JPH0713049A - Method for assembling optical module - Google Patents

Method for assembling optical module

Info

Publication number
JPH0713049A
JPH0713049A JP15649593A JP15649593A JPH0713049A JP H0713049 A JPH0713049 A JP H0713049A JP 15649593 A JP15649593 A JP 15649593A JP 15649593 A JP15649593 A JP 15649593A JP H0713049 A JPH0713049 A JP H0713049A
Authority
JP
Japan
Prior art keywords
fixing member
semiconductor laser
optical fiber
support
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15649593A
Other languages
Japanese (ja)
Other versions
JP2565090B2 (en
Inventor
Masayuki Yoshima
政幸 與島
Tsutomu Furuya
努 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5156495A priority Critical patent/JP2565090B2/en
Publication of JPH0713049A publication Critical patent/JPH0713049A/en
Application granted granted Critical
Publication of JP2565090B2 publication Critical patent/JP2565090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4237Welding

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To decrease the misalignment quantity of optical axes after assembly by laser welding in the method for coupling an semiconductor laser and an optical fiber. CONSTITUTION:This method is composed of a stage for maximizing the coupling efficiency of the optical fiber 9 and the semiconductor laser by moving a ferrule 8 guided to a support 7, a stage for putting the end face of this support 7 and the end face of a lens holder 6 of the semiconductor laser unit 10 into a tight contact state and pressure state and laser welding the support 7 and the ferrule 8, a stage for releasing the support 7 from the pressure state and aligning the support 7 to the position where the coupling efficiency is max., a stage for storing the position of a manipulator in the stage 3, a stage for low pressing the support 7 to the semiconductor laser unit 10 and aligning the support again to the position where the coupling efficiency is max., a stage for highly pressing the support 7 and returning the manipulator to the plane position stored in the stage 4 and a stage for laser welding the support 7 and the semiconductor laser unit 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザの出射光
を光ファイバに結合する光モジュールの組立方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of assembling an optical module for coupling light emitted from a semiconductor laser with an optical fiber.

【0002】[0002]

【従来の技術】従来の光モジュール組立方法について図
面を参照して詳細に説明する。図4は、従来の組立方法
を示すフローチャートで、図2に光モジュールの断面図
を示す。
2. Description of the Related Art A conventional optical module assembling method will be described in detail with reference to the drawings. FIG. 4 is a flowchart showing a conventional assembling method, and FIG. 2 is a sectional view of the optical module.

【0003】図2においてパッケージステム1に半導体
レーザ2、モニタ用受光素子3、電極及びレンズホルダ
6が固定され、レンズホルダ6内に半導体レーザ2から
の出射光を集光する球レンズ5が固定され、これらで半
導体レーザユニット10を構成している。またサポート
7にフェルール8が固定され、光ファイバ素線9の先端
がフェルール8に固定され、レンズホルダ6の上面とサ
ポート7の下面が密着固定される。この光モジュール
は、光学軸を中心とした同心円筒形を組み合わせた形態
となっている。
In FIG. 2, a semiconductor laser 2, a light receiving element 3 for monitoring, an electrode and a lens holder 6 are fixed to a package stem 1, and a spherical lens 5 for converging light emitted from the semiconductor laser 2 is fixed in the lens holder 6. The semiconductor laser unit 10 is composed of these components. Further, the ferrule 8 is fixed to the support 7, the tip of the optical fiber element wire 9 is fixed to the ferrule 8, and the upper surface of the lens holder 6 and the lower surface of the support 7 are closely fixed. This optical module has a form in which concentric cylindrical shapes centered on the optical axis are combined.

【0004】半導体レーザユニット10に光ファイバを
さらに組み合わせる場合、従来の組立方法では、光ファ
イバ素線9は、フェルール8に樹脂接着剤で固定されて
おり、初めにフェルール8はサポート7に1μm程度の
クリアランスを設けてガイドされている。この従来の光
モジュール組立方法は半導体レーザユニット10を固定
しフェルール8を光学軸に平行な方向(Z方向)および
光学軸に垂直な方向(X−Y方向)にステージなどのユ
ニュピレータで微調整を行い、半導体レーザ2からのレ
ーザ光に対し最大の結合効率となるところに位置合わせ
する工程S1と、サポート7の下面と半導体レーザユニ
ット10の上面を密着押圧状態にし、フェルール8とサ
ポート7をレーザ溶接する工程S2と、半導体レーザユ
ニット10に対しフェルール8を相対的にX−Y方向に
動かし、光軸位置合わせできる程度の力でサポート7の
下面を半導体レーザユニット10の上面に押圧し(これ
を低押圧すると称する)、再び結合効率が最大の位置に
半導体レーザユニット10とフェルール8を合わせる工
程S3と、サポート7を高押圧した状態でサポート7と
半導体レーザユニット10をレーザ溶接する工程S4か
ら構成されていた。このような光モジュールの組立て方
法では工程S3で共ずれが生じる。
When the semiconductor laser unit 10 is further combined with an optical fiber, in the conventional assembling method, the optical fiber element wire 9 is fixed to the ferrule 8 with a resin adhesive, and the ferrule 8 is first attached to the support 7 by about 1 μm. It is guided with clearance. In this conventional optical module assembling method, the semiconductor laser unit 10 is fixed, and the ferrule 8 is finely adjusted in a direction parallel to the optical axis (Z direction) and a direction perpendicular to the optical axis (X-Y direction) with a unit such as a stage. Then, the step S1 of aligning the laser light from the semiconductor laser 2 at a position where the maximum coupling efficiency is achieved, the lower surface of the support 7 and the upper surface of the semiconductor laser unit 10 are brought into close contact with each other, and the ferrule 8 and the support 7 are lased. In the welding step S2, the ferrule 8 is moved in the XY directions relative to the semiconductor laser unit 10, and the lower surface of the support 7 is pressed against the upper surface of the semiconductor laser unit 10 with a force sufficient to align the optical axis. Is referred to as low pressure), and the step S of aligning the semiconductor laser unit 10 and the ferrule 8 again at the position where the coupling efficiency is maximum. When the support 7 and the semiconductor laser unit 10 the support 7 at a high pressing state was composed from step S4 for laser welding. In such an optical module assembling method, a misalignment occurs in step S3.

【0005】図5は、工程S3における摩擦力による共
ずれを説明するための側面図である。図5において11
はフェルール8を保持するマニュピレータである。サポ
ート7を押圧する加圧力をF1 ,サポート7の下面と半
導体レーザユニット10の上面との間の摩擦力をF2
する。加圧力F1 を1kg、静摩擦係数をμとし、μを
0.1と仮定して、摩擦力F2 は、 F2 =μF1 =0.1×1=0.1kg となる。
FIG. 5 is a side view for explaining the co-deviation due to the frictional force in step S3. 11 in FIG.
Is a manipulator that holds the ferrule 8. The pressing force for pressing the support 7 is F 1 , and the frictional force between the lower surface of the support 7 and the upper surface of the semiconductor laser unit 10 is F 2 . Assuming that the pressing force F 1 is 1 kg and the static friction coefficient is μ, and μ is 0.1, the frictional force F 2 is F 2 = μF 1 = 0.1 × 1 = 0.1 kg.

【0006】この場合フェルールの形状(外径:φ2m
m 内径:1mm)及びフェルール8の下端とクランプ
点とのかの距離をL(7mmと仮定)、フェルール8の
材質をステンレス鋼としてフェルール8のたをみδを求
めると δ=F2 3 /3EI=7.4(μm) となる(ここで、Eはステッレス鋼の縦弾性係数、Iは
フェルール8の断面2次モーメント)。この結果、工程
S3では最終光軸調整後に共ずれによる最大7.4μm
の残留歪が残ることになり、これが工程S4の溶接時の
軸ずれの原因となる。
In this case, the shape of the ferrule (outer diameter: φ2 m
m (inner diameter: 1 mm) and the distance between the lower end of the ferrule 8 and the clamp point is L (assuming 7 mm), the ferrule 8 is made of stainless steel, and the ferrule 8 is bent to find δ = F 2 L 3 / 3EI = 7.4 (μm) (where E is the longitudinal elastic modulus of the stainless steel, and I is the moment of inertia of area of the ferrule 8). As a result, in step S3, a maximum of 7.4 μm due to co-deviation after the final optical axis adjustment.
Of residual strain remains, which causes axis deviation during welding in step S4.

【0007】すなわち、工程S3でサポート7の下面と
レンズホルダ6の上面の間で光軸が合わせられるがフェ
ルール8にたわみδの残留歪が生じる。この光軸が合い
残留歪が生じた状態は、サポート7の下面が半導体レー
ザユット10の上面に押圧密着され半導体レーザユニッ
ト10は固定されフェルール8を保持するマニュピレー
タ11を固定しているので維持される。しかし工程S4
の溶接時にサポート7の下面が半導体レーザユニット1
0から浮き上がりその間の摩擦力が無くなることがある
のでその瞬間にフェルール8のたわみの残留歪が解放さ
れサポート7の下面と半導体レーザユニット10の上面
が相対的にずれ、軸ずれを生じる。
That is, in step S3, the optical axis is aligned between the lower surface of the support 7 and the upper surface of the lens holder 6, but the residual strain of the deflection δ is generated in the ferrule 8. The state in which the optical axes are aligned and the residual strain is generated is maintained because the lower surface of the support 7 is pressed and brought into close contact with the upper surface of the semiconductor laser unit 10 so that the semiconductor laser unit 10 is fixed and the manipulator 11 holding the ferrule 8 is fixed. . However, step S4
The lower surface of the support 7 is the semiconductor laser unit 1 when welding
Since it may float from 0 and the frictional force between them may disappear, the residual strain of the flexure of the ferrule 8 is released at that moment, and the lower surface of the support 7 and the upper surface of the semiconductor laser unit 10 are relatively deviated from each other, causing axial misalignment.

【0008】サポートと半導体レーザユニットの密着押
圧状態における光軸調整方法として、例えば特開昭63
−296009に示された方法がある。この方法では例
えばサポートを固定し、半導体レーザユニットをXY方
向に移動させ、相互間の光結合効率がより大きくなるよ
うにXY方向交互に山登り探索した場合、摩擦力による
歪で相互に影響するため、X方向にステップ送りして固
定し、その位置でY方向に移動し、光ファイバの受光の
最大光量の位置を求める。これを順次繰り返すことで、
まず最大光量の得られるX位置を探索する。その後、決
定された最大光量の得られるX位置でY方向に移動して
最大光量が得られる位置で停止し、光軸調整を終了す
る。この光軸調整方法は、確実に最大光量を探索できる
が最終的にY方向に歪が残ってしまい、溶接時の軸ズレ
の要因になり得る。
As a method of adjusting the optical axis when the support and the semiconductor laser unit are in close contact with each other, a method of adjusting the optical axis is disclosed in, for example, JP-A-63 / 1988
There is a method shown in -29609. In this method, for example, when the supports are fixed, the semiconductor laser units are moved in the XY directions, and the hill climbing search is performed alternately in the XY directions so that the mutual optical coupling efficiency becomes greater, the strain due to the frictional force affects each other. , Stepwise feed in the X direction to fix and move in the Y direction at that position to obtain the position of the maximum amount of light received by the optical fiber. By repeating this in sequence,
First, the X position where the maximum light quantity is obtained is searched. Then, it moves in the Y direction at the X position where the determined maximum light amount is obtained and stops at the position where the maximum light amount is obtained, and the optical axis adjustment ends. Although this optical axis adjusting method can reliably search for the maximum light amount, distortion may eventually remain in the Y direction, which may cause axial misalignment during welding.

【0009】[0009]

【発明が解決しようとする課題】上述した従来の光モジ
ュール組立方法は、工程S3でサポート7を半導体レー
ザユニット10に低押圧した状態で、ステージなどを動
かしてサポート7と半導体レーザユニット10とを相対
的に移動させて光軸調整するために摩擦力で共ずれを起
こしてしまい、残留歪が残り、工程S4のレーザ溶接時
に残留歪の影響で光軸がずれてしまうという欠点があっ
た。また、特開昭63−296009に示された方法で
はX方向の残留歪を解消できてもY方向の残留歪を解消
できずやはり溶接時に軸ずれを生じてしまう。
In the conventional method of assembling the optical module described above, the support 7 and the semiconductor laser unit 10 are moved by moving the stage or the like while the support 7 is pressed against the semiconductor laser unit 10 in step S3. Since the optical axis is adjusted by relatively moving the optical axis, a frictional force causes a misalignment, and residual strain remains, and the optical axis is displaced due to the residual strain during laser welding in step S4. Further, in the method disclosed in Japanese Patent Laid-Open No. 63-29609, even if the residual strain in the X direction can be eliminated, the residual strain in the Y direction cannot be eliminated, and an axis shift occurs during welding.

【0010】[0010]

【課題を解決するための手段】本発明は、半導体レーザ
と前記半導体レーザからの出射光を集光するレンズと、
前記半導体レーザ及び前記レンズを固定する第一の固定
部材と、光ファイバと、前記第一の固定部材上に載置さ
れ前記光ファイバの先端部を微小な間隙をもって光軸方
向に案内する第二の固定部材とから光モジュールを組立
てる方法において、前記第一の固定部材を第一のマニピ
ュレータで保持し前記光ファイバの先端部を第二のマニ
ピュレータで保持し、この第一及び第二のマニピュレー
タを相対的に動かし、前記半導体レーザと前記光ファイ
バとの結合効率が最大になるように前記第一の固定部材
に対する前記光ファイバの先端部の位置を合わせる第1
の工程と、この第1の工程後前記第二の固定部材の端面
と前記第一の固定部材の端面とを密着押圧状態にし前記
第二の固定部材と前記光ファイバの先端部とを溶接する
第2の工程と、前記第二の固定部材を押圧状態から解放
し、光軸と垂直な平面内で再び前記結合効率が最大にな
るように前記第一及び第二のマニピュレータを動かし
て、前記第一の固定部材に対する前記光ファイバの先端
部の位置を合わせる第3の工程と、前記第3の工程にお
ける前記第一及び第二のマニピュレータの相対的な位置
を記憶する第4の工程と、前記第二の固定部材を光軸位
置合わせできる程度の力で前記第一の固定部材に低押圧
し前記第一及び第二のマニピュレータを相対的に動かし
て前記半導体レーザと前記光ファイバとの結合効率が最
大になるように光軸に垂直な平面内で前記第一の固定部
材に対する前記光ファイバの位置を合わせる第5の工程
と、前記第二の固定部材を前記第一の固定部材へ高押圧
し前記第一及び第二のマニピュレータを第4の工程で記
憶した相対的な位置へ戻す第6の工程と、前記第二の固
定部材と前記第1の固定部材とを溶接する第7の工程を
備えている。
SUMMARY OF THE INVENTION The present invention comprises a semiconductor laser and a lens for converging light emitted from the semiconductor laser.
A first fixing member that fixes the semiconductor laser and the lens, an optical fiber, and a second member that is placed on the first fixing member and guides the tip of the optical fiber in the optical axis direction with a minute gap. In the method of assembling the optical module from the fixing member, the first fixing member is held by the first manipulator and the tip end portion of the optical fiber is held by the second manipulator, and the first and second manipulators are Firstly, the tip end of the optical fiber is moved relative to the first fixing member so as to maximize the coupling efficiency between the semiconductor laser and the optical fiber.
Step, and after this first step, the end surface of the second fixing member and the end surface of the first fixing member are brought into close contact with each other to be pressed to weld the second fixing member and the end portion of the optical fiber. In the second step, the second fixing member is released from the pressed state, and the first and second manipulators are moved so that the coupling efficiency becomes maximum again in a plane perpendicular to the optical axis, A third step of aligning the position of the tip of the optical fiber with respect to the first fixing member, and a fourth step of storing the relative positions of the first and second manipulators in the third step, Coupling of the semiconductor laser and the optical fiber by low pressing the first fixing member with a force sufficient to align the optical axis of the second fixing member and relatively moving the first and second manipulators. Optical axis for maximum efficiency A fifth step of aligning the position of the optical fiber with respect to the first fixing member in a vertical plane, and the second fixing member being highly pressed against the first fixing member, and the first and second manipulators. Is returned to the relative position stored in the fourth step, and a seventh step of welding the second fixing member and the first fixing member.

【0011】[0011]

【実施例】次に、本発明について図面を参照して詳細に
説明する。
The present invention will be described in detail with reference to the drawings.

【0012】図1は、本発明の一実施例を示すフローチ
ャートである。
FIG. 1 is a flow chart showing an embodiment of the present invention.

【0013】本実施例で組立てる光モジュールも図2に
示すようにパッケージステム1、半導体レーザ2、球レ
ンズ5、レンズホルダ6で半導体レーザユニット10を
構成しており、光ファイバ素線9は、フェルール8に固
定されている。特許請求範囲に示す第一の固定部材とは
ここではレンズホルダ6のことであり、光ファイバとは
フェルール8に固定された光ファイバ素線9、光ファイ
バの先端部とはフェルール8のここであり、第二の固定
部材とはサポート7のことである。レンズホルダ6、サ
ポート7、及びフェルール8の材質はステンレス鋼であ
る。
As shown in FIG. 2, the optical module assembled in this embodiment also comprises a semiconductor laser unit 10 including a package stem 1, a semiconductor laser 2, a spherical lens 5 and a lens holder 6, and an optical fiber element wire 9 It is fixed to the ferrule 8. Here, the first fixing member shown in the claims is the lens holder 6, the optical fiber is the optical fiber element wire 9 fixed to the ferrule 8, and the tip of the optical fiber is the ferrule 8 here. The second fixing member is the support 7. The material of the lens holder 6, the support 7 and the ferrule 8 is stainless steel.

【0014】本実施例の組立作業前にはフェルール8
は、サポート7に1μm程度のクリアランスでガイドさ
れており、半導体レーザユニット10を固定しフェルー
ル8をステージなどのマニピュレータで保持しX,Y,
Z方向に微調整することで光ファイバ素線9と半導体レ
ーザ2との最大結合効率を得るようにフェルール8を位
置決めする。
Before the assembling work of this embodiment, the ferrule 8 is used.
Are guided by a support 7 with a clearance of about 1 μm, and the semiconductor laser unit 10 is fixed and the ferrule 8 is held by a manipulator such as a stage, X, Y,
By finely adjusting in the Z direction, the ferrule 8 is positioned so as to obtain the maximum coupling efficiency between the optical fiber element wire 9 and the semiconductor laser 2.

【0015】本実施例は、半導体レーザユニット10に
対するフェルール8の光軸に対する平行、垂直及び回転
方向の位置調整を行い半導体レーザ2と光ファイバ素線
9とを結合効率が最大の位置に合わせる工程P1とし、
サポート7の端面と、半導体レーザユニット10のレン
ズホルダ6の端面とを密着押圧状態にし、図2における
A部、B部をYAGレーザ等でスポットレーザ溶接して
サポート7とフェルール8と互いに固定する工程P2
と、サポート7を押圧状態から解放し、光学軸に垂直な
X−Y平面内で再び結合効率が最大となるようにフェル
ール8及びマニピュレータによりサポート7の位置に合
わせる工程P3と、工程P3におけるフェルール8を保
持するマニピュレータの平面的な位置(X−Y座標)を
記憶する工程P4と、サポート7を光軸位置合わせでき
る程度の力(おおよそ500g/cm2 )でレンズホル
ダ6に低押圧し、マニピュレータによりフェルール8及
びサポート7を動かし、平面内で光ファイバ素線9を半
導体レーザ2との再度結合効率が最大の位置に合わせる
工程P5と、サポート7をレンズホルダ6に高押圧し、
工程P4で記憶した平面的位置へフェルール8を保持す
るマニピュレータを戻す工程P6と、サポート7と半導
体レーザユニット10のレンズホルダ6とをレーザ溶接
する工程P7とから構成される。
In the present embodiment, a step of adjusting the position of the semiconductor laser unit 10 in parallel, perpendicular and rotational directions with respect to the optical axis of the ferrule 8 to align the semiconductor laser 2 and the optical fiber element wire 9 at the position where the coupling efficiency is maximum. P1
The end face of the support 7 and the end face of the lens holder 6 of the semiconductor laser unit 10 are brought into close contact with each other and pressed, and the portions A and B in FIG. 2 are spot laser welded with a YAG laser or the like to fix the support 7 and the ferrule 8 to each other. Process P2
And a step P3 of releasing the support 7 from the pressed state and adjusting the position of the support 7 by the ferrule 8 and the manipulator so as to maximize the coupling efficiency again in the XY plane perpendicular to the optical axis, and the ferrule in the step P3. Step P4 of storing the planar position (X-Y coordinates) of the manipulator holding 8 and the lens holder 6 with a force (about 500 g / cm 2 ) enough to align the optical axis of the support 7, The ferrule 8 and the support 7 are moved by the manipulator to adjust the optical fiber element wire 9 to the position where the coupling efficiency with the semiconductor laser 2 is the maximum again in the plane P5, and the support 7 is highly pressed against the lens holder 6,
The process includes a process P6 of returning the manipulator holding the ferrule 8 to the planar position stored in the process P4, and a process P7 of laser welding the support 7 and the lens holder 6 of the semiconductor laser unit 10.

【0016】図3は本実施例の組立途中で生じる残留歪
及びその解放を説明するための組立中の光モジュールの
断面図である。図3(a)に示す工程P4の状態ではサ
ポート7は無負荷のため残留歪は生じない。一方図3
(b)に示す工程P5においてはサポート7は低押圧さ
れているため共ずれが生じ、共ずれしただけフェルール
8を保持するマニピュレータの光軸調整完了位置がず
れ、これがフェルール8の残留歪となる。図3(c)に
示す工程P6においては、高押圧した状態で半導体レー
ザユニット10とサポート8との位置関係を工程P4の
光軸調整完了位置に戻すため、量ユニットは、逆に共ず
れし、光軸ずれを生じさせないように残留歪を解放でき
ることになる。
FIG. 3 is a sectional view of the optical module during assembly for explaining the residual strain generated during the assembly of this embodiment and its release. In the state of process P4 shown in FIG. 3A, the support 7 has no load, and therefore no residual strain occurs. Meanwhile, FIG.
In step P5 shown in (b), since the support 7 is pressed low, co-deviation occurs, and the optical axis adjustment completion position of the manipulator holding the ferrule 8 deviates due to the co-displacement, and this becomes the residual strain of the ferrule 8. . In step P6 shown in FIG. 3C, since the positional relationship between the semiconductor laser unit 10 and the support 8 is returned to the optical axis adjustment completion position in step P4 in the high-pressed state, the quantity unit reversely shifts. Therefore, the residual strain can be released without causing the optical axis shift.

【0017】なお、本発明では半導体レーザユニット
(第一の固定部材)とサポート(第二の固定部材)の相
対的な位置関係を調整して半導体レーザと光ファイバの
結合効率を最大にすればよいのであって、上述の実施例
では半導体レーザユニット10を固定しサポート7をマ
ニピュレータで動かすようにしたが、半導体レーザユニ
ットのみ、または半導体レーザユニット及びサポートの
両者を動かすようにしてもよい。
In the present invention, if the relative positional relationship between the semiconductor laser unit (first fixing member) and the support (second fixing member) is adjusted to maximize the coupling efficiency between the semiconductor laser and the optical fiber. In the above embodiment, the semiconductor laser unit 10 is fixed and the support 7 is moved by the manipulator, but it is also possible to move only the semiconductor laser unit or both the semiconductor laser unit and the support.

【0018】[0018]

【発明の効果】本発明の光モジュール組立方法は、最終
光軸調整工程での共ずれに伴う残留歪を無負荷時の光軸
座標に軸ずれを起こさずに戻すことで、残留歪を解放
し、最終レーザ溶接固定時の光軸ずれを減少できるとい
う効果がある。
According to the optical module assembling method of the present invention, the residual distortion caused by the co-deviation in the final optical axis adjusting step is returned to the optical axis coordinates under no load without causing the axial deviation, thereby releasing the residual distortion. However, there is an effect that the optical axis shift at the time of final laser welding fixation can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すフローチャートであ
る。
FIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】図1に示す実施例を説明するための光モジュー
ルの断面図である。
FIG. 2 is a sectional view of an optical module for explaining the embodiment shown in FIG.

【図3】図1の実施例での残留歪の解放を説明するため
の光モジュールの断面図で(a)〜(c)はそれぞれ工
程P4〜P6の状態を示す。
3A to 3C are cross-sectional views of the optical module for explaining the release of residual strain in the embodiment of FIG. 1, and FIGS. 3A to 3C show states of steps P4 to P6, respectively.

【図4】従来の光モジュールの組立方法を示すフローチ
ャートである。
FIG. 4 is a flowchart showing a conventional method of assembling an optical module.

【図5】図4の従来の光モジュールの組立方法での共ず
れを説明するための光モジュールの断面図である。
5 is a cross-sectional view of an optical module for explaining co-deviation in the conventional method of assembling the optical module of FIG.

【符号の説明】[Explanation of symbols]

1 パッケージステム 2 半導体レーザ 3 モニタ用受光素子 4 電極 5 球レンズ 6 レンズホルダ 7 サポート 8 フェルール 9 光ファイバ素線 10 半導体レーザユニット 11 マニピュレータ 1 Package Stem 2 Semiconductor Laser 3 Photodetector for Monitor 4 Electrode 5 Ball Lens 6 Lens Holder 7 Support 8 Ferrule 9 Optical Fiber Element 10 Semiconductor Laser Unit 11 Manipulator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザと前記半導体レーザからの
出射光を集光するレンズと、前記半導体レーザ及び前記
レンズを固定する第一の固定部材と、光ファイバと、前
記第一の固定部材上に載置され前記光ファイバの先端部
を微小な間隙をもって光軸方向に案内する第二の固定部
材とから光モジュールを組立てる方法において、前記第
一の固定部材を第一のマニピュレータで保持し前記光フ
ァイバの先端部を第二のマニピュレータで保持し、この
第一及び第二のマニピュレータを相対的に動かし、前記
半導体レーザと前記光ファイバとの結合効率が最大にな
るように前記第一の固定部材に対する前記光ファイバの
先端部の位置を合わせる第1の工程と、この第1の工程
後前記第二の固定部材の端面と前記第一の固定部材の端
面とを密着押圧状態にし前記第二の固定部材と前記光フ
ァイバの先端部とを溶接する第2の工程と、前記第二の
固定部材を押圧状態から解放し、光軸と垂直な平面内で
再び前記結合効率が最大になるように前記第一及び第二
のマニピュレータを動かして、前記第一の固定部材に対
する前記光ファイバの先端部の位置を合わせる第3の工
程と、前記第3の工程における前記第一及び第二のマニ
ピュレータの相対的な位置を記憶する第4の工程と、前
記第二の固定部材を光軸位置合わせできる程度の力で前
記第一の固定部材に低押圧し前記第一及び第二のマニピ
ュレータを相対的に動かして前記半導体レーザと前記光
ファイバとの結合効率が最大になるように光軸に垂直な
平面内で前記第一の固定部材に対する前記光ファイバの
位置を合わせる第5の工程と、前記第二の固定部材を前
記第一の固定部材へ高押圧し前記第一及び第二のマニピ
ュレータを第4の工程で記憶した相対的な位置へ戻す第
6の工程と、前記第二の固定部材と前記第1の固定部材
とを溶接する第7の工程とから構成されることを特徴と
する光モジュール組立方法。
1. A semiconductor laser, a lens for condensing light emitted from the semiconductor laser, a first fixing member for fixing the semiconductor laser and the lens, an optical fiber, and an optical fiber on the first fixing member. In a method of assembling an optical module from a second fixing member that is placed and guides the tip of the optical fiber in the optical axis direction with a minute gap, the first fixing member is held by a first manipulator and the optical The tip of the fiber is held by a second manipulator, and the first and second manipulators are moved relatively to each other, so that the coupling efficiency between the semiconductor laser and the optical fiber is maximized. A first step of aligning the position of the tip of the optical fiber with respect to the first optical fiber, and a state in which the end surface of the second fixing member and the end surface of the first fixing member are in close contact with each other after the first step. In the second step of welding the second fixing member and the tip of the optical fiber, the second fixing member is released from the pressed state, and the coupling efficiency is re-established in a plane perpendicular to the optical axis. The third step of moving the first and second manipulators so as to maximize the position of the tip of the optical fiber with respect to the first fixing member, and the first and second steps in the third step. A fourth step of memorizing the relative position of the second manipulator, and a low pressure on the first fixing member with a force sufficient to align the optical axis of the second fixing member with the first and second steps. Moving the manipulator relatively to adjust the position of the optical fiber with respect to the first fixing member in a plane perpendicular to the optical axis so as to maximize the coupling efficiency between the semiconductor laser and the optical fiber. And the first A high pressure pressing the fixing member to the first fixing member to return the first and second manipulators to the relative positions stored in the fourth step, the second fixing member and the second fixing member. And a seventh step of welding the first fixing member together.
【請求項2】 第2の工程で第二の固定部材と光ファイ
バの先端部をレーザ溶接し、第7の工程で前記第二の固
定部材と前記第一の固定部材とをレーザ溶接する請求項
1記載の光モジュール組立方法。
2. The second fixing member and the tip of the optical fiber are laser-welded in the second step, and the second fixing member and the first fixing member are laser-welded in the seventh step. Item 1. The optical module assembling method according to Item 1.
JP5156495A 1993-06-28 1993-06-28 Optical module assembly method Expired - Lifetime JP2565090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156495A JP2565090B2 (en) 1993-06-28 1993-06-28 Optical module assembly method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5156495A JP2565090B2 (en) 1993-06-28 1993-06-28 Optical module assembly method

Publications (2)

Publication Number Publication Date
JPH0713049A true JPH0713049A (en) 1995-01-17
JP2565090B2 JP2565090B2 (en) 1996-12-18

Family

ID=15629007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156495A Expired - Lifetime JP2565090B2 (en) 1993-06-28 1993-06-28 Optical module assembly method

Country Status (1)

Country Link
JP (1) JP2565090B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003309A (en) * 2007-06-25 2009-01-08 Mitsubishi Electric Corp Assembling method for optical module, and optical module
JP2009092899A (en) * 2007-10-09 2009-04-30 Mitsubishi Electric Corp Method for assembling optical module and optical module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263906A (en) * 1985-09-17 1987-03-20 Matsushita Electric Ind Co Ltd Production of coupling device between semiconductor laser and optical fiber
JPS63303688A (en) * 1987-06-05 1988-12-12 Toshiba Corp Multiple welding method
JPH01312516A (en) * 1988-06-13 1989-12-18 Oki Electric Ind Co Ltd Lens fixing method for optical coupler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263906A (en) * 1985-09-17 1987-03-20 Matsushita Electric Ind Co Ltd Production of coupling device between semiconductor laser and optical fiber
JPS63303688A (en) * 1987-06-05 1988-12-12 Toshiba Corp Multiple welding method
JPH01312516A (en) * 1988-06-13 1989-12-18 Oki Electric Ind Co Ltd Lens fixing method for optical coupler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003309A (en) * 2007-06-25 2009-01-08 Mitsubishi Electric Corp Assembling method for optical module, and optical module
JP2009092899A (en) * 2007-10-09 2009-04-30 Mitsubishi Electric Corp Method for assembling optical module and optical module

Also Published As

Publication number Publication date
JP2565090B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US7548673B2 (en) Methods and apparatus for alignment and assembly of optoelectronic components
KR920010947B1 (en) Semiconductor light emitting device its component and lens position adjusting method
US5222170A (en) Optical fiber device fabrication
JPH03233414A (en) Assembling method for photosemiconductor module
WO2003016969A1 (en) Apparatus and methods for micro-positioning and alignment
JP3345853B2 (en) Laser diode module and manufacturing method thereof
JP2565090B2 (en) Optical module assembly method
JPH085876A (en) Module for light transmission and lens holder member used for the same
JP2555945B2 (en) Optical module assembly method
JP2728281B2 (en) Optical fiber device and manufacturing method thereof
US6910811B2 (en) Optical fiber alignment device and method
JPH01310315A (en) Structure for connecting light guide and optical fiber and its production thereof
JP2590715B2 (en) Optical module assembly method
US7277467B2 (en) Externally aligned laser module
JPH0943455A (en) Optical module
JPH0537025A (en) Semiconductor light-source module
JPS63161405A (en) Fixing method for optical fiber
JPH0943454A (en) Optical module
JPH02245711A (en) Optical fiber fixing device
JP2936777B2 (en) Optical device module assembly equipment
JPH0627324A (en) Method for assembling optical device and assembling jig therefor
JPS61138209A (en) Fixing method of fiber lens assembly
JPH02308209A (en) Semiconductor light emitting device, its component and lens position adjusting method
JPH01186907A (en) Semiconductor laser and optical fiber connector
JPS61255312A (en) Coupling device for optical element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960806