JPH07130582A - Manufacture of tantalum anode - Google Patents

Manufacture of tantalum anode

Info

Publication number
JPH07130582A
JPH07130582A JP5296087A JP29608793A JPH07130582A JP H07130582 A JPH07130582 A JP H07130582A JP 5296087 A JP5296087 A JP 5296087A JP 29608793 A JP29608793 A JP 29608793A JP H07130582 A JPH07130582 A JP H07130582A
Authority
JP
Japan
Prior art keywords
tantalum
sintered body
wire
welding
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5296087A
Other languages
Japanese (ja)
Other versions
JP2527689B2 (en
Inventor
Katsuyuki Inoue
勝行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIMEKA KK
Original Assignee
HAIMEKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIMEKA KK filed Critical HAIMEKA KK
Priority to JP5296087A priority Critical patent/JP2527689B2/en
Publication of JPH07130582A publication Critical patent/JPH07130582A/en
Application granted granted Critical
Publication of JP2527689B2 publication Critical patent/JP2527689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of manufacturing a tantalum anode through a simple process, wherein tantalum powder is micronized, lessened in molding density, and set low in sintering temperature, and a tantalum sintered body can be formed porous. CONSTITUTION:A porous tantalum sintered body 14 and a tantalum wire 19 are joined together for the formation of a tantalum anode through a butt resistance-welding method, wherein a butting pressure is set to 1.5 to 3.0kgf suitable for enhancing the tantalum anode most in welding strength, the welding spot 18 of the sintered body 14 is formed comparatively high in density and has a surface where tantalum powder is two-dimensionally orientated, and a high dense compressed spot is provided to the welding spot of the sintered body through a dimple processing. By this setup, a tantalum anode composed of a tantalum sintered body and a tantalum wire is much enhanced in welding strength between the sintered body and the wire and protected against cracking around a welded spot.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タンタル固体電解コン
デンサ、特にはタンタル固体電解コンデンサの基本素材
であるタンタル陽極体の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tantalum solid electrolytic capacitor, and more particularly to a method for producing a tantalum anode body which is a basic material of a tantalum solid electrolytic capacitor.

【0002】[0002]

【従来技術】タンタル固体電解コンデンサの基本素材で
あるタンタル陽極体の製造方法は、タンタル粉末を加圧
成形する際に、陽極引出しリ−ド線となるタンタルワイ
ヤ−を成形体に同時に埋め込み、真空焼結を施して多孔
質タンタル陽極体とする方法と、タンタル粉末を成形金
型により加圧成形、真空焼結して多孔質タンタル焼結体
を形成したのち、該焼結体にタンタルワイヤ−を突き合
わせ抵抗溶接により付設しタンタル陽極体とする方法と
がある。
2. Description of the Related Art A method for manufacturing a tantalum anode body, which is a basic material of a tantalum solid electrolytic capacitor, is such that, when tantalum powder is pressure-molded, a tantalum wire that serves as an anode lead wire is simultaneously embedded in the molded body, and a vacuum A method of sintering to obtain a porous tantalum anode body, a method of press-molding tantalum powder with a molding die, and vacuum sintering to form a porous tantalum sintered body, and then forming a tantalum wire on the sintered body. Is a tandem anode body attached by butt resistance welding.

【0003】殊に後者の方法は、前者の方法に比較して
タンタルワイヤ−の凡そ埋め込み体積分だけ容量が増加
できることと、ワイヤレス成形により非常に成形作業性
に優れ、成形体の成形密度も均一化されることと、焼結
炉の装填率が大幅に向上するなどの優位性があり、その
効果はタンタル陽極体が小型化になるほど顕著である等
の利点がある。このような利点を生かして従来から一般
的な突き合わせ抵抗溶接が行われてきた。
In particular, the latter method is capable of increasing the capacity by approximately the volume of the tantalum wire embedded as compared with the former method, and is extremely excellent in molding workability by wireless molding, and the molding density of the molded body is uniform. And the loading rate of the sintering furnace is greatly improved, and the effect is more remarkable as the tantalum anode body becomes smaller. Conventional butt resistance welding has been performed by taking advantage of such advantages.

【0004】[0004]

【従来技術の問題点】然し乍ら近年、コンデンサの大容
量化、小型化要求に対応してタンタル粉末の微細化、成
形密度の低密度化、焼結温度の引下げが進んでおり、多
孔質タンタル焼結体はよりポ−ラスに、そしてタンタル
粉末の結合力は一層弱まる方向で実用化されている。
However, in recent years, tantalum powder has been made finer, the compacting density has been made lower, and the sintering temperature has been lowered in response to the demand for larger capacity and smaller size of capacitors. The aggregate is more practical, and the binding force of the tantalum powder is further weakened and put to practical use.

【0005】このことは多孔質タンタル焼結体とタンタ
ルワイヤ−の突き合わせ抵抗溶接に極めて不利に作用
し、極端には溶接強度低下によるタンタルワイヤ−の脱
落、そして溶接部の周辺の多孔質タンタル焼結体に発生
するクラックの影響が加わったコンデンサ特性の悪化、
更には信頼性の低下を招くことからこれらの影響を受け
にくいグレ−ドの例えば18000CV/g級以下のタ
ンタル粉末に限定して実用化せざるをえない状況下にあ
る。
This has an extremely disadvantageous effect on the butt resistance welding of the porous tantalum sintered body and the tantalum wire, and in the extreme, the tantalum wire falls off due to the reduction of the welding strength, and the porous tantalum firing around the welded portion occurs. Deterioration of capacitor characteristics due to the effect of cracks that occur in the united body,
Further, since the reliability is deteriorated, it is inevitable to limit the practical use to the grade of tantalum powder of 18000 CV / g or less, which is less susceptible to these influences.

【0006】又特公平5−1609公報や特開昭62−
9619公報に示されている方法があるが、これらはタ
ンタル成型体の中に高密度成型体や金属ボ−ルを埋め込
むなど、複雑な操作と加工を必要としている。
Further, Japanese Patent Publication No. 5-1609 and Japanese Patent Laid-Open No. 62-
Although there is a method shown in the 9619 publication, these require complicated operations and processing such as embedding a high density molded body or a metal ball in a tantalum molded body.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、タン
タル粉末の微細化、成形密度の低密度化、焼結温度の引
下げ、多孔質タンタル焼結体のポ−ラス化に対応でき、
而も簡単な操作によりタンタル陽極体を提供しようとす
るものである。
Therefore, the present invention can be applied to finer tantalum powder, lower compacting density, lower sintering temperature, and porous porous tantalum sintered body,
Moreover, it is intended to provide a tantalum anode body by a simple operation.

【0008】[0008]

【課題を解決するための手段】本発明によるタンタル陽
極体は、多孔質タンタル焼結体とタンタルワイヤ−の突
き合わせ抵抗溶接においてその突き合わせ加圧力を溶接
強度的に最も強く安定した範囲に限定することと、該焼
結体の溶接部を、比較的高密度に成形され且つタンタル
粉末が平面的整列方向を有する面とすることと、該焼結
体の溶接部にディンプル加工による高密度圧縮部を設け
ることにより、溶接強度を非常に優れたものとし、溶接
部周辺へのクラックの発生もないようにしたものであ
る。
In the tantalum anode body according to the present invention, in the butt resistance welding of the porous tantalum sintered body and the tantalum wire, the butt pressure force is limited to the strongest and stable range in terms of welding strength. And that the welded portion of the sintered body is a surface having a relatively high density and the tantalum powder has a planar alignment direction, and the welded portion of the sintered body is provided with a high-density compressed portion by dimple processing. By providing it, the welding strength is made extremely excellent, and cracks are not generated around the welded portion.

【0009】本発明を図示の実施例により説明すると、
図3はタンタル粉末12の加圧成形手順を示したもので
あり、加圧する下型10が嵌合している固定の中型11
にタンタル粉末12を一定量充填し、その後加圧する上
型13を中型11に嵌合しながら一定圧力で加圧し、多
孔質タンタル焼結体14となるタンタル成形体をつく
る。
The present invention will be described with reference to the embodiments shown in the drawings.
FIG. 3 shows a pressure molding procedure for tantalum powder 12, in which a fixed middle mold 11 to which a lower mold 10 to be pressed is fitted.
Then, a fixed amount of tantalum powder 12 is filled in, and then the upper mold 13 for pressing is pressed at a constant pressure while being fitted to the middle mold 11, thereby forming a tantalum compact which becomes a porous tantalum sintered body 14.

【0010】使用したタンタル粉末は30000CV/
g級粉末、成形密度は5.0g/CC、多孔質タンタル
焼結体14の成形体寸法は図2のように1.5T(厚
さ)4.0W(巾)×2.0H(高さ)mm、焼結条件
は1450℃−20分とした。
The tantalum powder used is 30,000 CV /
As shown in FIG. 2, the size of the porous tantalum sintered body 14 is 1.5T (thickness) 4.0W (width) x 2.0H (height). ) Mm, and the sintering conditions were 1450 ° C. and 20 minutes.

【0011】図1或は図2は前記条件下で得られた多孔
質タンタル焼結体14を示すもので成形金型の上型13
との接触面15及び下型10との接触面16は比較的高
密度であり中型11との接触面17は中央部が比較的低
密度になっている。
FIG. 1 or FIG. 2 shows a porous tantalum sintered body 14 obtained under the above-mentioned conditions, which is an upper mold 13 of a molding die.
The contact surface 15 with and the contact surface 16 with the lower mold 10 have a relatively high density, and the contact surface 17 with the middle mold 11 has a relatively low density in the central portion.

【0012】前記多孔質タンタル焼結体14の、成形金
型の中型11との接触面17の中央部を溶接部18と
し、一般的な溶接方法にてタンタルワイヤ−19の突き
合わせ抵抗溶接を行い、溶接強度及び溶接断面評価に基
づいてその突合せ加圧力の適正値を1.5〜3.0kg
fとして図1のタンタル陽極体を製造する。タンタルワ
イヤ−19はφ0.3mmを使用する。
The central portion of the contact surface 17 of the porous tantalum sintered body 14 with the middle die 11 of the molding die is used as a welded portion 18, and butt resistance welding of the tantalum wire 19 is performed by a general welding method. , The appropriate value of the butt pressure based on the weld strength and weld cross-section evaluation is 1.5 to 3.0 kg.
As t, the tantalum anode body of FIG. 1 is manufactured. The tantalum wire-19 has a diameter of 0.3 mm.

【0013】更に図2のように、多孔質タンタル焼結体
14とタンタルワイヤ−19の突き合わせ抵抗溶接の溶
接部18は、成形金型の上型13との接触面15又は下
型10との接触面16が、中型11との接触面17より
も溶接状態が良くより良好な溶接適正面の得られること
が分かった。突合せ加圧力の適正値を1.5〜3.0k
gfとする。
Further, as shown in FIG. 2, the welded portion 18 of the butt resistance welding of the porous tantalum sintered body 14 and the tantalum wire-19 is contacted with the upper die 13 of the forming die or the lower die 10. It has been found that the contact surface 16 is in a better welded state than the contact surface 17 with the middle die 11 and a better welding proper surface can be obtained. Proper value of butt pressure is 1.5-3.0k
gf.

【0014】更にクラック対策として、図4のように焼
結体14の前記溶接部18(接触面15、16、17)
にディンプル加工による高密度圧縮部20を設け、図5
〜図6によりタンタルワイヤ−19の突き合わせ抵抗溶
接を行う。
Further, as a countermeasure against cracks, the welded portion 18 (contact surfaces 15, 16, 17) of the sintered body 14 as shown in FIG.
5 is provided with a high-density compression portion 20 by dimple processing,
Butt resistance welding of the tantalum wire-19 is performed according to FIG.

【0015】高密度圧縮部20は、図4に示す円錐形ダ
イヤモンドツ−ル21の円錐角度を60°、その先端部
をSR2.5mmの球面とし、約3kgfの加圧力で該
焼結体14に押し付けながら回転させ、口径0.5m
m、深さ0.2mm、密度は7.0g/CC以上とし
た。
In the high-density compression part 20, the conical diamond tool 21 shown in FIG. 4 has a conical angle of 60 °, and the tip part thereof has a spherical surface of SR2.5 mm, and the sintered body 14 is applied with a pressing force of about 3 kgf. Rotate while pressing against 0.5m diameter
m, depth 0.2 mm, and density 7.0 g / CC or more.

【0016】尚、ディンプル加工にはダイヤモンド以外
の耐摩耗性材料を使用しても良い。又、円錐角度、先端
部形状、加圧力などは高密度圧縮部20の必要条件に応
じた条件設定となる。
Abrasion resistant materials other than diamond may be used for the dimple processing. Further, the conical angle, the tip shape, the pressing force, etc. are set according to the necessary conditions of the high-density compression section 20.

【0017】[0017]

【本発明の効果】図7は、前記の各種溶接条件下で得ら
れた多孔質タンタル焼結体14とタンタルワイヤ−19
の突き合わせ抵抗溶接における、突き合わせ加圧力と溶
接強度(引っ張り強度)の関係を示したデ−タ図であ
る。同図中のaは多孔質タンタル焼結体14の溶接部1
8を、図1に示す焼結体14の中型11との接触面17
とした場合の溶接強度(引っ張り強度)を示す。
FIG. 7 shows the porous tantalum sintered body 14 and the tantalum wire-19 obtained under the above various welding conditions.
3 is a data diagram showing the relationship between the butt pressure and the welding strength (tensile strength) in the butt resistance welding of FIG. In the figure, a is a welded portion 1 of the porous tantalum sintered body 14.
8 is a contact surface 17 of the sintered body 14 shown in FIG.
Indicates the welding strength (tensile strength).

【0018】この図7のデ−タ図の分析結果によれば、
溶接強度(引っ張り強度)は突き合わせ加圧力が1.0
kgf以下では、タンタルワイヤ−19の溶着が多孔質
タンタル焼結体14の極表面に留まり、両者の接合面積
が小さいため実用的強度は得られない。
According to the analysis result of the data diagram of FIG. 7,
Welding strength (tensile strength) is butt pressure of 1.0
When the pressure is less than or equal to kgf, the welding of the tantalum wire-19 remains on the extreme surface of the porous tantalum sintered body 14, and the joint area between the two is small, so that practical strength cannot be obtained.

【0019】又、3.5kgf以上では突き合わせ加圧
力が過剰となり、多孔質タンタル焼結体14にタンタル
ワイヤ−19が機械的に圧入される度合いが大きく、強
度を保てない。従って実用的溶接強度(引っ張り強度)
は突き合わせ加圧力が1.5〜3.0kgfの範囲にお
いて得られる。
On the other hand, if the pressure is 3.5 kgf or more, the butting pressure becomes excessive, and the tantalum wire-19 is mechanically pressed into the porous tantalum sintered body 14 to a large extent, and the strength cannot be maintained. Therefore, practical welding strength (tensile strength)
Is obtained when the butt pressure is in the range of 1.5 to 3.0 kgf.

【0020】同図7中のbは多孔質タンタル焼結体14
の溶接部18を、図2に示す成形金型の上型13との接
触面15又は下型10との接触面16とした場合の溶接
強度(引っ張り強度)を示す。中型11との接触面17
に比較してこの面は、図2に示すようにタンタル粉末1
2の整列方向が平面的になることと、成形体の形崩れ防
止など機械的強度上の理由から比較的高密度に形成され
るため、この面での溶接強度(引っ張り強度)は同図7
のaの条件より約0.5kg高い値が得られ、この時の
実用的溶接強度(引っ張り強度)も突き合わせ加圧力が
1.5〜3.0kgfの範囲において得られる。
In FIG. 7, b is a porous tantalum sintered body 14
3 shows the welding strength (tensile strength) when the welded portion 18 is the contact surface 15 with the upper die 13 or the contact surface 16 with the lower die 10 shown in FIG. Contact surface 17 with the middle mold 11
This surface compared to the tantalum powder 1 as shown in FIG.
Since the alignment direction of 2 is flat and the molded body is formed at a relatively high density for reasons of mechanical strength such as prevention of shape collapse, the welding strength (tensile strength) on this surface is shown in FIG.
A value about 0.5 kg higher than the condition a) is obtained, and practical welding strength (tensile strength) at this time is also obtained when the butt pressure is in the range of 1.5 to 3.0 kgf.

【0021】更に同図7中のcは、多孔質タンタル焼結
体14の溶接部18を、成形金型の上型13との接触面
15又は下型10との接触面16とし、これにディンプ
ル加工を施して高密度圧縮部20を設け、ここにタンタ
ルワイヤ−19を抵抗溶接したときの溶接強度(引っ張
り強度)を示したものである。中型11との接触面17
にディンプル加工して高密度圧縮部を作りタンタルワイ
ヤ−を抵抗溶接しても溶接強度の優れたものとなる。
Further, in FIG. 7C, the welded portion 18 of the porous tantalum sintered body 14 is used as a contact surface 15 with the upper die 13 of the molding die or a contact surface 16 with the lower die 10, and This shows the welding strength (tensile strength) when resistance-welding the tantalum wire-19 to the high-density compressed portion 20 by performing dimple processing. Contact surface 17 with the middle mold 11
Even if the tantalum wire is resistance-welded by making a high-density compressed portion by dimple processing, excellent welding strength can be obtained.

【0022】高密度圧縮部20がおよそ半球状のくぼみ
であることと、密度が、7.0g/CC以上と高いこと
から多孔質タンタル焼結体14とタンタルワイヤ−19
の溶着面積が非常に広く、溶接性に極めて優れた結果が
得られる。
Since the high-density compressed portion 20 is a hemispherical hollow and the density is as high as 7.0 g / CC or more, the porous tantalum sintered body 14 and the tantalum wire-19 are contained.
Has a very large welded area, and extremely excellent weldability can be obtained.

【0023】その溶接強度(引っ張り強度)は同図7中
のbの条件を0.5kg以上上回り突き合わせ加圧力が
2.0kgfから3.0kgfの範囲では、全てタンタ
ルワイヤ−19の切断となる。
The welding strength (tensile strength) thereof exceeds the condition of b in FIG. 7 by 0.5 kg or more, and the tantalum wire-19 is all cut when the butt pressure is in the range of 2.0 kgf to 3.0 kgf.

【0024】更に、同図7中のa及びbの条件で見られ
た溶接部18周辺のクラックは、本条件下の突き合わせ
加圧力3.0kgf以下では全く見られない。
Further, cracks around the welded portion 18 observed under the conditions a and b in FIG. 7 are not observed at a butt pressure of 3.0 kgf or less under these conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明製造方法によるタンタル陽極体の外観
図。
FIG. 1 is an external view of a tantalum anode body manufactured by the manufacturing method of the present invention.

【図2】本発明製造方法によるタンタル陽極体の外観
図。
FIG. 2 is an external view of a tantalum anode body manufactured by the manufacturing method of the present invention.

【図3】本発明に係るタンタル粉末の成形手順の説明
図。
FIG. 3 is an explanatory view of a tantalum powder molding procedure according to the present invention.

【図4】本発明に係る多孔質タンタル焼結体に、ディン
プル加工を施す手順を示した説明図。
FIG. 4 is an explanatory view showing a procedure for performing dimple processing on the porous tantalum sintered body according to the present invention.

【図5】本発明に係る多孔質タンタル焼結体の高密度圧
縮部にタンタルワイヤ−を突き合わせ抵抗溶接する際の
手順を示す説明図。
FIG. 5 is an explanatory view showing a procedure for butt resistance welding a tantalum wire to a high-density compressed portion of the porous tantalum sintered body according to the present invention.

【図6】本発明に係る多孔質タンタル焼結体の高密度圧
縮部にタンタルワイヤ−を突き合わせ抵抗溶接する際の
手順を示す説明図。
FIG. 6 is an explanatory view showing a procedure for butt resistance welding a tantalum wire to a high-density compressed portion of the porous tantalum sintered body according to the present invention.

【図7】本発明に係る製造方法によって得たタンタル陽
極体の各種条件下における抵抗溶接の、突き合わせ加圧
力と溶接強度(引っ張り強度)の関係を示すデ−タ図。
FIG. 7 is a data diagram showing the relationship between the butt pressure and the welding strength (tensile strength) of resistance welding of the tantalum anode body obtained by the manufacturing method according to the present invention under various conditions.

【符号の説明】[Explanation of symbols]

10 成形金型の下型 11 成形金型の中型 12 タンタル粉末 13 成形金型の上型 14 多孔質タンタル焼結体 15 上型との接触面 16 下型との接触面 17 中型との接触面 18 溶接部 19 タンタルワイヤ− 20 高密度圧縮部 21 ダイヤモンドツ−ル 10 Lower Mold of Molding Mold 11 Medium Mold of Molding Mold 12 Tantalum Powder 13 Upper Mold of Molding Mold 14 Porous Tantalum Sintered Body 15 Contact Surface with Upper Mold 16 Contact Surface with Lower Mold 17 Contact Surface with Medium Mold 18 Welded portion 19 Tantalum wire-20 High-density compressed portion 21 Diamond tool

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タンタル粉末を、上型、下型、中型から
構成される所定形状の成形金型により加圧成形、真空焼
結して多孔質タンタル焼結体を形成し、該焼結体にタン
タルワイヤ−を突き合わせ抵抗溶接したタンタル陽極体
において、突き合わせ抵抗溶接の加圧力を1.5〜3.
0kgfの範囲としたタンタル陽極体の製造方法。
1. A porous tantalum sintered body is formed by press-molding and vacuum-sintering tantalum powder with a molding die having a predetermined shape including an upper die, a lower die, and a middle die. In the tantalum anode body in which the tantalum wire was butt resistance welded to, the pressure force of the butt resistance welding was 1.5 to 3.
A method for producing a tantalum anode body having a range of 0 kgf.
【請求項2】 多孔質タンタル焼結体とタンタルワイヤ
−の突き合わせ抵抗溶接において、該焼結体の溶接部
を、加圧する成形金型との接触面とすることを特徴とす
る請求項1記載のタンタル陽極体の製造方法。
2. A butt resistance welding of a porous tantalum sintered body and a tantalum wire, wherein the welded portion of the sintered body is a contact surface with a molding die to be pressed. For manufacturing a tantalum anode body of.
【請求項3】 多孔質タンタル焼結体とタンタルワイヤ
−の突き合わせ抵抗溶接において、該焼結体の溶接部
に、ディンプル加工による高密度圧縮部を予め設け、該
高密度圧縮部にタンタルワイヤ−を抵抗溶接することを
特徴とするタンタル陽極体の製造方法。
3. In butt resistance welding of a porous tantalum sintered body and a tantalum wire, a high-density compressed portion by dimple processing is previously provided in the welded portion of the sintered body, and the high-density compressed portion is tantalum wire-bonded. A method for producing a tantalum anode body, comprising:
JP5296087A 1993-11-01 1993-11-01 Method for manufacturing tantalum anode body Expired - Lifetime JP2527689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5296087A JP2527689B2 (en) 1993-11-01 1993-11-01 Method for manufacturing tantalum anode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5296087A JP2527689B2 (en) 1993-11-01 1993-11-01 Method for manufacturing tantalum anode body

Publications (2)

Publication Number Publication Date
JPH07130582A true JPH07130582A (en) 1995-05-19
JP2527689B2 JP2527689B2 (en) 1996-08-28

Family

ID=17828956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5296087A Expired - Lifetime JP2527689B2 (en) 1993-11-01 1993-11-01 Method for manufacturing tantalum anode body

Country Status (1)

Country Link
JP (1) JP2527689B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004854A (en) * 2006-06-26 2008-01-10 Nichicon Corp Element for solid electrolytic capacitor and method of manufacturing the same
JP2011204729A (en) * 2010-03-24 2011-10-13 Hitachi Aic Inc Anode for electrolytic capacitor, and method for manufacturing the same
CN104934227A (en) * 2015-07-10 2015-09-23 长春维鸿东光电子器材有限公司 Tantalum core making technology of high-temperature all-tantalum capacitor
WO2016136236A1 (en) * 2015-02-27 2016-09-01 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143316A (en) * 1983-01-28 1984-08-16 ユニオン・カ−バイド・コ−ポレ−シヨン Bonding of lead wire to tantalum anode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143316A (en) * 1983-01-28 1984-08-16 ユニオン・カ−バイド・コ−ポレ−シヨン Bonding of lead wire to tantalum anode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004854A (en) * 2006-06-26 2008-01-10 Nichicon Corp Element for solid electrolytic capacitor and method of manufacturing the same
JP2011204729A (en) * 2010-03-24 2011-10-13 Hitachi Aic Inc Anode for electrolytic capacitor, and method for manufacturing the same
WO2016136236A1 (en) * 2015-02-27 2016-09-01 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor
CN107251179A (en) * 2015-02-27 2017-10-13 松下知识产权经营株式会社 Solid electrolytic capacitor
JPWO2016136236A1 (en) * 2015-02-27 2017-12-07 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor
CN110246695A (en) * 2015-02-27 2019-09-17 松下知识产权经营株式会社 Solid electrolytic capacitor
CN104934227A (en) * 2015-07-10 2015-09-23 长春维鸿东光电子器材有限公司 Tantalum core making technology of high-temperature all-tantalum capacitor

Also Published As

Publication number Publication date
JP2527689B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
JPH051609B2 (en)
EP1683594B1 (en) Use of titanium powder sintered compact
US6334882B1 (en) Dense parts produced by uniaxial compressing an agglomerated spherical metal powder
JPH07123100B2 (en) Method of manufacturing tantalum capacitor and preform for manufacturing tantalum capacitor
JP5311689B2 (en) Titanium sintered porous body and method for producing the same
JPH07130582A (en) Manufacture of tantalum anode
US6139593A (en) Manufacturing method of anode body of solid electrolytic capacitor
JP3052240B2 (en) Rotating anode for X-ray tube and method for producing the same
US3471287A (en) Process of making multiporous fuel cell electrodes
CN108927514A (en) A kind of production method of powder metallurgy spherolite
JPH11335705A (en) Production of sintered article
US4222167A (en) Method of manufacturing a contact bridge
JP2792480B2 (en) Method for manufacturing tantalum anode body
JPS6035780B2 (en) End hat for magnetron
US2254975A (en) Material for pen tips
JPH0475294B2 (en)
JPS6026297B2 (en) Semiconductor element support electrode
JPS6131369A (en) Porous and manufacture
JP2000269091A (en) Metal powder for electrolytic capacitor, anode body for electrolytic capacitor using the same, and electrolytic capacitor
JP2001003104A (en) Method for forming green compact from powder
JPH09134854A (en) Manufacture of solid electrolytic capacitor and anode body for the same
JP3131030B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6216507A (en) Manufacture of solid electrolytic capacitor
JP3949456B2 (en) Manufacturing method of solid electrolytic capacitor
JP4730576B2 (en) Method for manufacturing sintered parts