JPH0534769B2 - - Google Patents

Info

Publication number
JPH0534769B2
JPH0534769B2 JP63335202A JP33520288A JPH0534769B2 JP H0534769 B2 JPH0534769 B2 JP H0534769B2 JP 63335202 A JP63335202 A JP 63335202A JP 33520288 A JP33520288 A JP 33520288A JP H0534769 B2 JPH0534769 B2 JP H0534769B2
Authority
JP
Japan
Prior art keywords
sample
magnetic pole
electron beam
objective lens
sample holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63335202A
Other languages
Japanese (ja)
Other versions
JPH01236566A (en
Inventor
Takashi Yanaka
Kazuo Oosawa
Kosuke Kyogoku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP33520288A priority Critical patent/JPH01236566A/en
Publication of JPH01236566A publication Critical patent/JPH01236566A/en
Publication of JPH0534769B2 publication Critical patent/JPH0534769B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子線装置の試料保持装置を改良
して、狭い磁極間〓においても、試料を載置かつ
傾斜できるようにした、電子線装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an electron beam device that improves the sample holding device of an electron beam device so that the sample can be placed and tilted even in a narrow space between magnetic poles. Regarding equipment.

〔従来の技術〕[Conventional technology]

従来の電子線装置の一例として特に透過型電子
顕微鏡を挙げると、その構造例としては、一般的
に第1図に示すようなものがある。これは、電子
銃3と、集束レンズ5とを内蔵し、集束レンズ5
の下方に励慈コイル8,10を備えた対物レンズ
9を配置し、さらにその下方に中間レンズ11と
投影レンズ12とを備えた顕微鏡本体1及び顕微
鏡本体1の下方に配置され且つ当該顕微鏡本体1
に固定されると共に内部に投影スクリーン14を
配置した中空の室を13を形成する観察室2から
成つている。顕微鏡本体1の中央部分には電子銃
3から発射された電子線の軸(以下、光軸とい
う)6に沿つて長手方向に延びる中空孔7が形成
されている。対物レンズ9は励磁コイル8によつ
て励磁される上側磁極16と、この上側磁石16
から下方へ所定の間隔をあけて配置され、励磁コ
イル10によつて励磁される下側磁極17とを有
し、上側磁極16と下側磁極17との間には試料
保持装置20が挿入、引出し可能に配置される。
Taking a transmission electron microscope as an example of a conventional electron beam device, an example of its structure is generally as shown in FIG. This has a built-in electron gun 3 and a focusing lens 5.
A microscope body 1 is provided with an objective lens 9 provided with excitation coils 8 and 10 below the objective lens, and an intermediate lens 11 and a projection lens 12 are provided below the objective lens 9. 1
It consists of an observation chamber 2 which forms a hollow chamber 13, which is fixed to the inside and has a projection screen 14 arranged therein. A hollow hole 7 is formed in the center of the microscope body 1 and extends in the longitudinal direction along an axis 6 of an electron beam emitted from an electron gun 3 (hereinafter referred to as an optical axis). The objective lens 9 includes an upper magnetic pole 16 that is excited by an excitation coil 8, and an upper magnetic pole 16 that is excited by an excitation coil 8.
A lower magnetic pole 17 is arranged downwardly at a predetermined interval and is excited by an excitation coil 10, and a sample holding device 20 is inserted between the upper magnetic pole 16 and the lower magnetic pole 17. Arranged so that it can be pulled out.

このような構成を有する透過型電子顕微鏡は、
その性能が年々向上し、分解能は固体試料の原子
的構造を結像するレベルまで向上して来ており、
一般には高性能電子顕微鏡と言われている。この
高性能電子顕微鏡では、対物レンズ9の収差係数
は極限にまで小さくされ、その値は、電子線の加
速電圧が100kVの電子顕微鏡では球面収差係数
CS、色収差係数CCともに1mm(ミリメートル)
程度である。
A transmission electron microscope with such a configuration is
Its performance has improved year by year, and its resolution has improved to the level where it can image the atomic structure of solid samples.
It is generally referred to as a high-performance electron microscope. In this high-performance electron microscope, the aberration coefficient of the objective lens 9 is minimized, and its value is the same as the spherical aberration coefficient in an electron microscope with an electron beam acceleration voltage of 100 kV.
C S and chromatic aberration coefficient C C are both 1 mm (millimeters)
That's about it.

ところで、電子顕微鏡の性能決定に重要な役割
を果す上記分解能は、理論的には次の式で表され
る。
By the way, the above-mentioned resolution, which plays an important role in determining the performance of an electron microscope, is theoretically expressed by the following equation.

δ=0.65CS 1/4λ3/4 ……(1) ここで、 δ:分解能(mm) CS:対物レンズの球面収差係数(mm) λ:加速電子線の波長(mm) である。 δ=0.65C S 1/4 λ 3/4 ...(1) Here, δ: Resolution (mm) C S : Spherical aberration coefficient of objective lens (mm) λ: Wavelength of accelerated electron beam (mm) .

この式からも明らかなように、固定のより忠実
な原子構造像を得るには、加速電圧を高くして電
子線の波長λを短くするか又は球面収差係数CS
より小さくする必要がある。現状においては、電
子顕微鏡の最高の分解能は加速電圧が1000kV(キ
ロボルト)で得られており、このときの電子線の
波長は、λ=8.7×10-3Å、球面収差は、CS=2
〜3mmである。
As is clear from this equation, in order to obtain a fixed and more faithful atomic structure image, it is necessary to increase the accelerating voltage and shorten the wavelength λ of the electron beam, or to make the spherical aberration coefficient C S smaller. . Currently, the highest resolution of an electron microscope is obtained at an accelerating voltage of 1000 kV (kilovolts), the wavelength of the electron beam at this time is λ = 8.7 × 10 -3 Å, and the spherical aberration is C S = 2.
~3mm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、電子線の波長λを小さくするには、
電子線の加速電圧を大幅に上昇させなければなら
ず、これを達成するためには製造コストが急激に
上昇する恐れがある。このため、1000kVの加速
電圧を生じさせることのできる高性能電子顕微鏡
は全世界で年間1〜2台程度生産されるに過ぎな
い。そこで、電子顕微鏡の分解能を経済的な問題
に左右されることなくより一層向上させるために
は、上記(1)式に基づき、球面収差CSを小さくする
必要がある。そして球面収差を小さくするために
最良の措置は、対物レンズ9の上下側磁極16,
17間距離を小さくし、試料保持装置20上の試
料と磁極16,17との距離、つまりワーキン
グ・デイスタンスを短くすることである。しかし
ながらこのような措置を行うと、以下の如き問題
が新たに生じて来る。
However, in order to reduce the wavelength λ of the electron beam,
The acceleration voltage of the electron beam must be significantly increased, and in order to achieve this, there is a risk that manufacturing costs will rise sharply. For this reason, only about one or two high-performance electron microscopes capable of generating an accelerating voltage of 1000 kV are produced worldwide each year. Therefore, in order to further improve the resolution of an electron microscope without being influenced by economical problems, it is necessary to reduce the spherical aberration C S based on the above equation (1). The best measure to reduce spherical aberration is to use the upper and lower magnetic poles 16 of the objective lens 9,
17 to shorten the distance between the sample on the sample holding device 20 and the magnetic poles 16 and 17, that is, the working distance. However, when such measures are taken, the following new problems arise.

即ち試料保持装置20の試料保持部は、最小で
も光軸方向の厚みが2mm以上に設定されているこ
とである。この厚さは試料保持部に試料メツシユ
を載置固定し、試料傾斜作動部材を組込み、更に
その上原子像レベルの分解能を出し得るに十分な
防振性を持たせるために不可欠のものである。そ
して試料保持装置20は、光軸6に対して横方向
から磁極間隙内に出し入れされる(いわゆるサイ
ドエントリ方式)から、対物レンズ9の磁極間隙
2mm以下には出来ないことになる。このような事
情により、従来においては磁極間隙の最小値はほ
ぼ2mmとし、これよりも小さくするような対策は
殆ど考慮されていなかつた。従つて対物レンズ9
の球面収差についても、磁極間隙を2mm以下にす
ればCS<1(mm)となることが分つていながら実
現化されていなかつた。
That is, the sample holding portion of the sample holding device 20 is set to have a minimum thickness of 2 mm or more in the optical axis direction. This thickness is essential for mounting and fixing the sample mesh on the sample holder, incorporating the sample tilting member, and providing sufficient vibration isolation to achieve resolution at the atomic image level. . Since the sample holding device 20 is moved in and out of the magnetic pole gap from the direction transverse to the optical axis 6 (so-called side entry method), it is impossible to reduce the magnetic pole gap of the objective lens 9 to less than 2 mm. Due to these circumstances, conventionally the minimum value of the magnetic pole gap has been set to approximately 2 mm, and little consideration has been given to measures to make it smaller than this. Therefore, objective lens 9
Regarding spherical aberration, it has been known that if the magnetic pole gap is set to 2 mm or less, C S <1 (mm), but this has not been realized.

なお一つの解決策として、対物レンズ9の磁極
間隙を2mm以下とし、この磁極間に上側磁極16
又は下側磁極17の中空孔7を通して試料を光軸
6の方向に出入する(いわゆるトツプエントリ方
式)方法があるが、この場合は磁極における中空
孔7の径は、少なくとも5mm以上が実用上必要で
ある。このため逆に球面収差が大きくなるという
不具合が生じてしまう。
As one solution, the gap between the magnetic poles of the objective lens 9 is set to 2 mm or less, and the upper magnetic pole 16 is placed between the magnetic poles.
Alternatively, there is a method in which the sample is moved in and out in the direction of the optical axis 6 through the hollow hole 7 of the lower magnetic pole 17 (so-called top entry method), but in this case, the diameter of the hollow hole 7 in the magnetic pole must be at least 5 mm for practical purposes. It is. Therefore, a problem arises in that spherical aberration increases.

この発明は、このような従来の課題に着目して
なされたもので、その目的は2mm以下の対物レン
ズ磁極間〓内において、試料を最大限傾斜させ得
る試料保持部及び試料傾斜部材を有する、試料保
持装置を備えた電子線装置を提供することであ
る。
The present invention has been made with attention to such conventional problems, and its purpose is to have a sample holding part and a sample tilting member that can tilt the sample to the maximum extent within the distance between the objective lens magnetic poles of 2 mm or less. An object of the present invention is to provide an electron beam device equipped with a sample holding device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の課題を解決するための手段と
して、その構成を、截頭円錐状の上側磁極と、該
上側磁極から所定の間〓をあけて設けられた截頭
円錐状の下側磁極とを有する対物レンズと、該対
物レンズの磁極間〓内に配置する試料保持装置と
を備えた電子線装置において、前記試料保持装置
は、軸心を中心に回転可能に構成した保持棒と、
該保持棒の先端に一体的に設けられ中央部に収納
開口部を有し耐振性を有する充分な厚みを備えた
枠体からなり該枠体の先端に電子線装置本体の側
壁部に設けた受け部に回転可能に当接するための
当接部を有する試料保持部と、該試料保持部の前
記収納開口部内に配置され前記軸心と直交する方
向を軸として傾斜可能に前記試料保持部に保持さ
れる傾斜支持台と、試料を載置する試料メツシユ
を挿入するため前記傾斜支持台に設けられた穴部
とからなり、前記傾斜支持台は、該傾斜支持台の
傾斜に前記磁極が干渉しないように少なくとも該
磁極の頂面径よりも充分に広い領域において前記
試料及び前記試料メツシユを含めた全体の厚みを
前記磁極間〓より充分薄く構成することとした。
As a means for solving the above problems, the present invention has a configuration including a frustoconical upper magnetic pole and a frustoconical lower magnetic pole provided at a predetermined distance from the upper magnetic pole. and a sample holding device disposed between the magnetic poles of the objective lens, wherein the sample holding device includes a holding rod configured to be rotatable around an axis;
The frame body is integrally provided at the tip of the holding rod, has a storage opening in the center, has sufficient thickness to be vibration resistant, and is attached to the side wall of the electron beam device body at the tip of the frame. a sample holder having a contact part for rotatably abutting on the receiving part; and a sample holder arranged in the storage opening of the sample holder and tiltable about a direction perpendicular to the axis. It consists of an inclined support stand to be held, and a hole provided in the inclined support stand for inserting a sample mesh on which the sample is placed, and the inclined support stand is arranged such that the magnetic pole interferes with the inclination of the inclined support stand. In order to prevent this, the overall thickness including the sample and the sample mesh is made to be sufficiently thinner than the distance between the magnetic poles, at least in a region sufficiently wider than the top surface diameter of the magnetic poles.

〔作用〕[Effect]

次に本発明の作用を説明する。試料保持装置全
体を傾斜可能とし、また傾斜支持台の傾斜により
これに直交する第2の方向に傾斜可能としたの
で、試料メツシユに載置された試料を直交する2
方向に傾斜させることができる。また、耐振性を
有する充分な厚みを備えた試料保持部の先端に設
けた当接部で、側壁の受け部に当接させたので、
充分な防振性を持たせることができる。さらに、
試料支持台の傾斜に磁極が干渉しないように、少
なくとも磁極頂面径よりも充分に広い領域にわた
り試料及び試料メツシユを含めた全体の厚みを前
記磁極間〓より充分薄くしたので、試料を2方向
に傾斜させる角度を広い範囲の角度とすることが
できる。
Next, the operation of the present invention will be explained. The entire sample holding device can be tilted, and by tilting the tilting support base, it can be tilted in a second direction orthogonal to this, so that the sample placed on the sample mesh can be
It can be tilted in any direction. In addition, the abutment part provided at the tip of the sample holder, which has sufficient thickness to provide vibration resistance, makes contact with the receiving part on the side wall.
It can provide sufficient vibration isolation. moreover,
In order to prevent the magnetic poles from interfering with the inclination of the sample support stand, the overall thickness of the sample and sample mesh was made sufficiently thinner than the distance between the magnetic poles over an area sufficiently wider than the diameter of the top surface of the magnetic pole, so that the sample could be moved in two directions. The angle of inclination can be set over a wide range of angles.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below based on the drawings.

第3図は本発明の概念を説明する図であり、試
料保持装置20は、上側磁極16と上側磁極16
から所定の間隙をあけて設けられた下側磁極17
とを有する対物レンズ9の磁極間隙内に設けら
れ、また試料ホルダ15に試料保持部22を有し
ている。そして試料ホルダ15の試料保持部22
の略中央部には、対物レンズの磁極16,17の
磁極頂面径よりも充分に大きな開口を有する穴2
3があけられて、穴23の内側壁から穴23の内
方に張り出した棚部25が設けられており、棚部
25に、試料を載置する試料メツシユ29が配置
固定されている。
FIG. 3 is a diagram explaining the concept of the present invention, in which the sample holding device 20 includes an upper magnetic pole 16 and an upper magnetic pole 16.
The lower magnetic pole 17 is provided with a predetermined gap from the lower magnetic pole 17.
The sample holder 15 is provided within the magnetic pole gap of the objective lens 9, and the sample holder 15 has a sample holder 22. And the sample holding part 22 of the sample holder 15
A hole 2 having an opening sufficiently larger than the diameter of the top surface of the magnetic poles 16 and 17 of the objective lens is located approximately in the center of the objective lens.
3 is bored and a shelf 25 is provided that projects from the inner wall of the hole 23 inwardly, and a sample mesh 29 on which a sample is placed is arranged and fixed on the shelf 25.

上記の説明において、棚部25は例えば0.5mm
程度の厚さに設定されており、それ以外の部分は
従来通り2mm或はこれ以上の厚さに設定される。
試料メツシユの厚さは0.2mm程度であるから、対
物レンズ磁極間隙の寸法を2mmより小さく設定し
てあつても試料保持装置の挿脱は楽に行える。ま
た、上記薄肉部を設けたことによる強度或は防振
性の低下等は、当該薄肉部以外の部分の厚みを大
きくとつておくことにより、充分補うことが出来
る。試料の傾斜は試料保持装置の保持棒部分を回
転させることにより行い得る。また試料保持部に
所定の形状の開口を設け、この開口内に上記穴を
あけた板を傾斜回転可能に取付けて傾斜支持体と
する一方、この傾斜支持体を対物レンズ磁極間隙
の外方位置で試料傾斜部材に連結し、上記保持棒
部分の回転による傾斜とは異なる方向への傾斜を
行えるようにすることもできる。
In the above explanation, the shelf portion 25 is, for example, 0.5 mm
The thickness of the other parts is set to about 2 mm or more as before.
Since the thickness of the sample mesh is about 0.2 mm, the sample holder can be easily inserted and removed even if the objective lens magnetic pole gap is set smaller than 2 mm. Further, the reduction in strength or vibration damping properties due to the provision of the thin wall portion can be sufficiently compensated for by increasing the thickness of the portion other than the thin wall portion. The sample can be tilted by rotating the holding rod portion of the sample holding device. In addition, an opening of a predetermined shape is provided in the sample holder, and the plate with the above-mentioned hole is installed in this opening so as to be tiltable and rotatable to form an inclined support, and this inclined support is positioned outside the objective lens magnetic pole gap. It is also possible to connect the holding rod portion to the sample tilting member so that the holding rod portion can be tilted in a direction different from the tilting caused by rotation of the holding rod portion.

以下本発明の概念を、第2図によつて具体的に
説明すると、この実施例に係る電子線装置の試料
保持装置20は、試料ホルダ15と、試料ホルダ
15上に載置される試料メツシユ29と、試料メ
ツシユ29を押圧固定するメツシユ押えスプリン
グ32とから成る。試料ホルダ15は、顕微鏡本
体1の側壁に回転可能に支持された保持棒21
と、保持棒21の先端部に一体的に設けられた試
料保持部22とから成る。試料保持部22の略中
央部分に設けられる穴23は、その開口部が磁極
頂面径よりも充分に大きな径を有する円形、その
他所定の形状となつており、穴23内側壁より半
径方向内方へ張り出した棚部25は、穴23の下
部に設けられている。また穴23の内側壁には、
当該内側壁から半径方向外方に向けて切込まれた
溝26が周方向に延びて形成され、穴23の中央
部には電子線通過孔があけられている。
Hereinafter, the concept of the present invention will be explained in detail with reference to FIG. 29, and a mesh holding spring 32 that presses and fixes the sample mesh 29. The sample holder 15 includes a holding rod 21 rotatably supported on the side wall of the microscope main body 1.
and a sample holding section 22 that is integrally provided at the tip of the holding rod 21. The hole 23 provided approximately at the center of the sample holder 22 has an opening shaped into a circle or other predetermined shape with a diameter sufficiently larger than the diameter of the top surface of the magnetic pole, and is radially inward from the inner wall of the hole 23. A shelf portion 25 projecting toward the outside is provided at the bottom of the hole 23. Also, on the inner wall of hole 23,
A groove 26 is cut radially outward from the inner wall and extends in the circumferential direction, and an electron beam passage hole is formed in the center of the hole 23 .

試料ホルダ15の保持棒21は、その軸心を中
心にして回転出来るよう、円柱形の棒体から成つ
ている。一方、保持部22は、全体が2〜3mmの
厚さを有する板状体から成つている。この保持部
22には更に、先端から穴23にかけて所定の幅
寸法で削り取られた切欠部37が形成され保持部
22先端部分に0.5mm程度の薄肉部24を形成し
ている。このように薄肉部24が設けられている
ことは、試料保持装置20を対物レンズ9の磁極
間隙に挿入するのに便利である。
The holding rod 21 of the sample holder 15 is made of a cylindrical rod so that it can rotate around its axis. On the other hand, the holding portion 22 is entirely made of a plate-like body having a thickness of 2 to 3 mm. This holding portion 22 is further formed with a cutout portion 37 cut out with a predetermined width dimension from the tip to the hole 23, and a thin wall portion 24 of about 0.5 mm is formed at the tip of the holding portion 22. Providing the thin portion 24 in this manner is convenient for inserting the sample holding device 20 into the magnetic pole gap of the objective lens 9.

切欠部37の両側部後端には、溝26の上側に
おいて、棚部25を覆うようにして穴23の開口
縁から半径方向内方へ向けて突出した係止部2
7,28が形成されている。また薄肉部24の先
端略中央部分には凹部38が切り込み形成されて
いる。
At the rear ends of both sides of the notch 37, on the upper side of the groove 26, a locking part 2 protrudes radially inward from the opening edge of the hole 23 so as to cover the shelf 25.
7 and 28 are formed. Further, a recess 38 is cut into and approximately at the center of the tip of the thin portion 24 .

試料メツシユ29は、電子線が透過し得るよう
網目構造を有する試料載置部31とこの試料載置
部31を外側から支える合成樹脂製の支持部30
とから成り、厚さは約0.2mm程度である。この試
料メツシユ29は保持部22の棚部25上に置か
れると共に、その外周縁を溝26内に嵌入させて
据付けられる。そして、試料メツシユ29の上方
からは、メツシユ押えスプリング32が穴23内
に入れられ、その両側端を係止部27,28に係
合させて固定すると共に、試料メツシユ29を棚
部25へ向けて押え付け固定する。
The sample mesh 29 includes a sample mounting section 31 having a mesh structure through which an electron beam can pass, and a support section 30 made of synthetic resin that supports this sample mounting section 31 from the outside.
The thickness is approximately 0.2 mm. This sample mesh 29 is placed on the shelf section 25 of the holding section 22 and installed by fitting its outer peripheral edge into the groove 26. A mesh holding spring 32 is inserted into the hole 23 from above the sample mesh 29, and its both ends are engaged with the locking parts 27 and 28 to fix it, and the sample mesh 29 is directed toward the shelf 25. Press down and secure.

かかる試料保持装置に対して、電子顕微鏡の対
物レンズ9は、第3図に示すように上下側磁極1
6,17がそれぞれ開き角が60度前後の比較的急
傾斜の截頭円錐構造に形成され、両磁極間隙の寸
法dは2mm以下、例えば1.3〜1.5mmと、極小寸法
に設定されている。外側磁極17には、磁極頂面
から所定の距離だけ離れた位置に、光軸6に直交
する方向に径寸法が約1.5mmの挿通孔33が開設
してあり、この挿通孔33内には支持棒34にビ
ス36止めされた対物絞り35が挿入されてい
る。
For such a sample holding device, the objective lens 9 of the electron microscope has upper and lower magnetic poles 1 as shown in FIG.
6 and 17 are each formed in a relatively steep truncated conical structure with an opening angle of about 60 degrees, and the dimension d of the gap between the two magnetic poles is set to an extremely small size of 2 mm or less, for example, 1.3 to 1.5 mm. The outer magnetic pole 17 has an insertion hole 33 with a diameter of about 1.5 mm opened in a direction perpendicular to the optical axis 6 at a predetermined distance from the top surface of the magnetic pole. An objective diaphragm 35 fixed to the support rod 34 with a screw 36 is inserted.

かかる構成を有することから、本実施例におい
ては、試料メツシユ29上に試料を載置し、試料
ホルダ15を顕微鏡本体1の側筒部から磁極間隙
へ向け光軸6に直交する方向へ挿入する。試料ホ
ルダ15の磁極間隙内に入る部分は、試料保持部
22に装填された試料メツシユ29及び試料を合
わせても1mm足らずの厚さしかない。したがつて
試料ホルダ15は上記極小寸法に設定された磁極
間隙に充分に挿入させることが可能であり、これ
によつて試料メツシユ29の中心を光軸に合わせ
ることができる。そして第4図に示すように、試
料ホルダ15が所定位置に達したところで、試料
保持部22先端に設けた凹部38が、顕微鏡本体
1の対向側壁に取付け固定されたホルダ受39に
係合し、こうして試料ホルダ15が支持される。
With such a configuration, in this embodiment, the sample is placed on the sample mesh 29, and the sample holder 15 is inserted from the side cylinder part of the microscope main body 1 toward the magnetic pole gap in a direction perpendicular to the optical axis 6. . The portion of the sample holder 15 that enters the magnetic pole gap has a thickness of less than 1 mm including the sample mesh 29 loaded in the sample holder 22 and the sample. Therefore, the sample holder 15 can be fully inserted into the magnetic pole gap set to the above-mentioned extremely small size, and thereby the center of the sample mesh 29 can be aligned with the optical axis. As shown in FIG. 4, when the sample holder 15 reaches a predetermined position, the recess 38 provided at the tip of the sample holder 22 engages with a holder holder 39 fixed to the opposing side wall of the microscope body 1. , thus the sample holder 15 is supported.

いま、上下側磁極16,17における中空孔7
の孔径を0.7mm、最小磁極間隙寸方dを1.3mm、磁
極頂面径を2mm、磁極頂角60度の対物レンズにお
いて、加速電圧100kVで試料の観察を行つたとこ
ろ、球面収差係数CSは約0.3mmとなつた。また、
この状態において対物絞りを駆使した明視野像、
暗視野像、電子回折像は、従来の対物レンズにお
けると同様の容易さで得られた。このことから、
電子線の加速電圧を上昇させることなく、解像性
の良い原子構造像が得られることがわかる。な
お、保持棒21の軸心を中心にして、当該保持棒
21を回転させることにより、試料傾斜を行うこ
とが出来る。特に穴23は対物レンズ磁極面の径
より、充分に大きな開口部を有するように開設し
てあるから、保持部22の厚肉部が上下側磁極1
6,17に干渉することなく、約±15°の試料傾
斜が得られる。
Now, the hollow holes 7 in the upper and lower magnetic poles 16 and 17
When observing the sample at an accelerating voltage of 100 kV using an objective lens with a hole diameter of 0.7 mm, a minimum pole gap size d of 1.3 mm, a pole top surface diameter of 2 mm, and a pole top angle of 60 degrees, the spherical aberration coefficient C S was approximately 0.3mm. Also,
In this state, a bright field image using the objective aperture,
Dark field images and electron diffraction images were obtained with the same ease as with conventional objective lenses. From this,
It can be seen that an atomic structure image with good resolution can be obtained without increasing the acceleration voltage of the electron beam. Note that the sample can be tilted by rotating the holding rod 21 about its axis. In particular, since the hole 23 is opened to have a sufficiently larger opening than the diameter of the objective lens magnetic pole surface, the thick part of the holding part 22 is connected to the upper and lower magnetic poles.
A sample tilt of about ±15° can be obtained without interfering with the angles 6 and 17.

第5図及び第6図は本発明の実施例を示す図で
ある。即ち、試料ホルダ15は、その試料保持部
22の中央部分に矩形状の収納開口40が形成さ
れると共に、その両側には一対のねじ孔41が対
向して穿設されている。この収納開口40内に
は、この収納開口40に遊嵌し得る外形及び寸法
を有する板状の傾斜支持台43が配置され、ねじ
孔41に螺合させた止めねじ42を、傾斜支持台
43の両側に設けた受部45に係合させることに
より、回転可能に支持される。傾斜支持台43に
は、磁極頂面径より充分に大きな開口を有する穴
23が設けられており、上記第1の実施例におけ
ると同様の棚部25、溝26が形成されている。
また、保持部22の先端には切欠部37及び凹部
38を形成した薄肉部24が形成され、傾斜支持
台43には切欠部37、薄肉部24のそれぞれに
連続する様に切欠部46薄肉部44がそれぞれ設
けられている。なお試料メツシユ29及びメツシ
ユ押えスプリング32の構造及び取付け方法は、
上記第1の実施例におけると同様である。
FIGS. 5 and 6 are diagrams showing embodiments of the present invention. That is, the sample holder 15 has a rectangular storage opening 40 formed in the center of the sample holding part 22, and a pair of screw holes 41 facing each other on both sides thereof. A plate-shaped inclined support 43 having an external shape and dimensions that can be loosely fitted into the storage opening 40 is disposed inside the storage opening 40. It is rotatably supported by engaging with the receiving portions 45 provided on both sides. The inclined support base 43 is provided with a hole 23 having an opening sufficiently larger than the diameter of the top surface of the magnetic pole, and has a shelf 25 and a groove 26 similar to those in the first embodiment.
Further, a thin wall portion 24 having a notch portion 37 and a recess 38 is formed at the tip of the holding portion 22, and a thin wall portion of the notch portion 46 is formed on the inclined support base 43 so as to be continuous with the notch portion 37 and the thin wall portion 24, respectively. 44 are provided respectively. The structure and installation method of the sample mesh 29 and mesh presser spring 32 are as follows.
This is the same as in the first embodiment.

かかる構成を有するため、本実施例に係る試料
保持装置20もまた、上記第1の実施例における
と同様、試料ホルダ15の磁極間隙内に入る部分
は、試料メツシユ29及び試料を合わせても1mm
足らずの厚さしかない。したがつて、この試料ホ
ルダ15は、極小寸法に設定された磁極間隙に充
分に楽に挿入することが可能である。そしてこの
実施例においては、試料ホルダ15は、保持棒2
1を回転させることにより例えばX軸傾斜を行う
ことができ、又他方、止めねじ42を回転させる
ことによりX軸に直交するY軸傾斜を行わせるこ
とが出来る。このため、上記第1の実施例におけ
るよりは、より一層バラエテイに富んだ試料観察
を行うことができる。
Because of this configuration, the sample holding device 20 according to this embodiment also has a portion of the sample holder 15 that enters the magnetic pole gap, which is 1 mm in total including the sample mesh 29 and the sample, as in the first embodiment.
It's just not thick enough. Therefore, this sample holder 15 can be inserted easily into the magnetic pole gap set to an extremely small size. In this embodiment, the sample holder 15 is
For example, by rotating the set screw 42, it is possible to perform an X-axis tilt, and on the other hand, by rotating the set screw 42, a Y-axis tilt, which is perpendicular to the X-axis, can be performed. Therefore, a greater variety of sample observations can be performed than in the first embodiment.

なお、上記実施例においては、透過型電子顕微
鏡の対物レンズ磁極ギヤツプ間に試料を挿入保持
するための保持装置について説明して来たが、走
査型電子顕微鏡においても分解能を向上させるた
めに、対物レンズ磁極間隙内に試料を挿入するこ
とがある。この様な場合においても、本発明を有
効に適用することができる。更に電子顕微鏡に限
らず、同様の機能を有する他の電子線装置にも適
用することが可能である。
In the above embodiment, a holding device for inserting and holding a sample between the objective lens magnetic pole gap of a transmission electron microscope has been described. A sample may be inserted into the gap between the lens magnetic poles. Even in such a case, the present invention can be effectively applied. Furthermore, it is possible to apply not only to electron microscopes but also to other electron beam devices having similar functions.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、電子
線装置の試料保持装置を、軸心を中心に回転可能
に構成した保持棒と、該保持棒の先端に一体的に
設けられ中央部に収納開口部を有し耐振性を有す
る充分な厚みを備えた枠体からなり該枠体の先端
に電子線装置本体の側壁部に設けた受け部に回転
可能に当接するための当接部を有する試料保持部
と、該試料保持部の前記収納開口部内に配置され
前記軸心と直交する方向を軸として傾斜可能に前
記試料保持部に保持される傾斜支持台と、試料を
載置する試料メツシユを挿入するため前記傾斜支
持台に設けられた穴部とからなり、前記傾斜支持
台は、該傾斜支持台の傾斜に前記磁極が干渉しな
いように少なくとも該磁極の頂面径よりも充分に
広い領域において前記試料及び前記試料メツシユ
を含めた全体の厚みを前記磁極間〓より充分薄く
構成したため、試料傾斜に際して、試料ホルダの
試料保持部や傾斜部材が対物レンズに干渉するこ
となく、試料メツシユに載置された試料を直交す
る2方向に最大限に傾斜させることができ、ま
た、試料保持部に充分な防振性を持たせることが
できる。
As explained above, according to the present invention, the sample holding device of an electron beam apparatus includes a holding rod configured to be rotatable around an axis, and a holding rod that is integrally provided at the tip of the holding rod and stored in the center. It consists of a frame with an opening, vibration resistance, and a sufficient thickness, and has an abutting part at the tip of the frame for rotatably abutting on a receiving part provided on the side wall of the electron beam device main body. a sample holding section; a tilting support stand disposed within the storage opening of the sample holding section and held by the sample holding section so as to be tiltable about a direction perpendicular to the axis; and a sample mesh on which the sample is placed. a hole provided in the tilted support base for inserting a Since the overall thickness including the sample and the sample mesh in the area is configured to be sufficiently thinner than the distance between the magnetic poles, when the sample is tilted, the sample holding part of the sample holder and the tilting member do not interfere with the objective lens, and the sample mesh can be attached to the sample mesh. The mounted sample can be tilted to the maximum extent in two orthogonal directions, and the sample holder can have sufficient vibration-proofing properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来からの電子顕微鏡の一般的な構造
例を示す断面図、第2図は本発明の実施例に係る
電子線装置の試料支持装置の組付を示す斜視図、
第3図は、発明の構成と実施例における試料保持
装置を対物レンズ磁極間隙に挿入した状態を示す
断面図、第4図は上記の実施例における試料保持
装置を対物レンズ磁極間隙を挿入した状態を示す
平面図、第5図は本発明の第2の実施例に係る電
子線装置の試料支持装置の組付を示す斜視図、第
6図は上記第2の実施例における試料保持装置を
対物レンズ磁極間隙に挿入した状態を示す平面図
である。 9……対物レンズ、15……試料ホルダ、16
……上側磁極、17……下側磁極、20……試料
保持装置、21……保持棒、22……試料保持
部、23……穴、25……棚部、29……試料メ
ツシユ、38……凹部(当接部)、39……ホル
ダ受(受け部)、40……収納部開口、43……
傾斜支持台。
FIG. 1 is a sectional view showing a general structural example of a conventional electron microscope, and FIG. 2 is a perspective view showing the assembly of a sample support device of an electron beam apparatus according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the configuration of the invention and the sample holding device according to the embodiments inserted into the objective lens magnetic pole gap, and FIG. 4 is the sample holding device according to the above embodiment inserted into the objective lens magnetic pole gap. 5 is a perspective view showing the assembly of the sample support device of the electron beam apparatus according to the second embodiment of the present invention, and FIG. 6 is a plan view showing the sample support device in the second embodiment of the present invention FIG. 3 is a plan view showing a state in which the lens is inserted into a gap between magnetic poles. 9... Objective lens, 15... Sample holder, 16
... Upper magnetic pole, 17 ... Lower magnetic pole, 20 ... Sample holding device, 21 ... Holding rod, 22 ... Sample holding part, 23 ... Hole, 25 ... Shelf, 29 ... Sample mesh, 38 ... Recessed part (contact part), 39 ... Holder receiver (receiving part), 40 ... Storage opening, 43 ...
Inclined support platform.

Claims (1)

【特許請求の範囲】 1 截頭円錐状の上側磁極と、該上側磁極から所
定の間〓をあけて設けられた截頭円錐状の下側磁
極とを有する対物レンズと、該対物レンズの磁極
間〓内に配置する試料保持装置とを備えた電子線
装置において、 前記試料保持装置は、 軸心を中心に回転可能に構成した保持棒と、 該保持棒の先端に一体的に設けられ中央部に収
納開口部を有し耐振性を有する充分な厚みを備え
た枠体からなり該枠体の先端に電子線装置本体の
側壁部に設けた受け部に回転可能に当接するため
の当接部を有する試料保持部と、 該試料保持部の前記収納開口部内に配置され前
記軸心と直交する方向を軸として傾斜可能に前記
試料保持部に保持される傾斜支持台と、 試料を載置する試料メツシユを挿入するため前
記傾斜支持台に設けられた穴部とからなり、 前記傾斜支持台は、該傾斜支持台の傾斜に前記
磁極が干渉しないように少なくとも該磁極の頂面
径よりも充分に広い領域において前記試料及び前
記試料メツシユを含めた全体の厚みを前記磁極間
〓より充分薄く構成したことを特徴とする電子線
装置。
[Scope of Claims] 1. An objective lens having a frustoconical upper magnetic pole and a frustoconical lower magnetic pole provided at a predetermined distance from the upper magnetic pole, and a magnetic pole of the objective lens. In an electron beam apparatus, the sample holding device includes: a holding rod configured to be rotatable around an axis; and a holding rod that is integrally provided at the tip of the holding rod, It consists of a frame with a storage opening at the bottom and a sufficiently thick vibration-resistant frame, and the tip of the frame rotatably abuts against a receiving part provided on the side wall of the electron beam device main body. a sample holder having a sample holder; a tilted support stand disposed within the storage opening of the sample holder and held by the sample holder so as to be tiltable about a direction perpendicular to the axis, on which a sample is placed; a hole provided in the tilted support base for inserting a sample mesh to be sampled; An electron beam apparatus characterized in that the total thickness of the sample and the sample mesh in a sufficiently wide area is sufficiently thinner than the distance between the magnetic poles.
JP33520288A 1988-12-29 1988-12-29 Electron beam device Granted JPH01236566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33520288A JPH01236566A (en) 1988-12-29 1988-12-29 Electron beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33520288A JPH01236566A (en) 1988-12-29 1988-12-29 Electron beam device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57050019A Division JPS58169762A (en) 1982-03-30 1982-03-30 Electron beam device

Publications (2)

Publication Number Publication Date
JPH01236566A JPH01236566A (en) 1989-09-21
JPH0534769B2 true JPH0534769B2 (en) 1993-05-24

Family

ID=18285902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33520288A Granted JPH01236566A (en) 1988-12-29 1988-12-29 Electron beam device

Country Status (1)

Country Link
JP (1) JPH01236566A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087286B2 (en) * 2003-05-12 2008-05-21 日本電子株式会社 Sample holder, observation apparatus, and sample rotation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826469A (en) * 1981-07-23 1983-02-16 アンプ・インコ−ポレ−テツド Electric connector
JPH0211976A (en) * 1988-04-28 1990-01-17 Tektronix Inc Fluid pressure controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826469A (en) * 1981-07-23 1983-02-16 アンプ・インコ−ポレ−テツド Electric connector
JPH0211976A (en) * 1988-04-28 1990-01-17 Tektronix Inc Fluid pressure controller

Also Published As

Publication number Publication date
JPH01236566A (en) 1989-09-21

Similar Documents

Publication Publication Date Title
JPH0211976B2 (en)
US3885158A (en) Specimen block and specimen block holder
US9390882B2 (en) Apparatus having a magnetic lens configured to diverge an electron beam
US4851670A (en) Energy-selected electron imaging filter
EP0421355A2 (en) Scanning tunneling microscope
US5280178A (en) Specimen holder for use in a charged particle beam device
US4978855A (en) Electron microscope for investigation of surfaces of solid bodies
US6600156B2 (en) Scanning electron microscope
US4458151A (en) Electron microscope of a scanning type
US4870283A (en) Electric multipole lens
JPS5842935B2 (en) Objective lenses for scanning electron microscopes, etc.
JPH0534769B2 (en)
JP3123826B2 (en) Sample cooling holder for electron microscope etc.
US4208585A (en) Apparatus for focusing electromagnetic radiation on a sample
JP2001338599A (en) Charged particle beam device
JPH076723A (en) Mechanically stable emission gun structure
JP2739485B2 (en) Scanning electron beam device
GB2118361A (en) Scanning electron beam apparatus
US5479013A (en) STM probe
JPS643168Y2 (en)
JP2569011B2 (en) Scanning electron microscope
JPH0713163Y2 (en) Electron beam equipment
GB2161019A (en) Electron microscope with interchangeable lenses
KR20200021298A (en) Transmission electron microscope and method for controlling the same
JPS6338824B2 (en)