JPH0713211A - Pseudo phase matching waveguide type wavelength conversion element - Google Patents

Pseudo phase matching waveguide type wavelength conversion element

Info

Publication number
JPH0713211A
JPH0713211A JP5150394A JP15039493A JPH0713211A JP H0713211 A JPH0713211 A JP H0713211A JP 5150394 A JP5150394 A JP 5150394A JP 15039493 A JP15039493 A JP 15039493A JP H0713211 A JPH0713211 A JP H0713211A
Authority
JP
Japan
Prior art keywords
electrode
phase matching
waveguide
wavelength conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150394A
Other languages
Japanese (ja)
Inventor
Yoshikazu Shudo
美和 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5150394A priority Critical patent/JPH0713211A/en
Publication of JPH0713211A publication Critical patent/JPH0713211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide the pseudo phase matching waveguide type wavelength conversion element body which converts the wavelength of a laser beam to a half by utilizing a nonlinear optical characteristic and more particularly second harmonic generation. CONSTITUTION:This waveguide type wavelength conversion element consists of a poled polymer subjected to a periodic polarization treatment by an electric field and has comb-shaped electrode 3 on one side and a plane electrode 2 or a surface capable of applying an electric charge by a corona discharge, etc., on the other. The element described above is so constituted that the electrode width D1 of the comb-shaped electrodes is D1=LAMBDA-6t and the inter-electrode spacing D2 is D2=LAMBDA+6t to satisfy 6t<LAMBDA when the period of pseudo phase matching is defined as 2LAMBDA. and the waveguide thickness as t. The electrode width D1 of the comb-shaped electrodes and the inter-electrode spacing D2 is D1+D2=2lambdaand is D1<<D2 is satisfied to satisfy 6tiotaLAMBDA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学特性、特に
第二高調波発生を利用してレーザー光の波長を1/2に
変換する擬似位相整合導波路型波長変換素子に関する。
特に、光メモリ、レーザープリンタ、ポスシステム等の
光源に応用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quasi-phase-matching waveguide type wavelength conversion element for converting the wavelength of laser light into 1/2 by utilizing nonlinear optical characteristics, particularly the generation of second harmonics.
In particular, it is applied to light sources such as optical memories, laser printers, and post systems.

【0002】[0002]

【従来の技術】有機非線形光学材料は、従来の材料に比
べ性能が高いことが判明し、第2高調波発生による波長
変換素子用材料として、注目を受けている。しかし、加
工性が悪いこと、しばしば対称中心を持つ結晶構造をと
りマクロには、性能が発揮されないことから素子として
性能の高いものを作製するのは困難である。またこれを
解決するために高分子マトリックスに非線形性能の高い
分子を分散させ分極処理を行ったり、主鎖あるいは側鎖
に非線形性能の高い分子構造を取り込んだポリマーを分
極処理することが提案されているがドープできる分子数
に限りがあるため性能がさほど大きくならないことや分
極の緩和により、性能が時間と共に減衰するという欠点
が生じた。
2. Description of the Related Art Organic nonlinear optical materials have been found to have higher performance than conventional materials, and have been receiving attention as materials for wavelength conversion elements that generate second harmonics. However, it is difficult to fabricate a device having high performance as a device because of poor workability, and often having a crystal structure having a symmetric center and exhibiting no performance as a macro. In order to solve this problem, it has been proposed to disperse molecules having high non-linear performance in a polymer matrix and perform polarization treatment, or to polarize a polymer incorporating a molecular structure having high non-linear performance in the main chain or side chain. However, since the number of molecules that can be doped is limited, the performance does not increase so much, and the relaxation of the polarization causes the performance to decline over time.

【0003】そこで、非線形光学性能の高いモノマーを
分極処理した後重合し、性能の向上と分極の時間緩和を
減少させた材料が発明された〔例えば、D.Jungb
auer,etc,Appl Phys,Lett 5
6(26),P.2610〕。しかし、非線形光学材料
を用いて波長変換素子を作製し、高効率を得るためには
入射パワー密度の向上および位相整合の条件が不可欠で
ある。ポリマーは薄膜化が容易であるため光導波路の作
製は可能であり、入射パワー密度は光導波路内に入射光
を導入させることで向上させることができる。光導波路
素子で位相整合させるためにはチェレンコフ位相整合、
導波モード間位相整合等があるが、前者は効率が低く、
ビーム成形が必要であること、後者は導波路膜厚条件が
厳しく制御が困難であること、屈折率の波長分散がある
ため効率の高い0次モードどうしの位相整合は不可能で
あること等の欠点がある。
Therefore, a material has been invented in which a monomer having a high nonlinear optical performance is subjected to a polarization treatment and then polymerized to improve the performance and reduce the relaxation time of the polarization [eg, D. Jungb
Auer, etc, Appl Phys, Lett 5
6 (26), p. 2610]. However, in order to manufacture a wavelength conversion element using a non-linear optical material and obtain high efficiency, the conditions for improving the incident power density and phase matching are indispensable. Since the polymer can be easily made into a thin film, the optical waveguide can be manufactured, and the incident power density can be improved by introducing the incident light into the optical waveguide. In order to perform phase matching with an optical waveguide element, Cherenkov phase matching,
There is phase matching between guided modes, but the former is low in efficiency,
Beam shaping is required, the latter is difficult to control due to strict waveguide film thickness conditions, and there is wavelength dispersion of the refractive index, making it impossible to perform highly efficient phase matching between zero-order modes. There are drawbacks.

【0004】これを解決するための手段として本出願人
は、ポリマーの分極処理を周期的に行い類似位相整合を
行う試みを行っている(特願平4−93455、特願平
4−93456)。前記方法のポールドポリマーはいず
れも電界を印加して分極処理を行い、電界の強度を電極
形状等により変化させることで分極処理を周期的に行っ
ている。電極により強弱の電界を与える時には、例えば
図1のような電極、生ずる電界強度は図2のようにな
る。したがって電界による分極状態の構成が考えられる
が、この時、変化から生ずる非線形光学定数dの変化は
図3のようになると考えられる。
As a means for solving this, the present applicant has made an attempt to periodically polarize a polymer to perform similar phase matching (Japanese Patent Application Nos. 4-93455 and 4-93456). . In each of the poled polymers of the above-mentioned methods, an electric field is applied to perform a polarization process, and the polarization process is periodically performed by changing the intensity of the electric field depending on the shape of the electrode or the like. When a strong and weak electric field is applied by the electrodes, the electric field strength generated by the electrodes as shown in FIG. 1 is as shown in FIG. Therefore, the configuration of the polarization state due to the electric field can be considered. At this time, it is considered that the change of the nonlinear optical constant d caused by the change is as shown in FIG.

【0005】d値が光の導波方向に対し周期的に変化
し、その周期が擬似位相条件を満たす時、得られる第2
高調波(SH波)の強度が大きくなること自体は自明で
あり、この時dの周期的変化の様子がどんなものであっ
ても、SH波の強度は位相整合前に比べ増大する。しか
し、半導体レーザ等の比較的パワーの低いレーザを用い
る場合は実用的なパワーのSH波を得るためにはd値の
周期構造を最適化する必要が必須であると考えられる。
The second value obtained when the d value periodically changes with respect to the light guiding direction and the period satisfies the quasi-phase condition.
It is self-evident that the intensity of the harmonic wave (SH wave) becomes large, and at this time, the intensity of the SH wave increases as compared with that before the phase matching regardless of the state of the periodic change of d. However, when a laser having a relatively low power such as a semiconductor laser is used, it is considered necessary to optimize the periodic structure of d value in order to obtain an SH wave having a practical power.

【0006】ここで前述のポールドポリマーにおいては
当初予測された程度のSH波出力を得ることはできなか
った。これはd値が図4のようになるものとしてSH波
出力強度を予測したが、実際には図3のようになってい
ると考えられ、d値の周期構造が最適化されていないた
めと考えられる。これを解決するための一手段として、
例えばd値を図4のように変化させる試みが行われてい
るが必ずしもよい結果は得られていない。
In the poled polymer described above, the SH wave output as originally predicted could not be obtained. This is because the SH wave output intensity was predicted assuming that the d value is as shown in FIG. 4, but it is considered that it is actually as shown in FIG. 3, and the periodic structure of the d value is not optimized. Conceivable. As one means to solve this,
For example, attempts have been made to change the d value as shown in FIG. 4, but good results have not always been obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来技
術に比較して、d値の周期構造を最適化し、高効率の波
長 変換素子を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a highly efficient wavelength conversion element by optimizing the periodic structure of d value as compared with the above-mentioned prior art.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、電界により周期的な分極処理を施したポールドポリ
マーからなり、一方にくし型電極、もう一方に平面電極
あるいはコロナ放電等によって電荷を与える事が可能な
面を有する構成の導波路型波長変換素子であって、擬似
位相整合の周期を2Λ、導波路厚みをtとする時、 6t<Λ を満たす場合において、くし型電極の電極幅D1が D1=Λ−6t であって、電極間隔D2が D2=Λ+6t であることを特徴とする擬似位相整合導波路型波長変換
素子及び電界により周期的な分極処理を施したポールド
ポリマーからなり、一方にくし型電極、もう一方に平面
電極あるいはコロナ放電等によって電荷を与える事が可
能な面を有する構成の導波路型波長変換素子であって、
擬似位相整合の周期を2Λ、導波路厚みをtとする時、 6t≧Λ を満たす場合において、くし型電極の電極幅D1と電極
間隔D2が D1+D2=2Λ D1≪D2 であることを特徴とする擬似位相整合導波路型波長変換
素子が有効であることを見出だした。更に、ポールドポ
リマーが、2個以上の、少なくとも一方が置換されてい
ないアミノ基を持つアミンと、2個以上のエポキシ環を
持つエポキシドとのポリマーであり、また、特に、1次
擬似位相整合の周期に電子ビーム描画の手法にて作成し
たサブミクロンオーダーの電極幅を有するときに有効で
ある。
In order to solve the above problems, in order to solve the above problems, a poled polymer which is periodically polarized by an electric field is used. A waveguide-type wavelength conversion element having a surface capable of giving a value of, where the period of quasi phase matching is 2Λ and the thickness of the waveguide is t, and when 6t <Λ is satisfied, The electrode width D 1 is D 1 = Λ−6t, and the electrode spacing D 2 is D 2 = Λ + 6t. A waveguide type wavelength conversion element having a structure which is made of poled polymer and has a surface on which one side can be provided with a comb-shaped electrode and the other side is a plane electrode or a corona discharge,
When 2 [lambda] the period of quasi phase matching, the waveguide thickness and t, 6t ≧ when satisfying lambda, comb electrode width D 1 and the electrode spacing D 2 of the electrodes D 1 + D 2 = 2Λ D 1 «D 2 It was found that the quasi-phase matching waveguide type wavelength conversion element characterized by Furthermore, the poled polymer is a polymer of two or more amines having amino groups at least one of which is not substituted and epoxides having two or more epoxy rings, and in particular, first-order quasi phase matching This is effective when the electrode width of the submicron order created by the electron beam writing method is included in the period.

【0009】擬似位相整合のための周期的な分極処理を
施す場合には、d値の変化の様子は理想的には図5のよ
うであることが望ましい。この様な周期構造を作製する
ためには例えば図6のような電極構成が考えられる。こ
の時電極1,2あるいは1,3によって、逆方向で等強
度の電界を導波層に印加すればよいが、このためには
1,2、あるいは1,3の電位差より大きい電位差を電
極2,3間に与えなくてはならないため、導波層に印加
できる最大の電界強度は、電極2,3間で生じる電界強
度より低くなる。素子の効率を上げるためにはdが大き
い方がよいが、d値は印加する電界が強ければ強いほど
大きくなるため、結局図6のような電極構成では導波層
の最大耐電界強度まで、導波層に電界を印加する事がで
きないので、最終的に得られる効率は低くなってしま
う。
When performing periodic polarization processing for quasi-phase matching, it is desirable that the state of changes in d value is ideally as shown in FIG. In order to produce such a periodic structure, for example, an electrode configuration as shown in FIG. 6 can be considered. At this time, an electric field of equal intensity in the opposite direction may be applied to the waveguide layer by the electrodes 1, 2, or 1,3. For this purpose, a potential difference larger than the potential difference of 1, 2, or 1,3 is applied to the electrode 2. , 3 must be applied, so that the maximum electric field strength that can be applied to the waveguide layer is lower than the electric field strength generated between the electrodes 2 and 3. In order to increase the efficiency of the device, it is preferable that d is large, but the d value becomes larger as the applied electric field becomes stronger. Therefore, in the electrode configuration as shown in FIG. Since the electric field cannot be applied to the waveguide layer, the efficiency finally obtained becomes low.

【0010】そこで次に図4のようなd値の周期構造に
する場合が考えられるが、これは例えば図1のような電
極構造にすることで、擬似的に図4のようなd値の周期
構造が達成でき、導波層に最大耐電界強度まで電界を印
加する事ができる。この構成は電極の微細加工は一方の
電極のみでよく、コロナポーリング等の簡便な処理で
も、分極処理ができるという利点がある。しかし、図1
のような電極構成では、前述の様に電極の端部での“だ
れ”があるため、これが原因で効率が非常に低下する場
合があることがわかった。
Then, next, a case may be considered in which a periodic structure of d value as shown in FIG. 4 is considered, but this is simulated by forming an electrode structure as shown in FIG. A periodic structure can be achieved, and an electric field can be applied to the waveguiding layer up to the maximum electric field strength. This structure has the advantage that the fine processing of the electrode may be performed on only one of the electrodes, and the polarization treatment can be performed by a simple treatment such as corona poling. However,
It has been found that in such an electrode configuration, since there is "drooping" at the end portion of the electrode as described above, this may cause a significant decrease in efficiency.

【0011】そこで筆者は図1のような構造の電極によ
って形成される電界の様子について詳細に検討し、導波
層の中央部においては電極の端部から電極間の距離dの
約6倍の付近まで、電界強度が図7の様にすそをひいて
いる事を有限要素法による計算により見出した。
Therefore, the author examined in detail the state of the electric field formed by the electrodes having the structure as shown in FIG. 1, and in the central portion of the waveguide layer, the distance d between the end portions of the electrodes was about 6 times the distance d between the electrodes. It was found by calculation by the finite element method that the electric field strength has a tail as shown in FIG. 7 up to the vicinity.

【0012】さらに筆者はd値の周期構造が変化した場
合期待される素子の効率がどの様になるのかについても
検討を行った。d値が2Λの周期で変化する周期関数d
(Z)である時、dをフーリエ級数展開すると、
Further, the writer also examined what the expected device efficiency would be if the periodic structure of d value was changed. Periodic function d whose d value changes in a period of 2Λ
When it is (Z), when d is Fourier series expanded,

【0013】[0013]

【数1】 [Equation 1]

【0014】aqはフーリエ係数 という形で書き表す事ができるので、これを用いて導波
路で発生するSH波についてマックスウェルの式を解く
と、基本波によって発生する非線形分極のうち
Since a q can be written in the form of Fourier coefficient, solving Maxwell's equation for SH wave generated in the waveguide using this, out of the nonlinear polarization generated by the fundamental wave,

【0015】[0015]

【数2】 [Equation 2]

【0016】に比例する項がSH波を励振するからSH
波のパワー
Since a term proportional to excites the SH wave, SH
Wave power

【0017】[0017]

【数3】 [Equation 3]

【0018】は、ほぼIs approximately

【0019】[0019]

【数4】 [Equation 4]

【0020】に比例することがわかる。従ってtに応じ
てa1を所定のフーリエ係数を求める式から計算すれ
ば、期待できるSH波のパワーをみつもることができ
る。以上をふまえると約6tの長さにわたって電界強度
にだれがあるとすると、Λ>6tの場合は、電極、電極
間隔をΛにすると図8に示すようにd=d0の部分と、
d=0の部分の長さが異なる様になるが、これが効率低
下、すなわち
It can be seen that it is proportional to Therefore, if a 1 is calculated according to t from a formula for obtaining a predetermined Fourier coefficient, the expected SH wave power can be found. When there is no one in the field strength over a length of about 6t Considering the above, in the case of lambda> 6t, electrodes, and the portion of d = d 0, as shown in FIG. 8 when the electrode spacing to lambda,
The length of the part of d = 0 becomes different, but this reduces efficiency, that is,

【0021】[0021]

【数5】 [Equation 5]

【0022】の低下をまねく原因になる事がわかった。It has been found that this may cause a decrease in

【0023】従ってこの時には図9の様にd値が変化す
るように、すなわち、 D1=Λ−6t D2=Λ+6t となる様に電極を形成した方がよい結果となる事がわか
った。
Therefore, at this time, it has been found that it is preferable to form the electrodes so that the d value changes as shown in FIG. 9, that is, D 1 = Λ-6t D 2 = Λ + 6t.

【0024】また、Λ≦6tの場合には、図10のよう
になってしまいd=0におちきらない様になってしま
う。この場合も同様の計算により、はなはだしく
Further, when Λ≤6t, the result is as shown in FIG. 10, and d = 0 is not satisfied. Also in this case, the same calculation is performed.

【0025】[0025]

【数6】 [Equation 6]

【0026】の低下をまねく原因になる。この時a1
図10の
This may cause a decrease in At this time, a 1 is shown in FIG.

【0027】[0027]

【数7】 [Equation 7]

【0028】の大きさに比例するので、d=0とできな
い場合においては、なるべくd2を小さくする様な電極
構成にする事が必要である。従って、 D1+D2=2Λであって、かつ D1≪D2 にすればよい。(図11)本発明の素子を構成する材料
としては、高分子マトリックス中に低分子の非線形光学
材料をドープした分散系高分子材料や、高分子の主鎖あ
るいは側鎖に非線形光学効果を示す基を化学結合を介し
て取り込んだもの等が挙げられる。
Since d is proportional to the size of d, it is necessary to make the electrode structure so that d 2 is as small as possible when d = 0 cannot be achieved. Therefore, it suffices that D 1 + D 2 = 2Λ and D 1 << D 2 . (FIG. 11) As a material for forming the device of the present invention, a dispersion-type polymer material obtained by doping a polymer matrix with a low-molecular nonlinear optical material, or a polymer main chain or a side chain shows a nonlinear optical effect. Examples thereof include those having a group incorporated via a chemical bond.

【0029】低分子の非線型光学材料としては、特に限
定されるものではなく、種々のものが使用可能であり、
例えば3−ニトロ−5−(N,N−ジメチルアミノ)−
アセトアニリド、3−(N,N−ジメチルアミノ)−ア
ニリン、N−(4’−メトキシベンゾイル)−4−シア
ノアニリン、N−メチル−N−(4−シアノフェニル)
アミノアセトニトリル、N−(4−シアノフェニル)ア
ミノアセトニトリル、4−ニトロベンジリデン−2,3
−ジメチルアニリン、4−ニトロベンジリデン−2,4
−ジメチルアニリン、4−ニトロベンジリデン−2,5
−ジメチルアニリン、4−ニトロベンジリデン−3,4
−ジメチルアニリン、4−ニトロベンジリデン−3,5
−ジメチルアニリン、4−ニトロベンジリデン−2,4
−ジメトキシアニリン、4−ニトロベンジリデン−3,
4,5−トリメトキシアニリン、3−ニトロベンジリデ
ン−3,4,5−トリメトキシアニリン、2−ニトロベ
ンジリデン−3,4,5−トリメトキシアニリン、3−
ニトロベンジリデン−2,3−ジメチルアニリン、3−
ニトロベンジリデン−2,5−ジメチルアニリン、3−
ニトロベンジリデン−3,5−ジメチルアニリン、2−
メチル−4−ニトロアニリン(MNA)、4−(N,N
−ジメチルアミノ)−3−アセトアミドニトロベンゼン
(DAN)、4,5−ジメチル−1,3−ジチオール−
2−イリデンシアノアセテート、1,3−ジチオール−
2−イリデンシアノアセテート、N−(4−ニトロフェ
ニル)−(S)−プロリノール(NPP)、N−(5−
ニトロ−2−ピリジル)−(S)−フェニルアラリノー
ル(NPPA)、9−メチルカルバゾール−3−カルボ
ックスアルデヒドなどがあげられる。
The low molecular weight non-linear optical material is not particularly limited, and various materials can be used.
For example, 3-nitro-5- (N, N-dimethylamino)-
Acetanilide, 3- (N, N-dimethylamino) -aniline, N- (4'-methoxybenzoyl) -4-cyanoaniline, N-methyl-N- (4-cyanophenyl)
Aminoacetonitrile, N- (4-cyanophenyl) aminoacetonitrile, 4-nitrobenzylidene-2,3
-Dimethylaniline, 4-nitrobenzylidene-2,4
-Dimethylaniline, 4-nitrobenzylidene-2,5
-Dimethylaniline, 4-nitrobenzylidene-3,4
-Dimethylaniline, 4-nitrobenzylidene-3,5
-Dimethylaniline, 4-nitrobenzylidene-2,4
-Dimethoxyaniline, 4-nitrobenzylidene-3,
4,5-Trimethoxyaniline, 3-nitrobenzylidene-3,4,5-trimethoxyaniline, 2-nitrobenzylidene-3,4,5-trimethoxyaniline, 3-
Nitrobenzylidene-2,3-dimethylaniline, 3-
Nitrobenzylidene-2,5-dimethylaniline, 3-
Nitrobenzylidene-3,5-dimethylaniline, 2-
Methyl-4-nitroaniline (MNA), 4- (N, N
-Dimethylamino) -3-acetamidonitrobenzene (DAN), 4,5-dimethyl-1,3-dithiol-
2-ylidene cyanoacetate, 1,3-dithiol-
2-ylidene cyanoacetate, N- (4-nitrophenyl)-(S) -prolinol (NPP), N- (5-
Examples thereof include nitro-2-pyridyl)-(S) -phenylaralinol (NPPA) and 9-methylcarbazole-3-carboxaldehyde.

【0030】高分子マトリックスを形成するポリマーと
しては、ポリフッ化ビニリデン、メタクリル樹脂(MM
A)、ポリエチレン、ポリシロキサン等の種々の高分子
物質を用いることができるが、熱、紫外線、電子線など
の放射線をエネルギー源として、容易に三次元架橋(硬
化)し得る、エネルギー硬化型樹脂を用いることもでき
る。具体的には例えばエポキシ樹脂、ウレタン樹脂、不
飽和ポリエステル樹脂、ポリイミド樹脂、シリコン樹
脂、ジアリルフタレート樹脂、フェノール樹脂、フッ素
樹脂などを挙げることができるが、とくに紫外線、電子
線硬化に適する樹脂として、ポリエステル(メタ)アク
リレート樹脂、エポキシ(メタ)アクリレート樹脂、ポ
リウレタン(メタ)アクリレート樹脂等を挙げることが
できる。
As the polymer forming the polymer matrix, polyvinylidene fluoride, methacrylic resin (MM
Although various polymer substances such as A), polyethylene, and polysiloxane can be used, an energy curable resin that can be easily three-dimensionally crosslinked (cured) by using radiation such as heat, ultraviolet rays, and electron beams as an energy source. Can also be used. Specifically, for example, epoxy resin, urethane resin, unsaturated polyester resin, polyimide resin, silicon resin, diallyl phthalate resin, phenol resin, fluororesin and the like can be mentioned, but as a resin particularly suitable for ultraviolet ray and electron beam curing, Examples thereof include polyester (meth) acrylate resin, epoxy (meth) acrylate resin, polyurethane (meth) acrylate resin and the like.

【0031】また、このようなエネルギー硬化型樹脂を
効果的に三次元架橋(硬化)させるための硬化助剤とし
て、2個以上の反応性官能基を有する多官能性モノマー
を併用しても良い。これらの中で、ポーリング後の非線
形光学効果が安定な架橋性ポリマーであって非線形光学
効果を示すユニットを多量にとり込める、アミンとエポ
キシドとの架橋性ポリマーであることが特に望ましい。
A polyfunctional monomer having two or more reactive functional groups may be used in combination as a curing aid for effectively three-dimensionally crosslinking (curing) such an energy curable resin. . Among these, a crosslinkable polymer having a stable nonlinear optical effect after poling and a crosslinkable polymer of an amine and an epoxide capable of incorporating a large amount of units exhibiting the nonlinear optical effect is particularly desirable.

【0032】また、例えばこのアミンとエポキシドのコ
ポリマーを用いて単層スラブ型導波路を作製すると一次
の擬似位相整合の周期は、
Further, for example, when a single-layer slab type waveguide is manufactured by using this copolymer of amine and epoxide, the period of the first-order quasi phase matching is

【0033】[0033]

【数8】 [Equation 8]

【0034】程度となり、非常に小さな値となる。この
時導波路厚はt=1〜μm程度であるからΛ≪6tであ
る。従ってこの時、D1≪D2となるが、この条件を満足
させるためにはD1を1.7μm(=Λ)よりずっと小
さくする必要がある。現状ではフォトリソ等の技術によ
り電極の微細加工が可能とはなっているがサブミクロン
以下のオーダーで微細加工を行うためにはEB描画の技
術が不可欠である。従ってEB描画で、できるだけ細か
い電極、すなわちサブハーフミクロンオーダー幅の電極
を所定の周期で作製することが高効率化のためにはより
望ましい。
This is a very small value. At this time, since the waveguide thickness is about t = 1 to μm, Λ << 6t. Therefore, at this time, D 1 << D 2 , but in order to satisfy this condition, it is necessary to make D 1 much smaller than 1.7 μm (= Λ). At present, it is possible to perform fine processing of electrodes by a technique such as photolithography, but an EB drawing technique is indispensable for performing fine processing on the order of submicrons or less. Therefore, for EB writing, it is more desirable to manufacture an electrode as fine as possible, that is, an electrode having a sub-half-micron order width in a predetermined cycle for high efficiency.

【0035】[0035]

【実施例】以下、実施例を挙げて、本発明をさらに具体
的に説明する。 実施例1 パイレックスガラス上に34μm幅(D1)で間隔40
μm(D2)のITOくし形電極を長さ1cmにわたり
設け、その上に高屈折率ガラスSF1を厚さ0.25μ
mでスパッタ法により成膜し、さらにその上にApp
l.Phys,Lett 56(26),P.2610
記載の架橋型分極ポリマーをスピンコート法により約
0.25μm厚で成膜し、さらに同文献記載のコロナポ
ーリング法によりポーリングして、周期的な分極構造を
作製した。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 34 μm width (D 1 ) spacing 40 on Pyrex glass
An ITO comb-shaped electrode of μm (D 2 ) is provided over a length of 1 cm, and a high-refractive-index glass SF1 has a thickness of 0.25 μm.
m by a sputtering method, and then apply
l. Phys, Lett 56 (26), P.P. 2610
The cross-linked polarized polymer described above was formed into a film with a thickness of about 0.25 μm by the spin coating method, and then poled by the corona poling method described in the same document to prepare a periodically polarized structure.

【0036】このポリマー導波路の実効屈折率のモード
分散はYAGレーザ、波長1.064μmを基本波とす
るとポリマー属に対する導波路の実効屈折率の変化は図
12のようになり、SHG活性なポリマー属での重なり
積分が大きくなる。TMω(0)モードとTM2ω
(1)モードとの擬似位相整合構造は、
When the mode dispersion of the effective refractive index of this polymer waveguide is a YAG laser and the wavelength is 1.064 μm as a fundamental wave, the change of the effective refractive index of the waveguide with respect to the polymer genus is as shown in FIG. 12, and the SHG active polymer is shown. The overlap integral in the genus becomes large. TMω (0) mode and TM2ω
(1) The quasi phase matching structure with the mode is

【0037】[0037]

【数9】 [Equation 9]

【0038】である。[0038]

【0039】従って、入射レーザの伝搬方向を変えピッ
チを調整すると、約9.6°傾いた所で、擬似位相整合
されたSH光が確認された(図13)。得られたSH光
は電極幅と電極間隔を等しくした場合よりも強いもので
あった。
Therefore, when the pitch was adjusted by changing the propagation direction of the incident laser, SH light with quasi-phase matching was confirmed at a place inclined by about 9.6 ° (FIG. 13). The obtained SH light was stronger than that when the electrode width and the electrode interval were made equal.

【0040】実施例2 シリコン基板上にEB描画の技法で設計上は0.1μm
幅電極間隔3.2μmでくし形電極を作製した所、実測
上は0.2μm幅(D1)、間隔3.1μm(D2)で電
極が作製できた。電極上にアセトンに溶かしたフッ化ビ
ニリデンとテトラフロロエチレンのコポリマーをスピン
コーティングにより塗布し、加熱乾燥してクラッド層と
した。さらにその上に実施例1に用いた非線形ポリマー
を同様の方法で製膜、ポーリングし、約2.1μm厚の
導波路を作製した。このポリマー導波路の実効屈折率の
モード分散はYAGレーザ、波長1.064μmを基本
波とすると図14の様になり、1次の擬似位相整合構造
は、
Example 2 0.1 μm in design by EB drawing technique on a silicon substrate
When a comb-shaped electrode was formed with a width electrode interval of 3.2 μm, the electrodes could be actually formed with a width of 0.2 μm (D 1 ) and an interval of 3.1 μm (D 2 ). A vinylidene fluoride-tetrafluoroethylene copolymer dissolved in acetone was applied onto the electrode by spin coating, and dried by heating to form a clad layer. Further, the nonlinear polymer used in Example 1 was formed into a film by the same method and poled to prepare a waveguide having a thickness of about 2.1 μm. The mode dispersion of the effective refractive index of this polymer waveguide is as shown in FIG. 14 when the YAG laser and the wavelength of 1.064 μm are the fundamental waves, and the first-order quasi phase matching structure is

【0041】[0041]

【数10】 [Equation 10]

【0042】である。It is

【0043】従って、入射レーザの伝搬方向を変えピッ
チを調整すると、約7.0°傾いた所で、擬似位相整合
されたSH光が確認された(図15)。この時、実施例
1と同様の効果が確認された。
Therefore, when the pitch was adjusted by changing the propagation direction of the incident laser, SH light with quasi-phase matching was confirmed at a position inclined by about 7.0 ° (FIG. 15). At this time, the same effect as in Example 1 was confirmed.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
従来技術に比較して、d値の周期構造を最適化し、高効
率の擬似位相整合波長変換ができる。また非線形効果が
安定で高いポールドポリマーを用いてd値の周期構造を
最適化する事ができる波長変換素子を提供するものであ
る。
As described above, according to the present invention,
Compared with the conventional technique, the periodic structure of d value is optimized, and highly efficient quasi-phase matching wavelength conversion can be performed. Further, the present invention provides a wavelength conversion element capable of optimizing the periodic structure of d value by using a poled polymer having a stable nonlinear effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of an electrode of the present invention.

【図2】電界強度を示す説明図である。FIG. 2 is an explanatory diagram showing electric field strength.

【図3】非線形光学定数dの変化を示す説明図である。FIG. 3 is an explanatory diagram showing a change in nonlinear optical constant d.

【図4】非線形光学定数dの変化を示す説明図である。FIG. 4 is an explanatory diagram showing changes in the nonlinear optical constant d.

【図5】非線形光学定数dの変化を示す説明図である。FIG. 5 is an explanatory diagram showing changes in the nonlinear optical constant d.

【図6】周期的な分極構造を作成するための電極構成を
示す断面図である。
FIG. 6 is a cross-sectional view showing an electrode configuration for creating a periodic polarization structure.

【図7】電界強度を示す説明図である。FIG. 7 is an explanatory diagram showing electric field strength.

【図8】非線形光学定数dの変化を示す説明図である。FIG. 8 is an explanatory diagram showing changes in the nonlinear optical constant d.

【図9】非線形光学定数dの変化を示す説明図である。FIG. 9 is an explanatory diagram showing changes in the nonlinear optical constant d.

【図10】非線形光学定数dの変化を示す説明図であ
る。
FIG. 10 is an explanatory diagram showing changes in the nonlinear optical constant d.

【図11】非線形光学定数dの変化を示す説明図であ
る。
FIG. 11 is an explanatory diagram showing changes in the nonlinear optical constant d.

【図12】実施例1の実効効率のモード分散。FIG. 12 is a mode dispersion of effective efficiency according to the first embodiment.

【図13】実施例1の斜視図。FIG. 13 is a perspective view of the first embodiment.

【図14】実施例2の実効効率のモード分散。FIG. 14 is a mode dispersion of effective efficiency according to the second embodiment.

【図15】実施例2の斜視図。FIG. 15 is a perspective view of the second embodiment.

【符号の説明】[Explanation of symbols]

1 導波路 2 電極又はコロナ放電面 3 電極 4 基板、クラッド 5 基板 6 クラッド 7 入射レーザー光 8 カップリングプリズム 9 SH光 10 ポリマー 11 SFI 1 Waveguide 2 Electrode or Corona Discharge Surface 3 Electrode 4 Substrate, Clad 5 Substrate 6 Clad 7 Incident Laser Light 8 Coupling Prism 9 SH Light 10 Polymer 11 SFI

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電界により周期的な分極処理を施したポ
ールドポリマーからなり、一方にくし型電極、もう一方
に平面電極あるいはコロナ放電等によって電荷を与える
事が可能な面を有する構成の導波路型波長変換素子であ
って、擬似位相整合の周期を2Λ、導波路厚みをtとす
る時、 6t<Λ を満たす場合において、くし型電極の電極幅D1が D1=Λ−6t であって、電極間隔D2が D2=Λ+6t であることを特徴とする擬似位相整合導波路型波長変換
素子。
1. A conductor having a structure which is made of a poled polymer which is periodically polarized by an electric field and has a comb-shaped electrode on one side and a flat electrode on the other side or a surface capable of giving a charge by corona discharge or the like. In the waveguide type wavelength conversion element, when the quasi-phase matching period is 2Λ and the waveguide thickness is t, when 6t <Λ is satisfied, the electrode width D 1 of the comb electrode is D 1 = Λ-6t. The quasi-phase matching waveguide type wavelength conversion element, wherein the electrode spacing D 2 is D 2 = Λ + 6t.
【請求項2】 電界により周期的な分極処理を施したポ
ールドポリマーからなり、一方にくし型電極、もう一方
に平面電極あるいはコロナ放電等によって電荷を与える
事が可能な面を有する構成の導波路型波長変換素子であ
って、擬似位相整合の周期を2Λ、導波路厚みをtとす
る時、 6t≧Λ を満たす場合において、くし型電極の電極幅D1と電極
間隔D2が D1+D2=2Λ D1≪D2 であることを特徴とする擬似位相整合導波路型波長変換
素子。
2. A conductor having a structure which is made of a poled polymer which is periodically polarized by an electric field, and has a comb-shaped electrode on one side and a flat electrode on the other side or a surface to which a charge can be given by corona discharge or the like. In the waveguide type wavelength conversion element, when the quasi phase matching period is 2Λ and the waveguide thickness is t, when 6t ≧ Λ is satisfied, the electrode width D 1 and the electrode spacing D 2 of the comb electrode are D 1 quasi-phase matching waveguide type wavelength converting element which is a + D 2 = 2Λ D 1 «D 2.
【請求項3】 ポールドポリマーが、2個以上の、少な
くとも一方が置換されていないアミノ基を持つアミン
と、2個以上のエポキシ環を持つエポキシドとのポリマ
ーである請求項1記載の擬似位相整合導波路型波長変換
素子。
3. The quasi-phase according to claim 1, wherein the poled polymer is a polymer of two or more amines having amino groups at least one of which is not substituted and epoxides having two or more epoxy rings. Matched waveguide wavelength converter.
JP5150394A 1993-06-22 1993-06-22 Pseudo phase matching waveguide type wavelength conversion element Pending JPH0713211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150394A JPH0713211A (en) 1993-06-22 1993-06-22 Pseudo phase matching waveguide type wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150394A JPH0713211A (en) 1993-06-22 1993-06-22 Pseudo phase matching waveguide type wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH0713211A true JPH0713211A (en) 1995-01-17

Family

ID=15496032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150394A Pending JPH0713211A (en) 1993-06-22 1993-06-22 Pseudo phase matching waveguide type wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH0713211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518951B1 (en) * 2003-07-12 2005-10-06 한국전자통신연구원 Method for determining efficiency of quasi-phase matching in periodically poled structure of waveguide, periodically poled structure in waveguide and waveguide using the same
KR100823901B1 (en) * 2003-08-26 2008-04-21 오끼 덴끼 고오교 가부시끼가이샤 Wavelength conversion element and method for using same
KR20200117214A (en) 2019-04-03 2020-10-14 세메스 주식회사 A substrate supproting module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518951B1 (en) * 2003-07-12 2005-10-06 한국전자통신연구원 Method for determining efficiency of quasi-phase matching in periodically poled structure of waveguide, periodically poled structure in waveguide and waveguide using the same
US7072550B2 (en) 2003-07-12 2006-07-04 Electronics And Telecommunications Research Institute Method of determining quasi-phase matching efficiency in periodically poled structure of optical waveguide, periodically poled structure of optical waveguide, and optical waveguide using the same
KR100823901B1 (en) * 2003-08-26 2008-04-21 오끼 덴끼 고오교 가부시끼가이샤 Wavelength conversion element and method for using same
KR20200117214A (en) 2019-04-03 2020-10-14 세메스 주식회사 A substrate supproting module

Similar Documents

Publication Publication Date Title
US5028109A (en) Methods for fabricating frequency doubling polymeric waveguides having optimally efficient periodic modulation zone and polymeric waveguides fabricated thereby
US4865406A (en) Frequency doubling polymeric waveguide
US5734772A (en) Inverted domain structure in ferroelectric crystals with polarization in the crystal plane
US20030112492A1 (en) Simultaneous wavelength conversion and amplitude modulation in a monolithic quasi-phase-matched (QPM) nonlinear optical crystal
Tomaru et al. Quasi‐phase‐matched second harmonic generation in a polymer waveguide with a periodic poled structure
JP2002250949A (en) Optical waveguide element, optical wavelength converting element and method for manufacturing optical waveguide element
JPH0713211A (en) Pseudo phase matching waveguide type wavelength conversion element
US5131068A (en) Thickness variation insensitive frequency doubling polymeric waveguide
JP3397433B2 (en) Polarization inversion layer forming method and optical wavelength conversion element
Sharma et al. Mode Size Converter Based on Periodically Segmented Liquid Crystal Core Waveguide
JP3507659B2 (en) Optical function element
JPH07120797A (en) Wavelength converter
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
Martin et al. Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides
JPH021831A (en) Waveguide type wavelength conversion element
JPH04233522A (en) Apparatus for doubling frequency of optical wave
US5744073A (en) Fabrication of ferroelectric domain reversals
KR100401126B1 (en) All-Optical Wavelength Converter and Converting Method
JPH06102553A (en) Optical wavelength conversion element and short wavelength laser beam source
JP2002350915A (en) Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
Ishizuki et al. Stamp method for QPM quartz fabrication
Lu et al. Multiple quasi-phase matching in engineered domain-inverted optical superlattice
JP3448350B2 (en) Harmonic generator
JPH06148701A (en) Waveguide type wavelengh conversion element
Younesi et al. Micrometer-range periodic poling of thin-film lithium niobate on insulator

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140322

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees