JPH0713163Y2 - Electron beam equipment - Google Patents

Electron beam equipment

Info

Publication number
JPH0713163Y2
JPH0713163Y2 JP1983151478U JP15147883U JPH0713163Y2 JP H0713163 Y2 JPH0713163 Y2 JP H0713163Y2 JP 1983151478 U JP1983151478 U JP 1983151478U JP 15147883 U JP15147883 U JP 15147883U JP H0713163 Y2 JPH0713163 Y2 JP H0713163Y2
Authority
JP
Japan
Prior art keywords
sample
electron beam
magnetic pole
sample holder
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1983151478U
Other languages
Japanese (ja)
Other versions
JPS6059457U (en
Inventor
渡辺  勝
繁 鈴木
隆志 谷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP1983151478U priority Critical patent/JPH0713163Y2/en
Publication of JPS6059457U publication Critical patent/JPS6059457U/en
Application granted granted Critical
Publication of JPH0713163Y2 publication Critical patent/JPH0713163Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は電子線装置、特に試料ホルダに改良を加えた電
子線装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam apparatus, and more particularly to an electron beam apparatus having an improved sample holder.

電子線装置の一例として透過型電子顕微鏡を挙げると、
その構造例としては、一般的に第1図に示すようなもの
がある。これは、電子銃3と、集束レンズ5とを内蔵
し、集束レンズ5の下方に励磁コイル8,10を備えた対物
レンズ9を配置し、さらにその下方に中間レンズ11と投
影レンズ12とを備えた鏡筒1、及び鏡筒1の下方に配置
され且つ当該鏡筒1に固定されると共に内部に投影スク
リーン14を配置した中空の室13を形成する観察室2から
成つている。鏡筒1の中央部分には電子銃3から発射さ
れた電子線の軸(以下、便宜上光軸という)6に沿つて
長手方向に延びる中空孔7が形成されている。対物レン
ズ9は下方へ向けて突出し励磁コイル8によつて励磁さ
れる上側磁極16と、上方へ向けて突出し、また上側磁極
16から下方へ所定の間隔をあけて対称配置され、励磁コ
イル10によつて励磁される下側磁極17とを有する。上側
磁極16と下側磁極17との間には、励磁コイル10の上板に
設けられた支持突起18と、この支持突起18上に設置され
水平方向に移動可能な試料移動ステージ19と、試料移動
ステージ19上に装填され且つ試料を支持する試料ホルダ
15とから成る試料保持装置20が設けられている。
Taking a transmission electron microscope as an example of the electron beam apparatus,
An example of the structure is generally shown in FIG. This has an electron gun 3 and a focusing lens 5 built-in, an objective lens 9 provided with exciting coils 8 and 10 is arranged below the focusing lens 5, and an intermediate lens 11 and a projection lens 12 are further below the objective lens 9. It comprises a lens barrel 1 provided and an observation chamber 2 arranged below the lens barrel 1 and fixed to the lens barrel 1 and forming a hollow chamber 13 in which a projection screen 14 is arranged. A hollow hole 7 extending in the longitudinal direction is formed in the central portion of the lens barrel 1 along an axis (hereinafter referred to as an optical axis for convenience) 6 of an electron beam emitted from the electron gun 3. The objective lens 9 protrudes downward and is excited by the exciting coil 8, and the upper magnetic pole 16 protrudes upward.
It has a lower magnetic pole 17 which is symmetrically arranged downward at a predetermined interval from 16 and which is excited by the exciting coil 10. Between the upper magnetic pole 16 and the lower magnetic pole 17, a support protrusion 18 provided on the upper plate of the exciting coil 10, a sample moving stage 19 installed on the support protrusion 18 and movable in the horizontal direction, and a sample A sample holder mounted on the moving stage 19 and supporting the sample
A sample holder 20 consisting of 15 and 15 is provided.

このような構成を有する透過型電子顕微鏡は、その性能
が年々向上し、分解能は固体試料の原子的構造を結像す
るレベルまで向上して来ており、一般には高性能電子顕
微鏡と言われている。この高性能電子顕微鏡では、対物
レンズ9の収差係数は極限にまで小さくされ、その値
は、電子線の加速電圧が100kVの電子顕微鏡では球面収
差係数Cs、色収差係数Ccともに1mm(ミリメートル)程
度である。
The transmission electron microscope having such a configuration has been improved in performance year by year, and the resolution has been improved to a level at which the atomic structure of a solid sample is imaged, and is generally called a high performance electron microscope. There is. In this high-performance electron microscope, the aberration coefficient of the objective lens 9 is made extremely small, and the value is about 1 mm (millimeter) for both the spherical aberration coefficient Cs and the chromatic aberration coefficient Cc in the electron microscope whose electron beam acceleration voltage is 100 kV. is there.

ところで、電子顕微鏡の性能決定に重要な役割を果す上
記分解能は、理論的には次の式で表わされる。
By the way, the above-mentioned resolution which plays an important role in determining the performance of the electron microscope is theoretically expressed by the following equation.

δ=0.65 Cs1/4λ3/4……(1) ここで、 δ:分解能(mm) Cs:対物レンズの球面収差係数(mm) λ:加速電子線の波長(mm) である。δ = 0.65 Cs 1/4 λ 3/4 (1) where, δ: resolution (mm) Cs: spherical aberration coefficient of objective lens (mm) λ: wavelength of accelerating electron beam (mm).

この式からも明らかなように、固体のより忠実な原子構
造像を得るには、加速電圧を高くして電子線の波長λを
短くするか又は球面収差係数Csをより小さくする必要が
ある。現状においては、電子顕微鏡の最高の分解能は加
速電圧が1000kV(キロボルト)で得られており、このと
きの電子線の波長は、λ=8.7×10-3Å、球面収差は、C
s=2〜3mmである。
As is clear from this equation, in order to obtain a more faithful atomic structure image of the solid, it is necessary to increase the acceleration voltage to shorten the wavelength λ of the electron beam or to reduce the spherical aberration coefficient Cs. At present, the highest resolution of an electron microscope is obtained at an acceleration voltage of 1000 kV (kilovolts), the wavelength of the electron beam at this time is λ = 8.7 × 10 -3 Å, and spherical aberration is C
s = 2 to 3 mm.

ところが、電子線の波長λを小さくするには、電子線の
加速電圧を大幅に上昇させなければならず、これを達成
するためには製造コストが急激に上昇する恐れがある。
このため、1000kVの加速電圧を生じさせることのできる
高性能電子顕微鏡は全世界で年間1〜2台程度生産され
るに過ぎない。そこで、電子顕微鏡の分解能を経済的な
問題に左右されることなくより一層向上させるために
は、上記(1)式に基づき球面収差係数Csを小さくする
必要がある。そして球面収差を小さくするために最良の
措置は、対物レンズ9の上下側磁極16,17間距離を小さ
くし、試料保持装置20上の試料と磁極16,17との距離、
つまりワーキング・デイスタンスを短くすることであ
る。しかしながら、このような措置を行うとなると以下
の如き問題が新たに生じて来る。
However, in order to reduce the wavelength λ of the electron beam, the accelerating voltage of the electron beam has to be increased significantly, and in order to achieve this, the manufacturing cost may increase sharply.
Therefore, only one or two high-performance electron microscopes capable of producing an acceleration voltage of 1000 kV are produced worldwide every year. Therefore, in order to further improve the resolution of the electron microscope without being affected by economic problems, it is necessary to reduce the spherical aberration coefficient Cs based on the above equation (1). The best measure for reducing the spherical aberration is to reduce the distance between the upper and lower magnetic poles 16 and 17 of the objective lens 9 so that the distance between the sample on the sample holder 20 and the magnetic poles 16 and 17,
In other words, to shorten working distance. However, if such measures are taken, the following new problems will arise.

即ち、試料保持装置20の一構成要素である試料ホルダ15
は最小でも光軸方向の厚みが2mm以上に設定されている
ことである。この厚さは、試料ホルダ15上に、試料メツ
シユ及び試料を載置固定し、試料傾斜作動部材を組込
み、更にその上原子像レベルの分解能を出し得るに充分
な防振性を持たせるために不可欠のものである。そし
て、この試料ホルダ15は、交換棒により光軸6に対して
横方向から磁極間隙内に出し入れされる(いわゆるサイ
ドエントリー方式)から、対物レンズ9の磁極間隙は2m
m以下には出来ないことになる。このような事情によ
り、従来においては磁極間隙の最小値はほぼ2mmとし、
これよりも小さくするような対策は殆ど考慮されていな
かつた。したがつて対物レンズ9の球面収差係数につい
ても、磁極間隙を2mm以下にすればCs<1(mm)となる
ことがわかつていながら実現化されていなかつた。
That is, the sample holder 15 which is one component of the sample holding device 20.
Means that the thickness in the optical axis direction is set to 2 mm or more at the minimum. This thickness is set so that the sample mesh and the sample are mounted and fixed on the sample holder 15, the sample tilting operation member is incorporated, and further, the vibration damping property is sufficient to obtain the resolution of the atomic image level. It is indispensable. Since the sample holder 15 is moved into and out of the magnetic pole gap from the lateral direction with respect to the optical axis 6 by the exchange rod (so-called side entry method), the magnetic pole gap of the objective lens 9 is 2 m.
It can't be less than m. Due to such circumstances, the minimum value of the magnetic pole gap has been set to about 2 mm in the past,
Measures to make it smaller than this were hardly considered. Therefore, the spherical aberration coefficient of the objective lens 9 has not been realized, though it is known that Cs <1 (mm) when the magnetic pole gap is 2 mm or less.

なお、一つの解決策として、対物レンズ9磁極間隙を2m
m以下とし、この磁極間に上側磁極16又は下側磁極17の
中空孔7を通して試料を光軸6の方向に出し入れする
(いわゆるトツプエントリー方式)方法があるが、この
場合は磁極における穴径は少くとも5mm以上が実用上必
要である。このため、穴径の増大によつて逆に球面収差
が大きくなるという不具合が生じてしまう。
In addition, as one solution, the objective lens 9 magnetic pole gap is 2 m
There is a method in which the sample is taken in and out in the direction of the optical axis 6 through the hollow hole 7 of the upper magnetic pole 16 or the lower magnetic pole 17 between these magnetic poles (so-called top entry method). In this case, the hole diameter in the magnetic pole is At least 5 mm or more is practically necessary. For this reason, there arises a problem that the spherical aberration is increased as the hole diameter increases.

そして、この様な問題は透過型の電子線装置のみならず
走査型の電子線装置において分解能を向上させたいとい
う場合にも起る。
And such a problem occurs not only in the transmission type electron beam apparatus but also in the case where it is desired to improve the resolution in the scanning type electron beam apparatus.

本考案は、このような従来の問題点を一掃するためにな
されたもので、その目的は、試料メツシユ或は試料の保
持は充分に行え、且つ充分なる防振性を保有している
上、2mm以下の対物レンズ磁極間隙内に挿入、引出し可
能な試料保持装置を備えた電子線装置を提供することで
ある。
The present invention has been made in order to eliminate such a conventional problem, and an object thereof is to sufficiently hold a sample mesh or a sample and to have a sufficient vibration damping property. An object of the present invention is to provide an electron beam apparatus equipped with a sample holding device that can be inserted into and pulled out from an objective lens magnetic pole gap of 2 mm or less.

本考案の要旨は、試料ホルダにおいて、試料ホルダ装填
時に対物レンズ磁極の対向頂部間を横切る所定の区域の
厚みを、その他の区域の厚みよりも薄肉に成形し、当該
試料ホルダを狭い対物レンズ磁極間隙内に楽に挿脱出来
る様にした点にある。このような構成は、試料ホルダの
対物レンズ磁極に対応する部分に、磁極頂面径より充分
に大きな径を有する凹部が形成され、該凹部は試料ホル
ダの先端部に至るまで拡大した略U字形を形成し、試料
ホルダ先端から上記凹部にかけて所定の幅寸法を有する
薄肉部を形成することによつて実現される。この薄肉部
は例えば0.4〜0.5mm程度の厚さに設定されており、それ
以外の部分は、従来通り2mm或はこれ以上の厚さに設定
される。試料メツシユの厚さは0.1〜0.2mm程度であるか
ら、対物レンズ磁極間隙の寸法を2mmより小さく設定し
てあつても試料ホルダの挿脱は楽に行える。また、上記
薄肉部を設けたことによる強度或は防振性の低下等は、
当該薄肉部以外の部分の厚みを大きくとつておくことに
より、充分補うことが出来る。試料の傾斜は試料ホルダ
挿脱用の交換棒を回転させることにより行い得る。また
試料ホルダに所定の形状の開口を設け、この開口内に上
記凹部を穿設した板を傾斜回転可能に取付けて傾斜支持
体とする一方、この傾斜支持体を対物レンズ磁極間隙の
外方位置で試料傾斜部材に連結し、上記交換棒部分の回
転による傾斜とは異なる方向への傾斜を行えるようにす
ることもできる。なお試料ホルダが透過型の電子線装置
内で使用される場合は凹部底面には貫通孔が形成され、
この貫通孔部分に試料メツシユが配設される。
The gist of the present invention is that in a sample holder, when a sample holder is loaded, the thickness of a predetermined area that crosses between the opposing apexes of the objective lens magnetic pole is formed thinner than the thickness of the other area, and the sample holder has a narrow objective lens magnetic pole. The point is that it can be easily inserted into and removed from the gap. In such a structure, a concave portion having a diameter sufficiently larger than the magnetic pole top surface diameter is formed in a portion of the sample holder corresponding to the magnetic pole of the objective lens, and the concave portion is substantially U-shaped and extends to the tip of the sample holder. Is formed, and a thin portion having a predetermined width dimension is formed from the tip of the sample holder to the concave portion. The thin portion has a thickness of, for example, about 0.4 to 0.5 mm, and the other portions have a thickness of 2 mm or more as in the conventional case. Since the thickness of the sample mesh is about 0.1 to 0.2 mm, the sample holder can be easily inserted and removed even when the size of the objective lens magnetic pole gap is set to be smaller than 2 mm. In addition, the reduction in strength or vibration isolation due to the provision of the thin portion is
By making the thickness of the portion other than the thin-walled portion large, it can be sufficiently compensated. The sample can be tilted by rotating the exchange rod for inserting and removing the sample holder. Further, an opening of a predetermined shape is provided in the sample holder, and a plate having the above-mentioned recessed portion is mounted in the opening so as to be rotatable in an inclined manner to form an inclined support, while the inclined support is positioned outside the objective lens magnetic pole gap. It is also possible to connect to the sample inclining member by means of which the inclining can be performed in a direction different from the inclining by the rotation of the exchange rod part. When the sample holder is used in a transmission electron beam device, a through hole is formed in the bottom of the recess,
A sample mesh is arranged in this through hole portion.

以下、本考案の実施例を添付の図面を参照して詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第2図乃至第6図は本考案の第1の実施例を示す図であ
る。これは透過型の電子線装置への適用例を示すもの
で、この実施例に係る電子線装置の試料保持装置30は、
励磁コイル10の上板に取付けられた支持突起18と、支持
突起18の上に水平移動可能に設置された試料移動ステー
ジ31と試料移動ステージ31上に装填され且つ試料を支持
する試料ホルダ32とから成る。
2 to 6 are views showing a first embodiment of the present invention. This shows an application example to a transmission type electron beam apparatus, the sample holding device 30 of the electron beam apparatus according to this embodiment,
A support protrusion 18 attached to the upper plate of the exciting coil 10, a sample moving stage 31 installed horizontally on the support protrusion 18, and a sample holder 32 mounted on the sample moving stage 31 and supporting a sample. Consists of.

支持突起18は、テフロンその他の耐摩耗性に富んだ材料
から成り、試料移動ステージ31を滑動可能に支持してい
る。
The support protrusions 18 are made of Teflon or another material having high wear resistance, and slidably support the sample moving stage 31.

試料移動ステージ31は、対物レンズ9の下側磁極17を充
分に収容し得る寸法の内のりを有し上下方向に延びる内
腔33が形成されたステージ本体部34と、このステージ本
体部34に一体的に設けられ、且つ当該ステージ本体部34
の下端部にて外方に延びて下面が支持突起18に当接する
支持フランジ部35とから成る。この試料移動ステージ31
のステージ本体部34の内腔33の相対向する側面には、ス
テージ本体部34の上端から下方へ向けて次第に拡開する
断面形状を有し且つ光軸6に対して交差する方向に略平
行に延びる一対のアリ溝36が形成されている。また支持
フランジ35の一側面と鏡筒1の内側壁との間にはスプリ
ング37が介装される一方、支持フランジ35の反対側の側
面には、鏡筒1に装着されたネジ部材38に係合して進退
運動し、試料移動ステージ31及び試料を一方向(例えば
X軸方向)へ移動させるX駆動棒39が当接している。そ
して、これらスプリング37、ネジ部材38、X駆動棒39に
よつてX移動機構を形成している。このX移動機構とは
平面内で略90度の角度変位をもつて同様の作動を行うY
移動機構が組込まれている。このY移動機構は、支持フ
ランジ35の一側面と鏡筒1の内側壁との間に介装された
スプリング40と、支持フランジ35の反対側の側面に先端
が当接したY駆動棒42と、鏡筒1に装着され又上記Y駆
動棒をY軸方向へ進退移動させるネジ部材41とから成
る。また、図には示してないが、試料移動ステージ31を
試料ホルダ32と共に傾斜させる試料傾斜機構も取付けら
れている。
The sample moving stage 31 has a stage main body 34 having an inner cavity 33 having a size capable of sufficiently containing the lower magnetic pole 17 of the objective lens 9 and having an inner cavity 33 extending in the vertical direction, and the stage main body 34 integrated with the stage main body 34. And the stage main body 34
And a support flange portion 35 that extends outward at the lower end of the and has its lower surface abutting the support protrusion 18. This sample moving stage 31
The side faces of the inner cavity 33 of the stage body 34 that face each other have a cross-sectional shape that gradually expands downward from the upper end of the stage body 34 and are substantially parallel to the direction intersecting the optical axis 6. Is formed with a pair of dovetail grooves 36. A spring 37 is interposed between one side surface of the support flange 35 and the inner side wall of the lens barrel 1, and a screw member 38 attached to the lens barrel 1 is provided on the side surface on the opposite side of the support flange 35. The sample moving stage 31 and the X drive rod 39 that moves the sample in one direction (for example, the X-axis direction) are in contact with each other by engaging and moving back and forth. The spring 37, the screw member 38, and the X drive rod 39 form an X movement mechanism. This X movement mechanism performs the same operation with an angular displacement of approximately 90 degrees in the plane Y
A moving mechanism is incorporated. This Y moving mechanism includes a spring 40 interposed between one side surface of the support flange 35 and the inner wall of the lens barrel 1, and a Y drive rod 42 whose tip abuts on the opposite side surface of the support flange 35. , A screw member 41 mounted on the lens barrel 1 and moving the Y drive rod forward and backward in the Y-axis direction. Although not shown in the figure, a sample tilting mechanism for tilting the sample moving stage 31 together with the sample holder 32 is also attached.

試料ホルダ32は、矩形状の平面外形構造と頂面から底面
にかけて次第に拡開する台形状(第3図参照)の正面外
形構造を有する板状体から成る。試料ホルダ32の略中央
部には、頂面から下方へ凹部43が穿設される一方、底面
から上方へ向けて凹部44が穿設され、当該試料ホルダ32
の厚さ方向略中央部に薄肉部45、周辺部に剛性の大きな
フレーム部55を形成している。凹部43,44は試料ホルダ3
2の先端から奥行方向へ円形、その他所定の形状に穿設
され、それぞれ上側或は下側磁極16,17の頂面径よりも
充分に大きな径を有する。即ち凹部43,44は、試料ホル
ダ32の幅方向へも、奥行方向へも充分に大きな差し渡し
寸法を有しており、上下側磁極16,17の頂部が入つても
凹部43,44の内側面に突当ることはない。さらに、この
凹部43,44の略中央部分においては受部47を有する段付
構造の孔46が形成され、受部47上に試料メツシユ48が載
置されると共に、試料メツシユ48の上には当該試料メツ
シユ48押え用のリング49が設置される。そして、リング
49上には、通孔51とネジ挿通孔52とを開設した押え板50
が、通孔51と試料メツシユ48、孔46とが整合する様にし
て載置され、試料ホルダ32に設けられたネジ穴53に止め
ネジ54をねじ込むことにより、リング49を介して試料メ
ツシユ48を押圧固定する。試料ホルダ32は台形状の正面
外形構造を有するから、その両側には、アリ溝36に嵌合
するアリ部56が形成されている。また、試料ホルダ32の
後側面にはネジ穴57が形成されており、このネジ穴57に
は、鏡筒1に取付固定された試料交換室60に摺動可能に
支持され、且つ先端にネジ部59を有する試料交換棒58が
ねじ込まれるようになつている。
The sample holder 32 is composed of a plate-like body having a rectangular planar external structure and a trapezoidal front external structure (see FIG. 3) that gradually expands from the top surface to the bottom surface. A concave portion 43 is formed downward from the top surface in a substantially central portion of the sample holder 32, while a concave portion 44 is formed upward from the bottom surface.
A thin portion 45 is formed substantially at the center in the thickness direction, and a highly rigid frame portion 55 is formed at the peripheral portion. The recesses 43 and 44 are the sample holder 3
It is formed in a circular shape or other predetermined shape from the tip of 2 toward the depth direction, and has a diameter sufficiently larger than the top surface diameter of the upper or lower magnetic poles 16 and 17, respectively. That is, the recesses 43, 44 have a sufficiently large crossover dimension both in the width direction of the sample holder 32 and in the depth direction, and even if the tops of the upper and lower magnetic poles 16, 17 are inserted, the inner surfaces of the recesses 43, 44 are included. Never hit. Furthermore, a hole 46 having a stepped structure having a receiving portion 47 is formed in substantially the central portion of the recesses 43, 44, and the sample mesh 48 is placed on the receiving portion 47, and on the sample mesh 48. A ring 49 for holding the sample mesh 48 is installed. And the ring
A holding plate 50 having a through hole 51 and a screw insertion hole 52 is formed on the 49.
However, the through hole 51, the sample mesh 48, and the hole 46 are placed so that they are aligned with each other, and the set screw 54 is screwed into the screw hole 53 provided in the sample holder 32, so that the sample mesh 48 is inserted through the ring 49. Press and fix. Since the sample holder 32 has a trapezoidal front external structure, the dovetails 56 that fit into the dovetail grooves 36 are formed on both sides of the sample holder 32. A screw hole 57 is formed on the rear side surface of the sample holder 32. The screw hole 57 is slidably supported in a sample exchange chamber 60 mounted and fixed to the lens barrel 1 and has a screw at its tip. A sample exchange rod 58 having a portion 59 is adapted to be screwed in.

さらに、試料ホルダ32は2〜3mm(ミリメートル)の厚
さ寸法を有している。そして一例として薄肉部45は0.4
〜0.5mmに設定され、当該薄肉部45の上面から受部47ま
では約0.2mmの段が付けられている。試料メツシユ48は
0.05〜0.2mmの厚さ寸法を有しリング49は直径が約0.2mm
に設定される。このため、受部47上に試料メツシユ48、
リング49を設置したとき、リング49の上縁は0.05〜0.2m
mだけ薄肉部45の上面から突出するから、この突出部に
押え板50を当てて上記試料メツシユ48を押え固定する。
なお、第4図中、符号61は試料交換室60内を真空排気す
る真空ポンプである。
Further, the sample holder 32 has a thickness dimension of 2-3 mm (millimeter). And as an example, the thin part 45 is 0.4
The thickness is set to 0.5 mm, and a step of about 0.2 mm is provided from the upper surface of the thin portion 45 to the receiving portion 47. Sample mesh 48
Ring 49 has a thickness of 0.05-0.2 mm and a diameter of about 0.2 mm.
Is set to. Therefore, the sample mesh 48,
When the ring 49 is installed, the upper edge of the ring 49 is 0.05 to 0.2m.
Since it protrudes from the upper surface of the thin portion 45 by m, a pressing plate 50 is applied to this protruding portion to press and fix the sample mesh 48.
In FIG. 4, reference numeral 61 is a vacuum pump that evacuates the inside of the sample exchange chamber 60.

このような構成を有する試料保持装置30において、試料
ホルダ(観察用の試料が支持されているものとする)32
を観察位置にセツトするには、この試料ホルダ32に試料
交換棒58を螺合し、試料ホルダ32を鏡筒1の側筒部から
磁極間隙へ向け光軸6に直交する方向へ挿入する。試料
ホルダ32の先端部には薄肉部45が設けられているから、
当該試料ホルダ32の磁極間隙内に入る部分は、薄肉部4
5、及び受部47に装填された試料メツシユ48及び試料を
合わせても1mm足らずの厚さしかない。したがつて試料
ホルダ32は上記極小寸法に設定された磁極間隙に充分に
挿入させることが可能であり、これによつて試料メツシ
ユ48の中心を光軸に合わせることができる。そして試料
ホルダ32を所定位置まで挿入すると、試料ホルダ32のア
リ部56は試料移動ステージ31のアリ溝36に嵌合し、試料
ホルダ32をしつかりと支持する。この状態でX或はY移
動機構を操作すれば試料の平面移動が行なえ、試料傾斜
機構を操作すれば試料傾斜が可能である。
In the sample holding device 30 having such a structure, a sample holder (assuming a sample for observation is supported) 32
To set to the observation position, a sample exchange rod 58 is screwed into the sample holder 32, and the sample holder 32 is inserted from the side cylinder portion of the lens barrel 1 toward the magnetic pole gap in a direction orthogonal to the optical axis 6. Since the thin portion 45 is provided at the tip of the sample holder 32,
The thin-walled portion 4 is the portion that enters the magnetic pole gap of the sample holder 32.
5, and the total thickness of the sample mesh 48 and the sample loaded in the receiving part 47 is less than 1 mm. Therefore, the sample holder 32 can be sufficiently inserted into the magnetic pole gap set to the above-mentioned minimum size, whereby the center of the sample mesh 48 can be aligned with the optical axis. Then, when the sample holder 32 is inserted to a predetermined position, the dovetail portion 56 of the sample holder 32 fits into the dovetail groove 36 of the sample moving stage 31, and firmly supports the sample holder 32. In this state, if the X or Y moving mechanism is operated, the sample can be moved in a plane, and if the sample tilting mechanism is operated, the sample can be tilted.

いま、上下側磁極16,17における中空孔7の穴径を0.7m
m、最小磁極間隙寸法dを1.3mm、磁極頂面径を2mm、磁
極頂角60°の対物レンズにおいて、加速電圧100kVで試
料の観察を行つたところ、球面収差係数Csは約0.3mmと
なつた。また、この状態において対物絞りを駆動した明
視野像、暗視野像、電子回折像は、従来の対物レンズに
おけると同様の容易さで得られた。このことから、電子
線の加速電圧を上昇させることなく、解像度の良い原子
構造像が得られることがわかる。なお、試料の観察視野
を変えたいときは、ネジ部材38,41を回転させることに
より試料移動ステージ31を水平移動させて行う。このと
き、凹部43は対物レンズ磁極面の径より充分に大きな径
(つまり差し渡し寸法)に開設してあるから、フレーム
部55が上下側磁極16,17に干渉することなく、試料の移
動を行わせることができる。
Now, the hole diameter of the hollow hole 7 in the upper and lower magnetic poles 16 and 17 is 0.7 m.
m, the minimum magnetic pole gap dimension d is 1.3 mm, the magnetic pole top surface diameter is 2 mm, and the magnetic pole apex angle is 60 °. When observing the sample at an acceleration voltage of 100 kV, the spherical aberration coefficient Cs is about 0.3 mm. It was Further, in this state, the bright field image, the dark field image, and the electron diffraction image in which the objective diaphragm was driven were obtained with the same ease as in the conventional objective lens. From this, it can be seen that an atomic structure image with good resolution can be obtained without increasing the acceleration voltage of the electron beam. When changing the observation field of view of the sample, the sample moving stage 31 is horizontally moved by rotating the screw members 38 and 41. At this time, since the concave portion 43 is formed with a diameter (that is, a passing dimension) sufficiently larger than the diameter of the magnetic pole surface of the objective lens, the frame portion 55 moves the sample without interfering with the upper and lower magnetic poles 16 and 17. Can be made.

なお、この実施例において、試料ホルダ32の先端は薄肉
部45となつているが、孔46よりも先端側は完全に切り落
して孔46の部分から薄肉部が始まるようにすることもで
きる。
In this embodiment, the tip of the sample holder 32 is the thin portion 45. However, the tip side of the hole 46 may be completely cut off so that the thin portion starts from the hole 46.

また、試料ホルダ32に凹部43,44を穿設する理由は、当
該試料ホルダ32の剛性を損うことなく狭い磁極間隙内に
挿入出来るよう薄肉部45を設ける点にある。したがつ
て、凹部は試料ホルダ32上面からのみ穿設されても、或
は試料ホルダ32下面からのみ穿設されてもよい。
The reason for forming the recesses 43, 44 in the sample holder 32 is that the thin wall portion 45 is provided so that the sample holder 32 can be inserted into a narrow magnetic pole gap without impairing the rigidity of the sample holder 32. Therefore, the recess may be formed only from the upper surface of the sample holder 32 or only from the lower surface of the sample holder 32.

更にまた、上記実施においては、透過型の電子線装置の
対物レンズ磁極ギヤツプ間に試料を挿入保持するための
試料保持装置30について説明して来たが、走査型電子顕
微鏡においても分解能を向上させるために対物レンズ磁
極間隙内に試料を挿入することがある。このような場合
においても本考案を有効に適用することができる。第7
図は、かかる走査型電子線装置へ適用することのできる
試料ホルダ60を示す図である。この試料ホルダ60は、電
子線透過用の孔が開設されておらず、試料メツシユ等の
部材を取付けるようになつていない点が上記第1の実施
例における試料ホルダ32と異なるのみで、その他の構成
及び技術的な狙いは上記第1の実施例と同様である。
Furthermore, in the above embodiment, the sample holding device 30 for inserting and holding the sample between the objective lens magnetic pole gears of the transmission electron beam device has been described, but the resolution is improved even in the scanning electron microscope. Therefore, the sample may be inserted into the magnetic pole gap of the objective lens. Even in such a case, the present invention can be effectively applied. 7th
The figure shows a sample holder 60 that can be applied to such a scanning electron beam apparatus. This sample holder 60 is different from the sample holder 32 in the first embodiment in that it does not have a hole for electron beam transmission and is not equipped with a member such as a sample mesh. The structure and technical aim are the same as those in the first embodiment.

以上説明したように、本考案によれば、試料ホルダに対
物レンズ磁極の頂面径よりも充分に大きな径を有する凹
部が形成され、該凹部は試料ホルダの先端部に至るまで
拡大した略U字形を形成し、この凹部内に試料を載置す
るようにした電子線装置の試料保持装置としたため、対
物レンズ磁極間隙を大幅に小さく設定してもスムーズに
試料の挿脱及び移動、傾斜が出来るようになり、当該電
子線装置の分解能を向上させることが可能になる。ま
た、試料移動、試料傾斜に際しても試料ホルダのフレー
ム部が対物レンズ磁極に干渉することはなく、最大限の
試料の移動、傾斜を行うことができる等、種々の効果が
得られる。
As described above, according to the present invention, the sample holder is formed with the concave portion having a diameter sufficiently larger than the top surface diameter of the objective lens magnetic pole, and the concave portion is expanded to the tip portion of the sample holder and is substantially U-shaped. Since the sample holding device of the electron beam device is formed in the shape of a letter and the sample is placed in this recess, the sample can be smoothly inserted / removed, moved, and tilted even if the magnetic pole gap of the objective lens is set to be significantly small. As a result, the resolution of the electron beam apparatus can be improved. In addition, even when the sample is moved or tilted, the frame portion of the sample holder does not interfere with the magnetic pole of the objective lens, and various effects such as maximum sample movement and tilting can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、従来からの電子顕微鏡の一般的な構造例を示
す断面図、第2図は、本考案の第1の実施例に係る電子
線装置に用いられる試料ホルダを示す斜視図、第3図
は、上記第1の実施例における試料ホルダを対物レンズ
磁極間隙に設置した状態を示す断面図、第4図は第1の
実施例に係る試料ホルダの対物レンズ磁極間隙への設置
状態を示す第3図中IV−IV線における断面図、第5図は
第1の実施例に係る試料ホルダへの試料メツシユ等の取
付状態を示す第2図中V−V線における断面図、第6図
は試料メツシユの固定状態を示す第5図中VIの部分の拡
大図、第7図は本考案の第2の実施例に係る電子線装置
に用いられる試料ホルダを示す斜視図である。 1…鏡筒、2…観察室 3…電子銃、5…集束レンズ 6…電子線軸(光軸)、8,10…励磁コイル 9,25…対物レンズ、11…中間レンズ 12…投影レンズ、15…試料ホルダ 16…上側磁極、17…下側磁極 19,31…試料移動ステージ 20,30…試料保持装置、32…試料ホルダ 43,44…凹部、58…試料交換棒
FIG. 1 is a sectional view showing a general structure example of a conventional electron microscope, and FIG. 2 is a perspective view showing a sample holder used in an electron beam apparatus according to a first embodiment of the present invention. FIG. 3 is a sectional view showing a state where the sample holder in the first embodiment is installed in the objective lens magnetic pole gap, and FIG. 4 shows a state in which the sample holder according to the first embodiment is installed in the objective lens magnetic pole gap. 3 is a cross-sectional view taken along line IV-IV in FIG. 3, FIG. 5 is a cross-sectional view taken along line VV in FIG. 2, showing a mounting state of a sample mesh or the like on the sample holder according to the first embodiment. 5 is an enlarged view of a portion VI in FIG. 5 showing a fixed state of the sample mesh, and FIG. 7 is a perspective view showing a sample holder used in the electron beam apparatus according to the second embodiment of the present invention. 1 ... Lens barrel, 2 ... Observation room, 3 ... Electron gun, 5 ... Focusing lens, 6 ... Electron beam axis (optical axis), 8, 10 ... Excitation coil 9,25 ... Objective lens, 11 ... Intermediate lens, 12 ... Projection lens, 15 … Sample holder 16… Upper magnetic pole, 17… Lower magnetic pole 19, 31… Sample moving stage 20, 30… Sample holder, 32… Sample holder 43, 44… Recess, 58… Sample exchange rod

フロントページの続き (56)参考文献 特開 昭58−26439(JP,A) 特開 昭56−22039(JP,A) 西独国特許958584(DE,C)Continuation of the front page (56) References JP-A-58-26439 (JP, A) JP-A-56-22039 (JP, A) West German patent 958584 (DE, C)

Claims (7)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】上側磁極と、この上側磁極から所定の間隔
をあけて配置された下側磁極とを有する対物レンズと、
該対物レンズの磁極近傍に設けられた試料移動ステージ
と、前記対物レンズの電子線軸に対して交差する方向か
ら試料交換棒によって、前記両磁極と接触せずに試料移
動ステージ上に挿入設置される試料保持用の試料ホルダ
とを備えた電子線装置において、前記試料ホルダの略中
央部には、前記対物レンズ磁極の頂面径よりも充分に大
きな径を有する凹部が形成され、該凹部は試料ホルダの
先端部に至るまで拡大した、略U字形を形成したことを
特徴とする電子線装置。
1. An objective lens having an upper magnetic pole and a lower magnetic pole arranged at a predetermined distance from the upper magnetic pole,
A sample moving stage provided in the vicinity of the magnetic pole of the objective lens and a sample exchange rod from a direction intersecting the electron beam axis of the objective lens are inserted and installed on the sample moving stage without coming into contact with the both magnetic poles. In an electron beam apparatus provided with a sample holder for holding a sample, a concave portion having a diameter sufficiently larger than a top surface diameter of the objective lens magnetic pole is formed at a substantially central portion of the sample holder, and the concave portion is a sample. An electron beam apparatus having a substantially U-shape that extends to the tip of the holder.
【請求項2】凹部は試料ホルダの上側から下方へ穿設さ
れ、この凹部内に試料が載置されることを特徴とする実
用新案登録請求の範囲第1項記載の電子線装置。
2. An electron beam apparatus according to claim 1, wherein the recess is formed from the upper side of the sample holder to the lower side, and the sample is placed in the recess.
【請求項3】凹部は試料ホルダの下側から上方に穿設さ
れることを特徴とする実用新案登録請求の範囲第1項記
載の電子線装置。
3. The electron beam apparatus according to claim 1, wherein the recess is formed from the lower side to the upper side of the sample holder.
【請求項4】凹部は試料ホルダの上側及び下側から穿設
されることを特徴とする実用新案登録請求の範囲第1項
記載の電子線装置。
4. The electron beam apparatus according to claim 1, wherein the recesses are formed from the upper side and the lower side of the sample holder.
【請求項5】凹部底面には孔が貫通して形成されている
ことを特徴とする実用新案登録請求の範囲第1項乃至第
4項のいずれかに記載の電子線装置。
5. The electron beam apparatus according to any one of claims 1 to 4, wherein a hole is formed so as to penetrate the bottom surface of the recess.
【請求項6】対物レンズの磁極間隙の寸法は2ミリメー
トル以下に設定されていることを特徴とする実用新案登
録請求の範囲第1項乃至第5項のいずれかに記載の電子
線装置。
6. The electron beam apparatus according to claim 1, wherein the size of the magnetic pole gap of the objective lens is set to 2 mm or less.
【請求項7】凹部の底は厚さが1ミリメートル以下の薄
肉部によって構成される一方、凹部以外の部位には2ミ
リメートル以上の厚さ寸法を有するフレーム部が形成さ
れていることを特徴とする実用新案登録請求の範囲第1
項乃至第6項のいずれかに記載の電子線装置。
7. The bottom of the recess is composed of a thin portion having a thickness of 1 mm or less, and a frame portion having a thickness dimension of 2 mm or more is formed in a portion other than the recess. Request for utility model registration No. 1
Item 7. The electron beam apparatus according to any one of Items 6 to 6.
JP1983151478U 1983-09-30 1983-09-30 Electron beam equipment Expired - Lifetime JPH0713163Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983151478U JPH0713163Y2 (en) 1983-09-30 1983-09-30 Electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983151478U JPH0713163Y2 (en) 1983-09-30 1983-09-30 Electron beam equipment

Publications (2)

Publication Number Publication Date
JPS6059457U JPS6059457U (en) 1985-04-25
JPH0713163Y2 true JPH0713163Y2 (en) 1995-03-29

Family

ID=30335664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983151478U Expired - Lifetime JPH0713163Y2 (en) 1983-09-30 1983-09-30 Electron beam equipment

Country Status (1)

Country Link
JP (1) JPH0713163Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE958584C (en) 1944-09-06 1957-02-21 Manfred Von Ardenne Electron microscope with exchangeable pole shoe insert body transversely to the beam direction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923418B2 (en) * 1979-07-28 1984-06-01 日本電子株式会社 Sample equipment for electron microscopes, etc.
JPS5826439A (en) * 1981-08-11 1983-02-16 Internatl Precision Inc Objective lens of electron beam apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE958584C (en) 1944-09-06 1957-02-21 Manfred Von Ardenne Electron microscope with exchangeable pole shoe insert body transversely to the beam direction

Also Published As

Publication number Publication date
JPS6059457U (en) 1985-04-25

Similar Documents

Publication Publication Date Title
US4596934A (en) Electron beam apparatus with improved specimen holder
US6600156B2 (en) Scanning electron microscope
JPH0713163Y2 (en) Electron beam equipment
US4458151A (en) Electron microscope of a scanning type
JP2001338599A (en) Charged particle beam device
US20170138983A1 (en) Head-integrated atomic force microscope and composite microscope including same
US4866280A (en) Objective lens of an electron beam apparatus
JPS6029186B2 (en) electronic microscope
US4194116A (en) Electron microscope or the like and method of use
GB2118361A (en) Scanning electron beam apparatus
JPS643168Y2 (en)
JP5255531B2 (en) Sample holder for charged particle beam equipment
JPS6217723A (en) Sample carrier for scan type microscope
US20060139747A1 (en) Microscope
US4121100A (en) Electron microscope
JP2002150984A (en) Sample holder
GB2161019A (en) Electron microscope with interchangeable lenses
JPH0534769B2 (en)
JP2005294181A (en) Bulk sample holder
GB2038546A (en) Combined electron and optical microscope arrangement
SU1262593A1 (en) Electron examination microscope
JPS6338824B2 (en)
JPS5826439A (en) Objective lens of electron beam apparatus
JP6796541B2 (en) Holder and charged particle beam device
JPS6328518Y2 (en)