JPH07130973A - Integrated light-condensing element for solid-state image sensing element and its manufacture - Google Patents

Integrated light-condensing element for solid-state image sensing element and its manufacture

Info

Publication number
JPH07130973A
JPH07130973A JP5301015A JP30101593A JPH07130973A JP H07130973 A JPH07130973 A JP H07130973A JP 5301015 A JP5301015 A JP 5301015A JP 30101593 A JP30101593 A JP 30101593A JP H07130973 A JPH07130973 A JP H07130973A
Authority
JP
Japan
Prior art keywords
solid
refractive index
photoelectric conversion
state image
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5301015A
Other languages
Japanese (ja)
Inventor
Takashi Koike
尚 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5301015A priority Critical patent/JPH07130973A/en
Publication of JPH07130973A publication Critical patent/JPH07130973A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize a solid-state image sensing element having a ring belt-shaped photoelectric conversion part and to make its sensitivity high by a method wherein an incident-light component in a nonsensitive region for the solid-state image sensing element is condensed with good efficiency and a picture element for the solid-state image sensing element is made fine. CONSTITUTION:In a light-condensing element (a macro lens 8), a photoelectric conversion part 9 for a picture element is installed integrally in a nearly ring belt-shaped solid-state image sensing element. In an integrated light-condensing element for a solid-state image sensing element, a lens pattern at least a part of which is protrusion-shaped is provided in a prescribed position, and a refractive index is distributed by the intersection point of the optical axis of the lens pattern and a lens face. A light component which is incident on a nonsensitive region on a signal readout circuit is condensed, by the action of a refractive index on the convex face of the lens, on the photoelectric conversion part 9 through a route indicated by an arrow A. In addition, a light component which is incident from a nonsensitive region on the inside of the inside diameter of the ring belt-shaped photoelectric conversion part 9 is condensed on the photoelectric conversion part 9 through a route indicated by an arrow B due to a bend inside a medium in addition to the action of the refractive index by the convex face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輪帯状の光電変換部を
有する画素で構成される固体撮像素子の感度向上のため
の光学素子に係り、特に固体撮像素子の不感領域への入
射光を光電変換部へ集光させることにより感度を向上さ
せるために、固体撮像素子上に形成される固体撮像素子
用一体型集光素子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element for improving the sensitivity of a solid-state image pickup device composed of pixels having a ring-shaped photoelectric conversion portion, and more particularly, to an incident light to a dead region of the solid-state image pickup device. The present invention relates to an integrated light-collecting device for a solid-state imaging device, which is formed on a solid-state imaging device in order to improve sensitivity by collecting light on a photoelectric conversion unit, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】CCD(Charge Coupled
Device)のような固体撮像素子上の各画素は、
主に、矩形の光電変換部と、信号の読み出し回路部との
二つの領域からなっている。このうち、信号の読み出し
回路上は入射光成分に対する不感領域である。この不感
領域上に入射する光成分を光電変換部に集光し、撮像素
子の高感度化を達成するとともに、他の素子特性を劣化
させない有効な手段の一つとして、固体撮像素子上に透
明なレンズアレイを配置して、不感領域である信号読み
出し回路上に到達する入射光成分を光電変換部に集光さ
せるようにした、一体型の凸または凹のマイクロレンズ
アレイが提案されている(特開昭53−74395号公
報)。ここでは、凸形状のマイクロレンズを作製する方
法として、熱軟化性の材料でパターンを形成し、熱だれ
により凸形状のマイクロレンズを製造する方法が開示さ
れている。
2. Description of the Related Art CCD (Charge Coupled)
Each pixel on a solid-state image sensor such as
It is mainly composed of two regions, a rectangular photoelectric conversion part and a signal reading circuit part. Of these, the area on the signal readout circuit is insensitive to the incident light component. The light component incident on this dead region is condensed on the photoelectric conversion unit to achieve high sensitivity of the image sensor, and as one of the effective means that does not deteriorate other device characteristics, it is transparent on the solid-state image sensor. An integrated convex or concave microlens array has been proposed, in which various lens arrays are arranged so that incident light components that reach the signal readout circuit, which is a dead region, are focused on the photoelectric conversion unit ( JP-A-53-74395). Here, as a method of manufacturing a convex microlens, a method of forming a pattern with a heat-softening material and manufacturing a convex microlens by heat dripping is disclosed.

【0003】また、CMD(Charge Modul
ation Device)のような輪帯状の光電変換
部を有する固体撮像素子においては、不感領域である輪
帯状光電変換部の内径内部および隣接する画素で囲まれ
た部分の真上に円錐状のプリズムを設け、各不感領域に
入射する光束を、断面において一定の幅で一定の角度に
放射される円錐波に波面変換し、輪帯状光電変換部に効
率よく集光する方法が特開平3−150104号公報に
開示されている。
In addition, CMD (Charge Module)
In a solid-state image pickup device having a ring-shaped photoelectric conversion unit such as an application device, a conical prism is formed inside the inner diameter of the ring-shaped photoelectric conversion unit which is a dead region and right above a portion surrounded by adjacent pixels. Japanese Patent Laid-Open No. 3-150104 discloses a method in which a light beam incident on each insensitive region is wavefront converted into a cone wave radiated at a constant width and a constant angle in a cross section and is efficiently condensed on a ring-shaped photoelectric conversion unit. It is disclosed in the official gazette.

【0004】一方、マイクロレンズへの入射光の各種収
差を補正するために、マイクロレンズの一部に屈折率の
分布を持たせる方法が特開平2−88433号公報に開
示されている。
On the other hand, JP-A-2-88433 discloses a method in which a part of the microlens has a refractive index distribution in order to correct various aberrations of light incident on the microlens.

【0005】[0005]

【発明が解決しようとする課題】現在、固体撮像素子開
発上の大きな焦点となっているのは、画素の微細化によ
る素子の小型化および素子の高感度化である。しかし、
このような画素の微細化は、撮像素子の受光面積の減少
を伴う結果となり、必然的に光感度の低下という問題が
生じることになる。このような問題点を解決するために
は、各画素上にマイクロレンズを形成し、光電変換部に
光束を集光すればよい(特開昭53−74395号公
報)。この際に、各画素の光電変換部の形状が矩形であ
る一般的な電荷結合素子(CCD)の場合には、比較的
単純な凸型または凹型のマイクロレンズアレイを用いる
ことで十分である。しかしながら、光電変換部の形状が
輪帯状である固体撮像素子(例えばCMD)の場合、例
えば単純な凸形状のレンズを画素の真上に設置した場合
には、画素の内径内部に集光された光束は、内径内部が
不感領域であるために感度向上に対して何ら影響を与え
ることがない。同様に、凹形状のレンズを各画素の間に
設けることにより集光を行う場合にも、不感領域である
内径内部の真上から入射する光を利用することができな
い。つまり、輪帯状の光電変換部を有する固体撮像素子
に対しては、単純な凸形状または凹形状を有するマイク
ロレンズを画素上に形成しても素子の高感度化を実現す
ることはできない。
At present, a major focus in developing a solid-state image pickup device is miniaturization of a pixel and miniaturization of the device and increase in sensitivity of the device. But,
Such miniaturization of pixels results in a decrease in the light receiving area of the image pickup element, which inevitably causes a problem of a decrease in photosensitivity. In order to solve such a problem, a microlens may be formed on each pixel and a light beam may be condensed on the photoelectric conversion unit (Japanese Patent Laid-Open No. 53-74395). At this time, in the case of a general charge-coupled device (CCD) in which the photoelectric conversion portion of each pixel has a rectangular shape, it is sufficient to use a relatively simple convex or concave microlens array. However, in the case of a solid-state image pickup device (for example, CMD) in which the shape of the photoelectric conversion unit is an annular shape, for example, when a simple convex lens is installed right above the pixel, the light is condensed inside the inner diameter of the pixel. The luminous flux has no influence on the improvement in sensitivity because the inside of the inner diameter is a dead region. Similarly, when a concave lens is provided between each pixel to collect light, it is not possible to use the light incident from directly above the inside of the inner diameter, which is a dead region. That is, for a solid-state imaging device having a ring-shaped photoelectric conversion unit, even if a microlens having a simple convex shape or a concave shape is formed on a pixel, high sensitivity of the element cannot be realized.

【0006】この欠点を解消するために、不感領域であ
る輪帯状の光電変換部の内径内部および各画素間に円錐
状のプリズムを形成する方法が提案されているが(特開
平5−150104号公報)、各画素の構造が微細であ
り、そこに形成された光電変換部の内径内部および各画
素間の不感領域は非常に狭い範囲であるため、この部分
に円錐状のプリズムを形成することは精度上、非常に困
難であった。
In order to solve this drawback, there has been proposed a method of forming a conical prism inside the inner diameter of the ring-shaped photoelectric conversion portion which is a dead area and between each pixel (Japanese Patent Laid-Open No. 5-150104). Gazette), the structure of each pixel is fine, and the dead area inside the photoelectric conversion portion formed therein and the dead area between the pixels is very narrow. Therefore, a conical prism should be formed in this portion. Was very difficult in terms of accuracy.

【0007】また、マイクロレンズを作製し、ここに屈
折率の分布を形成する方法が示されているが(特開平2
−88433号公報)、この方法はあくまで収差を補正
することだけを目的としており、不感領域に対する集光
が目的ではない。CMDのような輪帯状の光電変換部に
集光させるためには、さらに媒質中での光線の屈曲を加
味した分布形状でなくてはならない。以上のように、従
来の方法のみでは、輪帯状の光電変換部を有する固体撮
像素子の不感領域の入射光成分を効率よく集光させ、素
子の高感度化を実現することは困難であった。
Further, a method of producing a microlens and forming a distribution of the refractive index therein has been disclosed (Japanese Patent Laid-Open No. HEI-2).
-88433), this method is intended only to correct aberrations, not to focus light on a dead area. In order to focus light on a ring-shaped photoelectric conversion unit such as CMD, the distribution shape must further include the bending of light rays in the medium. As described above, it is difficult to achieve high sensitivity of the device only by the conventional method, by efficiently condensing the incident light component of the dead region of the solid-state image sensor having the annular photoelectric conversion unit. .

【0008】本発明は、かかる従来の問題点に鑑みてな
されたもので、輪帯状の光電変換部を有する固体撮像素
子の不感領域の入射光成分を効率よく集光させ、固体撮
像素子の画素の微細化による素子の小型化と高感度化を
図ることができる固体撮像素子用一体型集光素子および
その製造方法を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and efficiently collects incident light components in a dead region of a solid-state image pickup device having a ring-shaped photoelectric conversion portion to form pixels of the solid-state image pickup device. It is an object of the present invention to provide an integrated light-collecting device for a solid-state image pickup device and a method for manufacturing the same, which can achieve miniaturization and high sensitivity of the device by miniaturization.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、画素の光電変換部が略輪帯状の固体撮像
素子に一体に設けて用いる固体撮像素子用一体型集光素
子において、集光素子の所定位置に、少なくとも一部が
凸形状であるレンズパターンを有し、かつ該レンズパタ
ーンの光軸とレンズ面の交点部より屈折率に分布を形成
させることとした。
In order to solve the above problems, the present invention provides an integrated light-collecting device for a solid-state image pickup device, wherein a photoelectric conversion part of a pixel is integrally provided in a substantially annular solid-state image pickup device. A lens pattern having a convex shape, at least a part of which is provided at a predetermined position of the light-collecting element, and a distribution of refractive index is formed from the intersection of the optical axis of the lens pattern and the lens surface.

【0010】また、上記構成の本発明の固体撮像素子用
一体型集光素子を製造するにあたり、高屈折率金属成分
を含有するガラスを原料とし、各画素毎に凸形状のレン
ズパターンを形成した後、マスキング処理を施し、該レ
ンズパターンの一部を低屈折率金属成分の溶融塩と接触
させることにより屈折率の分布を形成することとした。
In manufacturing the integrated light-collecting device for a solid-state image pickup device of the present invention having the above-mentioned structure, glass containing a high refractive index metal component is used as a raw material, and a convex lens pattern is formed for each pixel. After that, a masking process was performed, and a part of the lens pattern was brought into contact with a molten salt of a low refractive index metal component to form a refractive index distribution.

【0011】さらに、上記構成の本発明の固体撮像素子
用一体型集光素子を製造するにあたり、高屈折率金属成
分を含有するゾルを原料とし、各画素毎に凸形状のゲル
状レンズパターンを形成した後、マスキング処理を施
し、該ゲル状レンズパターンの一部を低屈折率金属成分
を含有する溶液または酸と接触させることにより屈折率
の分布を形成することとした。
Further, in manufacturing the integrated light-collecting device for a solid-state image pickup device of the present invention having the above structure, a sol containing a high-refractive-index metal component is used as a raw material, and a convex gel lens pattern is formed for each pixel. After the formation, a masking treatment was performed, and a part of the gel lens pattern was brought into contact with a solution containing a low refractive index metal component or an acid to form a refractive index distribution.

【0012】[0012]

【作用】光電変換部が輪帯状の画素で構成される固体撮
像素子の一例における一つの画素の断面斜視図を図2に
示す。この撮像素子は、一般のフォトトランジスタと異
なり、略輪帯状のゲートを備えるCMDとなっている。
受光領域に形成された多結晶シリコンゲート1を透過し
た入射光は、Si結晶からなるp- 基板2上にエピタキ
シャル成長されたn- チャンネル層3中に正孔−電子対
を発生させる。このうち、正孔4は多結晶シリコンゲー
ト1直下の領域で、SiO2 層5とn- チャンネル層3
との界面に蓄積される。すなわち、入射光の有無によ
り、多結晶シリコンゲート1の電位が変化し、n+ ソー
ス層6間のチャンネルが増減し、ソース7から供給され
る電子、つまりドレイン電流が変調される。この結果、
入射光に増幅された信号電流を取り出すことができる。
FIG. 2 shows a sectional perspective view of one pixel in an example of the solid-state image pickup device in which the photoelectric conversion section is composed of pixels in a ring shape. Unlike a general phototransistor, this image pickup device is a CMD having a substantially ring-shaped gate.
Incident light transmitted through the polycrystalline silicon gate 1 formed in the light receiving region generates hole-electron pairs in the n - channel layer 3 epitaxially grown on the p - substrate 2 made of Si crystal. Of these, the holes 4 are in the region immediately below the polycrystalline silicon gate 1, and the SiO 2 layer 5 and the n channel layer 3 are formed.
Accumulates at the interface with. That is, the potential of the polycrystalline silicon gate 1 changes depending on the presence or absence of incident light, the channel between the n + source layers 6 increases and decreases, and the electrons supplied from the source 7, that is, the drain current is modulated. As a result,
The signal current amplified by the incident light can be taken out.

【0013】このような、輪帯状の光電変換部を有する
固体撮像素子において、各画素毎に図1に示すような凸
形状のマイクロレンズ8を形成する。9は光電変換部で
ある。この時、さらにマイクロレンズ8の凸形状の最頂
部より屈折率に分布を形成する。そして、この時の屈折
率の分布は凸面の面頂部で最も屈折率が低くなるように
する。これにより、信号読み出し回路上の不感領域に入
射する光成分は、レンズの凸面での屈折率作用により、
図1中の矢印Aのような経路を通って光電変換部9へ集
光する。また、輪帯状の光電変換部9の内径内部上の不
感領域より入射する光成分は、マイクロレンズ8に屈折
率の分布が存在するために、凸面による屈折の作用の他
に、媒質内での屈曲を伴い、図1中の矢印Bのような経
路を通り、光電変換部9に集光することとなる。つま
り、このような集光素子を各画素上に形成することによ
り、画素間および輪帯状光電変換部の内径内部の不感領
域に入射する光成分に対しても光電変換部への集光が可
能となり、素子の高感度化を実現することが可能とな
る。
In such a solid-state image pickup device having a ring-shaped photoelectric conversion portion, a convex microlens 8 as shown in FIG. 1 is formed for each pixel. Reference numeral 9 is a photoelectric conversion unit. At this time, a distribution is further formed in the refractive index from the top of the convex shape of the microlens 8. The distribution of the refractive index at this time is such that the refractive index is lowest at the top of the convex surface. As a result, the light component incident on the dead area on the signal readout circuit is caused by the refractive index action on the convex surface of the lens.
The light is focused on the photoelectric conversion unit 9 through a path indicated by an arrow A in FIG. Further, the light component incident from the insensitive region on the inside of the inner diameter of the ring-shaped photoelectric conversion unit 9 has a refractive index distribution in the microlens 8. Therefore, in addition to the refraction effect of the convex surface, Along with the bending, the light passes through the path indicated by the arrow B in FIG. 1 and is focused on the photoelectric conversion unit 9. In other words, by forming such a condensing element on each pixel, it is possible to condense light components incident between the pixels and in the insensitive area inside the inner diameter of the annular photoelectric conversion unit to the photoelectric conversion unit. Therefore, it becomes possible to realize high sensitivity of the device.

【0014】以上に述べた凸形状と屈折率分布を組み合
わせたマイクロレンズの製造方法について図3に基づい
て説明する。まず、高屈折率金属成分を含有するガラス
の熱だれ等を利用する方法により、(a)に示すよう
に、凸形状のレンズパターン10を形成する。ここに、
(b)に示すように、マスク11を施して凸面の面頂部
の一部のみを露出させる。面頂部の露出した部分によ
り、拡散現象を利用してマイクロレンズ中に含有する高
屈折率成分と低屈折率成分を交換させる。これにより、
(c)に示すように、マイクロレンズ部はその凸形状の
頂点で屈折率が最も低く、放射状に徐々に屈折率が高く
なるような連続的な屈折率の分布が形成される。(d)
はマスク11除去後の状態を示す。
A method of manufacturing a microlens having a combination of the convex shape and the refractive index distribution described above will be described with reference to FIG. First, as shown in (a), a convex lens pattern 10 is formed by a method utilizing heat sag or the like of glass containing a high refractive index metal component. here,
As shown in (b), the mask 11 is applied to expose only a part of the top of the convex surface. Due to the exposed portion of the surface top, the high refractive index component and the low refractive index component contained in the microlens are exchanged by utilizing the diffusion phenomenon. This allows
As shown in (c), the microlens portion has the lowest refractive index at the apex of its convex shape, and a continuous refractive index distribution in which the refractive index gradually increases is formed radially. (D)
Indicates the state after the mask 11 is removed.

【0015】この際、周辺部においてレンズは単なる凸
レンズと同様の効果を発揮し、光を集光する。しかし、
レンズの凸形状の面頂部においては光軸と面の交点部分
の屈折率が最も低く、周辺に向けて屈折率が高くなる屈
折率分布型光学素子となっているために、この近軸の領
域では凹レンズと同様の効果があり、入射した光は集光
されずに発散することとなる。つまり、レンズ周辺部
(信号読み出し部に相当)の光は集光され、レンズ中心
部(輪帯状光電変換部の内径内部に相当)の光は発散さ
れることにより、画素上のどの部分から入射した光成分
も輪帯状の光電変換部に集光される。これにより、素子
の感度を大幅に向上することが可能となる。
At this time, the lens in the peripheral portion exhibits the same effect as a simple convex lens, and collects light. But,
At the top of the convex surface of the lens, the refractive index at the intersection of the optical axis and the surface is the lowest, and since it is a gradient index optical element in which the refractive index increases toward the periphery, this paraxial region Has the same effect as the concave lens, and the incident light is diverged without being condensed. That is, the light in the lens peripheral part (corresponding to the signal reading part) is condensed and the light in the lens center part (corresponding to the inner diameter of the ring-shaped photoelectric conversion part) is diverged to enter from any part on the pixel. The generated light component is also focused on the ring-shaped photoelectric conversion unit. This makes it possible to greatly improve the sensitivity of the device.

【0016】ここでの、屈折率の分布の形成は、拡散現
象を利用し、ガラス中に含まれる金属成分を交換するこ
とにより行うものであり、ガラスを溶融塩中に浸漬する
イオン交換法で行ってもよいし、また金属アルコキシド
を原料とするゾルをゲル化させた後、金属成分を酸で溶
出したり、アルコール等の溶媒中で他の金属種と交換す
るゾルゲル法で行ってもこの発明の効果に何ら影響を与
えるものではない。すなわち、シリコンのアルコキシド
と高屈折率金属成分のアルコキシドからなるゲルを酸に
浸漬し、高屈折率金属成分を溶出したり、あるいはシリ
コンのアルコキシドと高屈折率金属成分の金属塩からな
るゲルを、低屈折率金属成分の塩を含有するアルコール
溶液中に浸漬することにより高屈折率成分と低屈折率成
分を交換するゾルゲル法や、高屈折率金属成分を含有す
るガラスを低屈折率金属成分の溶融塩中に浸漬し、高屈
折率金属成分と低屈折率金属成分の交換を行うイオン交
換法を用いることができる。ただし、半導体の製造工程
中において、1価の金属イオンはその拡散係数が大き
く、半導体の特性に影響を与えるため、2価以上の金属
イオンを用いることがより好ましい。これには2価以上
の金属イオンの拡散が容易に行えるゾルゲル法が適して
いる。一般にイオン交換法は、2価以上の金属イオンで
はガラス中でのイオンの拡散係数が小さいために用いら
れないが、微小系の集光素子に関しては必ずしもこの限
りではなく、原理的に不可能なものではない。
The formation of the distribution of the refractive index here is carried out by exchanging the metal component contained in the glass by utilizing the diffusion phenomenon, and by the ion exchange method of immersing the glass in the molten salt. It may be carried out, or after the sol made from the metal alkoxide is gelled, the metal component may be eluted with an acid, or the sol-gel method of exchanging with another metal species in a solvent such as alcohol may be used. It has no effect on the effect of the invention. That is, a gel consisting of a silicon alkoxide and a high refractive index metal component alkoxide is immersed in an acid to elute the high refractive index metal component, or a gel consisting of a silicon alkoxide and a metal salt of a high refractive index metal component, The sol-gel method of exchanging the high-refractive-index component and the low-refractive-index component by immersing it in the alcohol solution containing the salt of the low-refractive-index metal component, and the glass containing the high-refractive-index metal component of the low-refractive-index metal component An ion exchange method can be used in which the high refractive index metal component and the low refractive index metal component are exchanged by immersing in a molten salt. However, since monovalent metal ions have a large diffusion coefficient during the semiconductor manufacturing process and affect the characteristics of the semiconductor, it is more preferable to use divalent or higher-valent metal ions. The sol-gel method that can easily diffuse divalent or higher valent metal ions is suitable for this. In general, the ion exchange method is not used for metal ions having a valence of 2 or more because the diffusion coefficient of the ions in the glass is small, but this is not always the case for a microscopic light-collecting element, and it is impossible in principle. Not a thing.

【0017】また、ここでの集光素子は、あくまで光電
変換部に光束を集光するための素子であり、必ずしも結
像する必要はないため、レンズの凸形状にはかなりの自
由度をもたせることができる。例えば、図4(a)のよ
うに、凸形状のマイクロレンズ12の上面部12aを平
坦とし、平坦部に屈折率の分布を形成することも可能で
ある。
Further, the light condensing element here is an element for condensing the light flux on the photoelectric conversion part, and does not necessarily have to form an image. Therefore, the convex shape of the lens has a considerable degree of freedom. be able to. For example, as shown in FIG. 4A, it is possible to flatten the upper surface portion 12a of the convex microlens 12 and form the refractive index distribution in the flat portion.

【0018】[0018]

【実施例1】Si(OC2 5 4 83.3gにエタノ
ール50mlを加え、0.01NのHCl 60mlを
添加し、部分加水分解を行った。ここに、酢酸鉛の1m
ol/lの水溶液100mlを添加してゾルとした。こ
のゾルを、有機フォトレジストによりマスクを形成した
ガラス基板にコーティングした。これは、有機フォトレ
ジストの撥水効果を利用し、半球面状のパターンを形成
するものである。このゾルをゲル化させた後、マスクを
除去することによって凸形状のゲルレンズパターンを形
成した。得られた基板に凸形状のゲルレンズパターンの
面頂部の一部が露出するようにマスキングを形成し、こ
の基板を酢酸バリウムの0.5mol/lのメタノー
ル:H2 O=2:8(vol比)溶液中に数秒浸漬し、
その後、半密閉のメタノール雰囲気中で除々に乾燥させ
た。得られた基板を熱処理することによって、マトリッ
クス状の凸形状のレンズパターンの各面頂部より屈折率
の分布が形成された集光素子を得た。この集光素子を輪
帯状の光電変換部を撮像素子に用いたところ、高感度化
が実現した。
Example 1 50 ml of ethanol was added to 83.3 g of Si (OC 2 H 5 ) 4 and 60 ml of 0.01N HCl was added to carry out partial hydrolysis. 1m of lead acetate
100 ml of an ol / l aqueous solution was added to form a sol. This sol was coated on a glass substrate having a mask formed of an organic photoresist. This is to form a hemispherical pattern by utilizing the water-repellent effect of the organic photoresist. After the sol was gelled, the mask was removed to form a convex gel lens pattern. Masking was formed on the obtained substrate so that part of the top surface of the convex gel lens pattern was exposed, and the substrate was coated with 0.5 mol / l of barium acetate methanol: H 2 O = 2: 8 (vol). Ratio) Soak in the solution for a few seconds,
Then, it was gradually dried in a semi-closed methanol atmosphere. By heat-treating the obtained substrate, a light-collecting element in which a refractive index distribution was formed from the tops of the respective surfaces of the matrix-shaped convex lens pattern was obtained. When this condensing element was used as a ring-shaped photoelectric conversion unit for the image pickup element, high sensitivity was realized.

【0019】[0019]

【実施例2】Si(OC2 5 4 59.1gに0.0
2NのHCl水溶液42mlを加えて加水分解反応を行
った。ここに、0.5mol/lのTlNO3 水溶液1
00mlを添加し、さらに平均粒径が200オングスト
ロームのシリカの微粉末10.0gを添加し、超音波を
かけて均一なゾルとした。ここに、0.2Nのアンモニ
ア溶液を添加し、ゾルのpHを4.5に調製した。この
ゾルを、有機フォトレジストによりマスクを形成したガ
ラス基板にディップコートした。このとき、有機フォト
レジストは撥水効果を有するために、ゾルは半球面状に
盛り上がる。このゾルがゲル化してからマスク材を除去
後、熱処理を行なってガラス化させ、マトリックス状の
凸面形状を形成した。さらに、ここに凸形状の面頂部の
みが露出するようにマスキングを行った。この基板をN
aNO3 の溶融塩中に浸漬し、Tl+ とNa+ との交換
を行った。その後、マスクを除去することによって所望
の形状および屈折率分布を有するマイクロレンズを作製
した。このマイクロレンズを輪帯状の光電変換部を有す
る撮像素子の集光素子として使用したところ、高感度化
が実現できた。
Example 2 0.09 in 59.1 g of Si (OC 2 H 5 ) 4
A hydrolysis reaction was carried out by adding 42 ml of 2N HCl aqueous solution. Here, 0.5 mol / l TlNO 3 aqueous solution 1
00 ml was added, and 10.0 g of fine silica powder having an average particle diameter of 200 angstrom was added, and ultrasonic waves were applied to form a uniform sol. A 0.2N ammonia solution was added thereto to adjust the pH of the sol to 4.5. This sol was dip-coated on a glass substrate having a mask formed of an organic photoresist. At this time, since the organic photoresist has a water repellent effect, the sol rises in a hemispherical shape. After the sol gelled, the mask material was removed, and then heat treatment was performed to vitrify the sol and form a matrix-shaped convex surface. Further, masking was performed here so that only the top of the convex surface was exposed. This board is N
It was immersed in a molten salt of aNO 3 to exchange Tl + for Na + . After that, the mask was removed to manufacture a microlens having a desired shape and refractive index distribution. When this microlens was used as a light-collecting element of an image sensor having a ring-shaped photoelectric conversion unit, high sensitivity could be realized.

【0020】[比較例1]実施例2と同様の操作でマイ
クロレンズを作製した。ただし、イオン交換の操作は行
わなかった。このマイクロレンズを輪帯状の光電変換部
を有する撮像素子の集光素子として利用したところ、感
度の低いものであった。
[Comparative Example 1] A microlens was manufactured in the same manner as in Example 2. However, the ion exchange operation was not performed. When this microlens was used as a light-collecting element of an image pickup device having a ring-shaped photoelectric conversion unit, the sensitivity was low.

【0021】[0021]

【実施例3】実施例1と同様のゾルを調製し、実施例1
と同様の操作によってゲル状レンズパターンを作製し
た。この基板を凸形状のパターンの形成された面を下に
し、0.15mol/lの酢酸カリウムのエタノール溶
液中に数秒浸漬し、そのまま引き上げ、エタノール雰囲
気中に静置した。この工程によってレンズ凸面の面頂部
にたまった酢酸カリウムの溶液がゲル中の鉛成分と交換
するが、その交換量はレンズ面頂部にたまった若干量の
カリウム/エタノールとの交換に限られるため、微小レ
ンズ部の鉛が溶出し過ぎるということはない。逆に交換
量が少なすぎる場合にはその工程を増やせばよい。得ら
れた基板を乾燥、熱処理することによって所望の形状及
び屈折率分布を有するマイクロレンズを作製することが
できた。
Example 3 A sol similar to that of Example 1 was prepared, and Example 1 was prepared.
A gel-like lens pattern was produced by the same operation as in. This substrate was immersed in an ethanol solution of potassium acetate (0.15 mol / l) for several seconds with the surface on which the convex pattern was formed facing downward, and then the substrate was lifted as it was and allowed to stand in an ethanol atmosphere. By this process, the solution of potassium acetate accumulated on the top of the convex surface of the lens is exchanged with the lead component in the gel, but the exchange amount is limited to the exchange with a small amount of potassium / ethanol accumulated on the top of the lens surface. Lead in the microlens portion does not elute too much. On the contrary, when the exchange amount is too small, the number of steps may be increased. By drying and heat-treating the obtained substrate, a microlens having a desired shape and refractive index distribution could be manufactured.

【0022】[0022]

【実施例4】実施例2と同様にして作製したゾルを基板
状に塗布した後、図4(a)のような形状のパータンが
マトリックス状に並んだスタンパーと接触させ、ゲル化
させた。ここにフォトリソ加工を行い、各マイクロレン
ズの光軸部分のみを露出させた基板を作製した。これを
実施例2と同様の溶媒塩中に浸漬し、Tl+ とNa+
の交換を行った。これにより、図4(b)に示すような
形状及び屈折率分布を有するマイクロレンズを作製する
ことができた。この集光素子を輪帯状の光電変換部を有
する撮像素子の集光素子として利用したところ、高感度
化を実現した。この例は、マイクロレンズの屈折率に分
布を有する領域では平面のために光の屈曲作用を有さな
いため、分布形状の制御が容易である。
Example 4 A sol prepared in the same manner as in Example 2 was applied on a substrate, and then contacted with a stamper having a pattern as shown in FIG. Photolithography was performed here to fabricate a substrate in which only the optical axis portion of each microlens was exposed. This was immersed in the same solvent salt as in Example 2 to exchange Tl + for Na + . As a result, a microlens having a shape and a refractive index distribution as shown in FIG. 4B could be manufactured. When this condensing element was used as a condensing element of an image pickup element having a ring-shaped photoelectric conversion part, high sensitivity was realized. In this example, since the region where the refractive index of the microlens has a distribution has a flat surface and does not have a bending action of light, the distribution shape can be easily controlled.

【0023】[0023]

【実施例5】Si(OCH3 4 とTi(On
4 9 4 を原料としゲル状のレンズパターンを形成し
た。この基板に面頂部の一部が露出するようにマスキン
グを施した。この基板を1Nの硫酸中で処理しTi成分
を溶出させた。この基板を乾燥・熱処理することによっ
てマトリックス状の集光素子を得た。この集光素子を輪
帯状の光電変換部を有する撮像素子の集光素子として使
用したところ、高感度化が実現した。
Example 5 Si (OCH 3 ) 4 and Ti (O n C
4 H 9 ) 4 was used as a raw material to form a gel lens pattern. The substrate was masked so that a part of the top of the surface was exposed. This substrate was treated in 1N sulfuric acid to elute the Ti component. The substrate was dried and heat-treated to obtain a matrix light-collecting device. When this condensing element was used as a condensing element of an image pickup element having a ring-shaped photoelectric conversion part, high sensitivity was realized.

【0024】[0024]

【発明の効果】以上のように、本発明の固体撮像素子用
一体型集光素子およびその製造方法によれば、輪帯状の
光電変換部を有する固体撮像素子上の不感領域に入射す
る光を効率よく集光することができ、これにより、固体
撮像素子の画素の微細化による素子の小型化と高感度化
を同時に達成することが可能となる。
As described above, according to the integrated light-collecting device for a solid-state image pickup device and the method for manufacturing the same of the present invention, the light incident on the insensitive region on the solid-state image pickup device having the annular photoelectric conversion portion is prevented. It is possible to collect light efficiently, and by doing so, it is possible to achieve miniaturization of the element of the solid-state image sensor and miniaturization of the element and high sensitivity at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の凸形状の面頂部より屈折率に分布を有
する集光素子の光路を示す光路図である。
FIG. 1 is an optical path diagram showing an optical path of a condensing element having a distribution of refractive index from a convex surface top portion of the present invention.

【図2】光電変換部が輪帯状の画素で形成される固体撮
像素子の一つの画素の断面斜視図である。
FIG. 2 is a cross-sectional perspective view of one pixel of a solid-state image sensor in which a photoelectric conversion unit is formed of annular pixels.

【図3】本発明の製造方法の一例を示す工程図である。FIG. 3 is a process drawing showing an example of the manufacturing method of the present invention.

【図4】(a)本発明の実施例3で作製されたマイクロ
レンズを示す正面図、(b)同実施例3で用いるスタン
パーの形状を示す断面図である。
4A is a front view showing a microlens manufactured in Example 3 of the present invention, and FIG. 4B is a sectional view showing the shape of a stamper used in Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 多結晶シリコンゲート 2 p- 基板 3 n- チャンネル層 4 正孔 5 SiO2 層 6 n+ ソース層 7 ソース 8,12 マイクロレンズ 9 光電変換部 10 レンズパターン 11 マスク1 Polycrystalline Silicon Gate 2 p - Substrate 3 n - Channel Layer 4 Holes 5 SiO 2 Layer 6 n + Source Layer 7 Source 8, 12 Microlens 9 Photoelectric Conversion Section 10 Lens Pattern 11 Mask

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 画素の光電変換部が略輪帯状の固体撮像
素子に一体に設けて用いる集光素子であって、集光素子
の所定位置に、少なくとも一部が凸形状であるレンズパ
ターンを有し、かつ該レンズパターンの光軸とレンズ面
の交点部より屈折率に分布を形成したことを特徴とする
固体撮像素子用一体型集光素子。
1. A condensing element for use as a photoelectric conversion part of a pixel integrally provided in a substantially annular solid-state imaging device, wherein a lens pattern, at least a part of which has a convex shape, is provided at a predetermined position of the condensing element. An integrated light-collecting device for a solid-state imaging device, characterized in that a distribution is formed in a refractive index from an intersection of an optical axis of the lens pattern and a lens surface.
【請求項2】 請求項1記載の固体撮像素子用一体型集
光素子を製造するにあたり、高屈折率金属成分を含有す
るガラスを原料とし、各画素毎に凸形状のレンズパター
ンを形成した後、マスキング処理を施し、該レンズパタ
ーンの一部を低屈折率金属成分の溶融塩と接触させるこ
とにより屈折率の分布を形成することを特徴とする固体
撮像素子用一体型集光素子の製造方法。
2. In manufacturing the integrated light-collecting device for a solid-state image pickup device according to claim 1, after forming a convex lens pattern for each pixel using glass containing a high refractive index metal component as a raw material. A method for manufacturing an integrated light-collecting device for a solid-state image pickup device, which comprises performing a masking process and forming a refractive index distribution by bringing a part of the lens pattern into contact with a molten salt of a low-refractive-index metal component. .
【請求項3】 請求項1記載の固体撮像素子用一体型集
光素子を製造するにあたり、高屈折率金属成分を含有す
るゾルを原料とし、各画素毎に凸形状のゲル状レンズパ
ターンを形成した後、マスキング処理を施し、該ゲル状
レンズパターンの一部を低屈折率金属成分を含有する溶
液または酸と接触させることにより屈折率の分布を形成
することを特徴とする固体撮像素子用一体型集光素子の
製造方法。
3. In manufacturing the integrated light-collecting device for a solid-state imaging device according to claim 1, a sol containing a high refractive index metal component is used as a raw material, and a convex gel lens pattern is formed for each pixel. After that, a masking process is performed, and a part of the gel lens pattern is brought into contact with a solution containing a low refractive index metal component or an acid to form a refractive index distribution. A method for manufacturing a body type light condensing element.
JP5301015A 1993-11-05 1993-11-05 Integrated light-condensing element for solid-state image sensing element and its manufacture Withdrawn JPH07130973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5301015A JPH07130973A (en) 1993-11-05 1993-11-05 Integrated light-condensing element for solid-state image sensing element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5301015A JPH07130973A (en) 1993-11-05 1993-11-05 Integrated light-condensing element for solid-state image sensing element and its manufacture

Publications (1)

Publication Number Publication Date
JPH07130973A true JPH07130973A (en) 1995-05-19

Family

ID=17891818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5301015A Withdrawn JPH07130973A (en) 1993-11-05 1993-11-05 Integrated light-condensing element for solid-state image sensing element and its manufacture

Country Status (1)

Country Link
JP (1) JPH07130973A (en)

Similar Documents

Publication Publication Date Title
JP2596523B2 (en) Solid-state imaging device and method of manufacturing the same
CN100364099C (en) Process for manufacturing semiconductor device and semiconductor device
CN100426514C (en) CMOS image sensor and method for fabricating the same
JPH10270672A (en) Solid-state image pickup element
JP3178629B2 (en) Solid-state imaging device and method of manufacturing the same
CN1816915A (en) Multiple microlens system for image sensors or display units
JP2001237405A (en) Solid-state image pickup device and its manufacturing method
JP2006229217A (en) Image sensor with embedded optical element
JPH1093060A (en) Structure of solid-state image pickup device and manufacture thereof
US6166369A (en) Microcollector for photosensitive devices using sol-gel
JPH04229802A (en) Solid image pick-up device and manufacture thereof
JPH07161953A (en) Microlens
JP3269644B2 (en) Manufacturing method of micro lens
JPH0922995A (en) Solid state imaging device and manufacture thereof
JPH07130973A (en) Integrated light-condensing element for solid-state image sensing element and its manufacture
JPH069229B2 (en) Method of manufacturing solid-state imaging device
JPH06140611A (en) On-chip microlens and manufacture thereof
CN100499144C (en) Method for forming an image sensor having concave-shaped micro-lenses
JPH06317701A (en) Microlens and production thereof
JPH07193207A (en) Integrated photo condenser element for solid state image pick up element and its manufacture
JPH07325263A (en) Integral type condenser element for solid-state image pickup element and its production
JPS60262458A (en) Manufacture of solid-state image pickup device
JPH0570944B2 (en)
JP2967736B2 (en) Infrared imaging device and manufacturing method thereof
JPS6213067A (en) Solid-state image pickup device with lens region

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130