通る加速されたスロット流によって
後方に残された翼面上、又はフラップ面上の剥離を遅ら
せ、最大揚力を増加させる。これによって、スラット、
クルーガフラップ、スロッテッドフラップの本来の働き
による最大揚力係数増加に加えて、翼本体の最大揚力係
数も増加するが、やはり付着流線が乱流型であるために
最大揚力は限られるという問題があった。
In this case, the functions of the slats, the kruga flaps, and the slotted flaps, in addition to the above-mentioned original function of increasing the warp of the blade, create a clearance between the front edge of the remaining blade and this clearance. The accelerated slot flow through slows the separation on the wing surface left behind, or on the flap surface, increasing the maximum lift. This allows slats,
In addition to the increase in the maximum lift coefficient due to the original function of the Kruga flap and the slotted flap, the maximum lift coefficient of the wing body also increases, but the maximum lift is also limited because the attached streamlines are turbulent. there were.

【0017】図3(a)〜(d)は以上説明した従来の
問題点を模式的に図示したものである。
FIGS. 3A to 3D schematically show the conventional problems described above.

【0018】本発明は上記問題解決のため、巡航状態と
高揚力状態との変更が容易で、かつ、大揚力を得ること
のできる層流維持型前縁高揚力装置を提供することを目
的とする。
In order to solve the above problems, it is an object of the present invention to provide a laminar flow maintaining front edge high lift device capable of easily changing between a cruise state and a high lift state and obtaining a large lift force. To do.

【0019】[0019]

【課題を解決するための手段】本発明は上記課題の解決
手段として、航空機が高揚力を必要とするとき展開操作
させて翼の輪郭形状を高揚力飛行状態に変更する高揚力
装置において、巡航飛行状態から高揚力飛行状態に展開
操作した際翼前縁輪郭形状を巡航型輪郭から付着流線層
流型輪郭に変更しさらに付着流線層流型輪郭となった翼
前縁部分の前方に形成される前縁スラット又は前縁クル
ーガフラップの何れかを具備してなることを特徴とする
層流維持型高揚力装置を提供しようとするものである。
As a means for solving the above-mentioned problems, the present invention provides a high-lift device for deploying an aircraft to change the contour shape of a wing to a high-lift flight state when the aircraft requires a high-lift force. When the wing leading edge contour shape was changed from the cruise type contour to the adhering streamline laminar flow type contour during the deployment operation from the flight state to the high lift flight state It is an object of the present invention to provide a laminar flow maintaining type high lift device characterized in that it comprises either a leading edge slat or a leading edge Kruga flap to be formed.

【0020】上記中、「付着流線層流型輪郭」とは次の
式(1)及び(2)を満足する翼断面(翼型)の輪郭を
言う
In the above description, the "adherent streamlined laminar flow type contour" means a contour of a blade cross section (blade shape) that satisfies the following equations (1) and (2).

【0021】[0021]

【数1】 [Equation 1]

【0022】[0022]

【数2】 [Equation 2]

【0023】ここに Rθ:付着流線に沿った境界層の運動量厚からつくるレ
イノルズ数 U :付着流線に沿った境界層の局所流速 θ :付着流線に沿った境界層の運動量厚 ν :空気動粘性係数 Λ :翼の前縁又は付着流線後退角 なお、以降、「輪郭」とは特に断らない限り、翼断面
(翼型)の輪郭を言い、「巡航型輪郭」とは巡航飛行時
の翼断面の輪郭を言う。
Where R θ: Reynolds number formed from the momentum thickness of the boundary layer along the attached streamline U: Local velocity of the boundary layer along the attached streamline θ: Momentum thickness of the boundary layer along the attached streamline ν: Aerodynamic viscosity Λ: Leading edge of blade or adhering streamline receding angle Note that hereinafter, unless otherwise specified, the "contour" means the contour of the blade cross section (wing type), and the "cruise type contour" means cruise flight. Say the contour of the wing cross section.

【0024】[0024]

【作用】本発明は上記のように構成されるので次の作用
を有する。
Since the present invention is constructed as described above, it has the following actions.

【0025】即ち、航空機の層流維持型高揚力装置を巡
航飛行状態から高揚力飛行状態に展開操作した際、翼前
縁輪郭形状を巡航型輪郭から付着流線層流型輪郭に変更
するために翼前縁の輪郭形状が付着流線層流型輪郭とな
り、翼前縁部分から層流が実現され、従来の乱流型に比
べて大幅に揚力が増大する。
That is, in order to change the wing leading edge contour shape from the cruise type contour to the adhering streamline laminar type contour when the laminar flow maintaining type high lift device of the aircraft is deployed and operated from the cruising flight state to the high lift flight state. In addition, the contour shape of the blade leading edge becomes the adhering streamline laminar flow type contour, and laminar flow is realized from the blade leading edge portion, and the lift is greatly increased compared to the conventional turbulent flow type.

【0026】更に層流維持型高揚力装置にあっては付着
流線層流型輪郭となった翼前縁部分の前方に展開される
前縁スラット又は前縁クルーガフラップの何れかを備え
ており、付着流線層型輪郭によって誘起される層流が、
前縁スラット又は前縁クルーガフラップの発生するスロ
ット流によって高レイノズル数領域即ち飛行レイノズル
数領域まで維持され、さらに一層大きな揚力が得られ
る。
Further, the laminar flow maintaining type high lift device is provided with either a leading edge slat or a leading edge Kruger flap which is deployed in front of the leading edge portion of the blade having the adhering streamline laminar flow type contour. , The laminar flow induced by the adhering streamline layer profile is
The slot flow generated by the leading edge slat or the leading edge Kruger flap maintains the high Reynolds number region, that is, the flying Reynolds number region, and further increases the lift force.

【0027】[0027]

【実施例】本発明の一実施例を図1〜図3により説明す
る。なお、図3は比較図として従来例と共用する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. Note that FIG. 3 is also used as a comparative diagram in common with the conventional example.

【0028】本発明の一実施例を図1、図2により説明
する。
An embodiment of the present invention will be described with reference to FIGS.

【0029】図1は本実施例に係る層流維持型前縁高揚
力装置のいわゆる翼型断面に相当する主翼前縁近傍の断
面図で、(a)は装置を展開した高揚力状態(以降、展
開状態とも云う)を、(b)は装置を収納した巡航状態
を各々示す。
FIG. 1 is a sectional view of the vicinity of the leading edge of the main wing corresponding to the so-called airfoil cross section of the laminar flow maintaining type high leading edge lift device according to this embodiment. , Also referred to as a deployed state), and (b) shows a cruise state in which the device is housed.

【0030】図2は本実施例の風洞試験結果を従来例、
実施例及び比較例(実施例からクルーガフラップを除去
したに相当する型)と比較して示した図である。
FIG. 2 shows the results of the wind tunnel test of this embodiment as a conventional example,
It is the figure shown in comparison with an example and a comparative example (a type equivalent to removing a Kruga flap from an example).

【0031】図1において、1は本実施例の装置を巡航
状態から高揚力状態に展開操作した際、主翼前縁部5の
前縁輪郭形状を巡航型輪郭(図の(b))から付着流線
層流型輪郭(図の(a))の一部に変更する前縁輪郭外
板、5は主翼前縁部である。6は巡航状態時は前縁輪郭
外板1に後続して主翼下面の一部をなすと共に高揚力状
態時は前方へ突出して前縁輪郭外板1が前縁として形成
した付着流線層流型輪郭の前方に垂設状態となるクルー
ガフラップである。
In FIG. 1, reference numeral 1 designates the leading edge contour shape of the wing leading edge portion 5 attached from the cruise type contour ((b) in the figure) when the apparatus of this embodiment is deployed from the cruising state to the high lift state. The leading edge contour outer plate 5 which is changed to a part of the streamlined laminar flow type contour ((a) in the figure) is the leading edge portion of the main wing. 6 is a part of the lower surface of the main wing following the leading edge contour skin 1 in the cruising state, and protrudes forward in the high lift state to form the attached streamline laminar flow formed by the leading edge contour skin 1 as the leading edge. It is a Kruga flap that is hung vertically in front of the mold contour.

【0032】即ち、巡航状態では図1(b)に示すよう
に前縁輪郭外板1とクルーガフラップ6とが主翼の前部
下面を形成し、高揚力状態では前縁輪郭外板1が半径の
大きい前縁、即ち、付着流線層流型輪郭を形成し、クル
ーガフラップ6は前方に出てクルーガフラップを形成す
る。
That is, in the cruising state, as shown in FIG. 1 (b), the leading edge profile skin 1 and the Kruga flap 6 form the front lower surface of the main wing, and in the high lift state, the leading edge profile skin 1 has a radius. Forming a large leading edge, i.e. the adhering streamlined laminar profile, the Kruger flap 6 projects forward and forms the Kruger flap.

【0033】7は前縁輪郭外板1及びクルーガフラップ
6を巡航状態から高揚力状態へ、高揚力状態から巡航状
態へと展開、収納させるためのリンク機構、8はリンク
機構7を図示しない駆動源によって回動操作するための
トルクチューブ、9は高揚力状態時、スロット流を発生
させるため前縁輪郭外板1とクルーガフラップ6との間
に設けられたスロット(間隙)である。
Reference numeral 7 denotes a link mechanism for expanding and accommodating the front edge contour outer plate 1 and the kruga flap 6 from a cruising state to a high lift state and from a high lift state to a cruising state, and 8 denotes a drive mechanism (not shown) for the link mechanism 7. The torque tube for turning operation by the source, 9 is a slot (gap) provided between the front edge contour outer plate 1 and the Kruga flap 6 for generating a slot flow in a high lift state.

【0034】ここに図1(a)の高揚力状態において、
前縁輪郭外板1が形成する付着流線層流型輪郭は式
(3)及び(4)を満足するよう形成されている。
In the high lift state shown in FIG. 1 (a),
The adhering streamlined laminar flow type contour formed by the leading edge contour skin 1 is formed so as to satisfy the expressions (3) and (4).

【0035】[0035]

【数3】 [Equation 3]

【0036】[0036]

【数4】 [Equation 4]

【0037】ここに Rθ:付着流線に沿った境界層の運動量厚からつくるレ
イノルズ数 U :付着流線に沿った境界層の局所流速 θ :付着流線に沿った境界層の運動量厚 ν :空気動粘性係数 Λ :翼の前縁又は付着流線後退角 次に上記実施例の作用について説明する。
Where R θ: Reynolds number created from the momentum thickness of the boundary layer along the attached streamline U: Local velocity of the boundary layer along the attached streamline θ: Momentum thickness of the boundary layer along the attached streamline ν: Air dynamic viscosity Λ: Leading edge of blade or adhering streamline receding angle Next, the operation of the above-described embodiment will be described.

【0038】上述の通り、装置が図1(a)の高揚力状
態に展開されると、主翼前縁部5の前縁半径が実質的に
大きくなるので、前縁に沿う流れの径路が長くなり、単
位時間当りの流れの移動量、即ち流速が大きくなって速
度勾配が増す。この結果、境界層が薄くなり、付着流線
層流となって翼の前縁下部から上面の広範囲な領域にわ
たって層流が維持されるので従来の乱流型に比し、きわ
めて大きな揚力を発生する。
As described above, when the apparatus is deployed in the high lift state shown in FIG. 1A, the leading edge radius of the main wing leading edge portion 5 becomes substantially large, so that the flow path along the leading edge becomes long. Therefore, the amount of movement of the flow per unit time, that is, the flow velocity increases, and the velocity gradient increases. As a result, the boundary layer becomes thinner and becomes a sticky streamlined laminar flow, which maintains a laminar flow over a wide area from the lower part of the leading edge of the blade to the upper surface, generating an extremely large lift as compared with the conventional turbulent flow type. To do.

【0039】更にクルーガフラップ6が前方に垂設さ
れ、スロット9が形成されているので、スロット9から
スロット流が前縁輪郭外板1の外周を上方にむかって層
流を助長する向きに流れ、付着流のなす境界層が更に薄
くなり、高レイノルズ数領域に迄層流が維持されて従来
例の場合より更に大きな揚力を発生する。
Further, since the Kruga flap 6 is vertically provided in the front and the slot 9 is formed, the slot flow flows from the slot 9 in a direction to promote the laminar flow toward the outer periphery of the front edge contour outer plate 1 upward. The boundary layer formed by the adhering flow is further thinned, and the laminar flow is maintained even in the high Reynolds number region to generate a larger lift than in the case of the conventional example.

【0040】また、図2に示す通り、風洞試験結果の比
較においても、従来の乱流型前縁+クルーガフラップの
例よりも本実施例が約0.25程度大きなCLmax (最
大揚力係数)を有することが分る。
Further, as shown in FIG. 2, also in the comparison of the wind tunnel test results, CL max (maximum lift coefficient) of this embodiment is about 0.25 larger than that of the conventional turbulent flow type leading edge + Kruga flap example. It turns out that

【0041】図3の(e)は(c),(d)の従来例と
比較のために示した本実施例の模式的参考図である。
FIG. 3 (e) is a schematic reference diagram of this embodiment shown for comparison with the conventional examples of (c) and (d).

【0042】なお、本実施例のクルーガフラップ6の翼
弦は図4に示す従来のクルーガフラップ06よりも縮小
され、その縮小分をスロット9の後(上方)に残された
主翼前縁部5の前縁半径増加に前縁輪郭外板1として充
当するものであり、トルクチューブ8を回転させ、リン
ク機構7を介して作動させる構成としてある。従って、
本実施例は上述のような高度の作用を果すにも拘らず、
従来のクルーガフラップ型に比べて重量増加を招かず、
かつ展開機構の複雑さを増していないという副次的な作
用効果をも有している。
The chord of the Kruga flap 6 of the present embodiment is made smaller than the chord of the conventional Kruga flap 06 shown in FIG. 4, and the reduced amount is left behind (upper) the slot 9 to the leading edge 5 of the main wing. The outer diameter of the leading edge is increased as the leading edge contour outer plate 1, and the torque tube 8 is rotated and actuated via the link mechanism 7. Therefore,
Despite the high degree of action of the embodiment described above,
Compared to the conventional Kruga flap type, it does not cause weight increase,
In addition, it has a secondary effect that the complexity of the deployment mechanism is not increased.

【0043】以上、本実施例では付着流線層流型輪郭を
形成した前縁輪郭外板1の前方にクルーガフラップ6を
垂設する構成としたが、クルーガフラップ6に代えスラ
ットを用いてもよい。
As described above, in the present embodiment, the kruga flap 6 is vertically provided in front of the leading edge contour outer plate 1 having the adhering streamlined laminar flow type contour, but a slat may be used instead of the kruga flap 6. Good.

【0044】また、本実施例では前縁輪郭外板1及びク
ルーガフラップ6の展開収納にリンク機構7をそれぞれ
用いたが展開、収納はこれらの手段に限定されるもので
はなく、発明の目的を逸脱しない範囲でどのような手段
が用いられてもよい。
Further, in the present embodiment, the link mechanism 7 is used for deploying and accommodating the front edge contour outer plate 1 and the Kruga flap 6, respectively, but the expansive and accommodating are not limited to these means, and the object of the invention is not limited. Any means may be used without departing.

【0045】また、本実施例は主翼前縁部の例で説明し
たが、適用対象は主翼前縁に限定されるものではなく、
たとえばフラップ前縁等に適用されてもよい。即ち、前
縁高揚力装置、後縁高揚力装置の何れに用いられること
も自由である。
Further, although the present embodiment has been described with respect to the example of the leading edge of the main wing, the object of application is not limited to the leading edge of the main wing.
For example, it may be applied to the front edge of the flap or the like. That is, it is free to be used for either the leading edge high lift device or the trailing edge high lift device.

【0046】以上の通り、本実施例によれば航空機が高
揚力を必要とするとき、随時、展開して翼の前縁半径の
拡大された状態によって付着流線層流型輪郭を形成し、
更にその前方にクルーガフラップを垂設し、付着流線を
乱流型から層流型に切換えるので、前縁から主上面に亘
る広い領域に層流を保持でき、非常に大きな揚力を創出
できるという利点がある。
As described above, according to the present embodiment, when the aircraft requires high lift, the aircraft is deployed at any time to form the adhering streamline laminar type contour by the enlarged state of the leading edge radius of the wing,
Furthermore, a kruga flap is hung in front of it, and the adhering streamline is switched from turbulent to laminar flow, so laminar flow can be maintained in a wide area from the leading edge to the main upper surface, and a very large lift can be created. There are advantages.

【0047】また、大揚力の創出を簡便、軽量な構成に
よって一元的に行なうことができるという利点がある。
Further, there is an advantage that a large lift can be created centrally by a simple and lightweight structure.

【0048】[0048]

【発明の効果】本発明は上記のように構成される次の効
果を有する。
The present invention has the following effects configured as described above.

【0049】即ち、一般に航空機の主翼前縁部分の高揚
力装置格納時の形状輪郭は、空力効率および運行経済効
果が最大限発揮されるように巡航時の形態および条件で
決められている。このような形状では主翼前縁部分では
流れの付着流線は乱流型となっており、このため巡航時
の形状輪郭を最大限に保持する従来技術での高揚力装置
では得られる最大揚力係数には限界があった。
That is, generally, the shape profile of the leading edge portion of the main wing of the aircraft when stored in the high lift device is determined by the form and conditions at the time of cruising so that the aerodynamic efficiency and the economic effect of operation can be maximized. In such a shape, the adhering streamline of the flow is turbulent at the leading edge of the wing, and therefore the maximum lift coefficient obtained by the conventional high lift device that maximizes the shape profile during cruising. There was a limit.

【0050】本発明では付着流線が乱流型となっている
翼前縁部分の形状輪郭を、付着流線が層流型となるよう
に形状輪郭を変更、回復できる新しい層流維持型高揚力
装置により従来の最大揚力係数限界を越えて、一層高い
揚力係数の実現を可能としたため、きわめて大きな揚力
が得られる。これにより航空機の離着陸速度を低下でき
るので、航空機の離着陸の安全性が向上する。
According to the present invention, a new laminar flow maintaining type elevation is possible in which the shape contour of the blade leading edge portion in which the adhering streamline is turbulent type can be changed and restored so that the adhering streamline becomes laminar type. The force device exceeded the conventional maximum lift coefficient limit and made it possible to achieve a higher lift coefficient, resulting in extremely high lift. As a result, the takeoff and landing speed of the aircraft can be reduced, and thus the safety of takeoff and landing of the aircraft is improved.

【0051】また、離着陸距離の短縮により運行経済性
が改善する。
Further, the operating economy is improved by shortening the takeoff and landing distance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の図で、(a)は高揚力状態
(展開)を、(b)は巡航状態(収納)を各々示す図、
FIG. 1 is a diagram of one embodiment of the present invention, (a) showing a high lift state (deployment), and (b) showing a cruising state (storage),

【図2】上記実施例と従来例及び比較例との風洞試験結
果の比較線図、
FIG. 2 is a comparison diagram of wind tunnel test results of the above-described example, a conventional example, and a comparative example,

【図3】従来例及び上記実施例の付着線、境界層等を説
明した模式図で、(a)は航空機の平面図、(b)は
(a)の囲いBの拡大斜視図で示した付着線の説明図、
(c)は付着線が乱流型の場合の従来例の図、(d)は
付着線が乱流型で再層流化が起る場合の従来例の図、
(e)は参考に示した付着線が層流型の場合の上記実施
例の図、
3A and 3B are schematic diagrams illustrating the adhesion line, boundary layer, and the like of the conventional example and the above-described example, FIG. 3A is a plan view of the aircraft, and FIG. 3B is an enlarged perspective view of the enclosure B in FIG. 3A. Illustration of adhesion line,
(C) is a diagram of a conventional example when the attachment line is a turbulent flow type, (d) is a diagram of a conventional example when the attachment line is a turbulent flow type and relaminarization occurs,
(E) is a diagram of the above-mentioned embodiment in which the adhesion line shown as a reference is a laminar flow type,

【図4】従来例の高揚力装置のうち、クルーガフラップ
の例の図で、(a)は高揚力状態(展開)を、(b)は
巡航状態(収納)を各々示す図、
FIG. 4 is a diagram of an example of a Kruga flap in a conventional high lift device, in which (a) shows a high lift state (deployment) and (b) shows a cruising state (storage),

【図5】従来例の前縁高揚力装置の4型式の模式図で、
(a)はスラットを、(b)はクルーガフラップを、
(c)は前縁折り曲げを、(d)は上記(b)と(c)
との組み合わせを各々示す図、
FIG. 5 is a schematic view of four types of conventional leading edge high lift devices,
(A) is a slat, (b) is a Kruga flap,
(C) is the front edge bending, (d) is the above (b) and (c)
Figure showing each combination with

【図6】従来例の後縁高揚力装置の3型式の模式図で、
(e)は単純フラップ(収納状態)を、(f)はスプリ
ットフラップ(収納状態)を、(g)はスロッテッドフ
ラップ(収納状態)を各々示し、(h)は(e)の、
(i)は(f)の、(j)は(g)の各々展開状態を示
す図である。
FIG. 6 is a schematic view of three types of conventional trailing edge high lift devices,
(E) shows a simple flap (stored state), (f) shows a split flap (stored state), (g) shows a slotted flap (stored state), (h) shows (e),
(I) is a diagram showing a developed state of (f) and (j) is a diagram showing a developed state of (g).

【符号の説明】[Explanation of symbols]

1 前縁輪郭外板 3,4 アクチュエータ 5 主翼前縁部 6 クルーガフラップ 7 リンク機構 8 トルクチューブ 9 スロット 1 Leading edge outline skin 3,4 Actuator 5 Main wing leading edge 6 Kruga flap 7 Link mechanism 8 Torque tube 9 Slot

フロントページの続き (72)発明者 平原 誠 東京都港区虎ノ門一丁目2番3号 虎ノ門 第一ビルディング 財団法人日本航空機開 発協会内 (72)発明者 卜部 耕治 東京都港区虎ノ門一丁目2番3号 虎ノ門 第一ビルディング 財団法人日本航空機開 発協会内 (72)発明者 谷岡 忠幸 名古屋市港区大江町10番地 三菱重工業株 式会社名古屋航空宇宙システム製作所内 (72)発明者 大橋 末治 名古屋市港区大江町10番地 三菱重工業株 式会社名古屋航空宇宙システム製作所内 (72)発明者 宮川 淳一 名古屋市港区大江町10番地 三菱重工業株 式会社名古屋航空宇宙システム製作所内 (72)発明者 真保 雄一 名古屋市港区大江町10番地 三菱重工業株 式会社名古屋航空宇宙システム製作所内Front page continued (72) Inventor Makoto Hirahara 1-2-3 Toranomon, Minato-ku, Tokyo Toranomon Daiichi Building Within the Japan Aircraft Development Association (72) Inventor Koji Urabe 1-2-2 Toranomon, Minato-ku, Tokyo No. 3 Toranomon Daiichi Building Within the Japan Aircraft Development Association (72) Inventor Tadayuki Tanioka 10 Oemachi, Minato-ku, Nagoya City Mitsubishi Heavy Industries, Ltd. Nagoya Aerospace Systems Works (72) Inventor Suetsu Ohashi, Nagoya City Port 10 Oemachi, Ward Mitsubishi Heavy Industries Ltd., Nagoya Aerospace Systems Works (72) Inventor Junichi Miyagawa, 10 Oemachi, Minato Ward, Nagoya City Mitsubishi Heavy Industries Ltd., Nagoya Aerospace Systems Works (72) Inventor, Yuichi Maho Nagoya 10 Oe-cho, Minato-ku, Yokohama Mitsubishi Heavy Industries Ltd. Nagoya Aerospace Systems Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 航空機が高揚力を必要とするとき展開操
作させて翼の輪郭形状を高揚力飛行状態に変更する高揚
力装置において、巡航飛行状態から高揚力飛行状態に展
開操作した際翼前縁輪郭形状を巡航型輪郭から付着流線
層流型輪郭に変更しさらに付着流線層流型輪郭となった
翼前縁部分の前方に形成される前縁スラット又は前縁ク
ルーガフラップの何れかを具備してなることを特徴とす
る層流維持型高揚力装置。
1. A high-lift device for deploying an aircraft when it requires high lift to change the contour shape of the wing to a high-lift flight state, and in front of the wing when deploying from a cruising flight state to a high-lift flight state. Either a leading edge slat or a leading edge Kruger flap formed in front of the leading edge of the airfoil with the edge contour changed from the cruise type to the adhering streamlined laminar type contour A laminar flow maintaining type high lift device characterized by comprising:
JP28314093A 1993-11-12 1993-11-12 Laminar flow keeping type high-lift device Withdrawn JPH07132891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28314093A JPH07132891A (en) 1993-11-12 1993-11-12 Laminar flow keeping type high-lift device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28314093A JPH07132891A (en) 1993-11-12 1993-11-12 Laminar flow keeping type high-lift device

Publications (1)

Publication Number Publication Date
JPH07132891A true JPH07132891A (en) 1995-05-23

Family

ID=17661750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28314093A Withdrawn JPH07132891A (en) 1993-11-12 1993-11-12 Laminar flow keeping type high-lift device

Country Status (1)

Country Link
JP (1) JPH07132891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154756A (en) * 2007-12-27 2009-07-16 Japan Aerospace Exploration Agency Rudder face end noise reduction device
WO2019167846A1 (en) * 2018-03-02 2019-09-06 三菱重工業株式会社 High-lift device, wing, and aircraft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154756A (en) * 2007-12-27 2009-07-16 Japan Aerospace Exploration Agency Rudder face end noise reduction device
WO2019167846A1 (en) * 2018-03-02 2019-09-06 三菱重工業株式会社 High-lift device, wing, and aircraft
EP3715243A4 (en) * 2018-03-02 2021-01-20 Mitsubishi Heavy Industries, Ltd. High-lift device, wing, and aircraft
US11492098B2 (en) 2018-03-02 2022-11-08 Mitsubishi Heavy Industries, Ltd. High-lift device, wing, and aircraft

Similar Documents

Publication Publication Date Title
US5253828A (en) Concealable flap-actuated vortex generator
US7048228B2 (en) Slotted aircraft wing
US7048235B2 (en) Slotted aircraft wing
US4739957A (en) Strake fence flap
JP5483830B2 (en) Method and system for controlling airflow over a cavity
USRE44313E1 (en) Airplane with unswept slotted cruise wing airfoil
US5322242A (en) High efficiency, supersonic aircraft
US6098922A (en) Lifting-fuselage/wing aircraft having low induced drag
Roman et al. Aerodynamic design challenges of the blended-wing-body subsonic transport
US7997538B2 (en) Aerodynamic fan control effector
US4619423A (en) Geometries for roughness shapes in laminar flow
US9463870B2 (en) Aerodynamic structure with series of shock bumps
US7118071B2 (en) Methods and systems for controlling lower surface shocks
US6123296A (en) Self-actuated flow control system
US20050242234A1 (en) Lifters, methods of flight control and maneuver load alleviation
JP4831337B2 (en) Vortex generator
US4132375A (en) Vortex-lift roll-control device
US3188022A (en) Delta wing canard aircraft
US6318677B1 (en) Method and apparatus for generating a stable leading-edge lifting-vortex controller
US6513754B1 (en) Transonic flow shockwave position stabilizer
Nguyen et al. Wind tunnel investigation of a flexible wing high-lift configuration with a variable camber continuous trailing edge flap design
US4606519A (en) Airfoil
US2511502A (en) Tailless airplane
US8016248B2 (en) Aircraft wing spoiler arrangement
US20210197952A1 (en) Variable wing leading edge camber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130