JPH0712988B2 - Silicon-containing non-oxide ceramic protective layer and method for producing the same - Google Patents
Silicon-containing non-oxide ceramic protective layer and method for producing the sameInfo
- Publication number
- JPH0712988B2 JPH0712988B2 JP18262386A JP18262386A JPH0712988B2 JP H0712988 B2 JPH0712988 B2 JP H0712988B2 JP 18262386 A JP18262386 A JP 18262386A JP 18262386 A JP18262386 A JP 18262386A JP H0712988 B2 JPH0712988 B2 JP H0712988B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- containing non
- sec
- protective layer
- peak
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】 [従来の技術] 最近、窒化ケイ素や炭化ケイ素のようなケイ素含有非酸
化物セラミックスは、その大きな強度、耐腐食性、耐熱
性等の優れた性質が注目され、広範囲に用いられるよう
になってきた。その結果、例えばセラミックエンジン等
のように、摺動する部材にもケイ素含有非酸化物セラミ
ックスが用いられるようになっている。セラミックスで
摺動部材を形成する際には、摺動部分をダイヤモンド又
はアルミナを用いて研磨する。DETAILED DESCRIPTION OF THE INVENTION [Prior Art] Recently, silicon-containing non-oxide ceramics such as silicon nitride and silicon carbide have been noted for their excellent properties such as high strength, corrosion resistance, and heat resistance. It has come to be used for. As a result, silicon-containing non-oxide ceramics are also used in sliding members such as ceramic engines. When the sliding member is formed of ceramics, the sliding portion is polished with diamond or alumina.
[従来技術の欠点] しかしながら、ダイヤモンド又はアルミナを用いてケイ
素含有非酸化物セラミックスを研磨すると、表面傷が多
く形成されて脆性破壊が起き易くなる。また、表面粗さ
が50nm以上と大きく、その結果応力が不均一にかかって
応力集中が起き、摩耗速度が大きくなる。[Disadvantages of Prior Art] However, when polishing silicon-containing non-oxide ceramics using diamond or alumina, many surface scratches are formed and brittle fracture easily occurs. In addition, the surface roughness is as large as 50 nm or more, and as a result, stress is unevenly applied, stress concentration occurs, and the wear rate increases.
[発明が解決しようとする問題点] この発明の目的は、摺動部材として用いられるケイ素含
有非酸化物セラミックスの平滑で摩擦係数の小さな保護
層及びその製造方法を提供することである。[Problems to be Solved by the Invention] An object of the present invention is to provide a smooth protective layer of silicon-containing non-oxide ceramics used as a sliding member and having a small friction coefficient, and a method for producing the same.
[発明の構成] すなわち、この発明は、ケイ素含有非酸化物セラミック
ス上に形成され、下記一般式で表わされる非晶質水化二
酸化ケイ素から成る保護層を提供する。[Structure of the Invention] That is, the present invention provides a protective layer formed on a silicon-containing non-oxide ceramic and made of amorphous hydrated silicon dioxide represented by the following general formula.
(ただし、式中Aはケイ素含有非酸化物セラミックス中
の原子又はケイ素含有非酸化物セラミックス中の原子と
結合した酸素原子、nは0ないし2000の整数、mは1以
上の数を示す) さらにまた、この発明は、水分子の存在下においてケイ
素含有非酸化物セラミックス同志を擦り合わせることか
ら成る前記保護層の製造方法を提供する。 (Wherein A is an atom in the silicon-containing non-oxide ceramics or an oxygen atom bonded to an atom in the silicon-containing non-oxide ceramics, n is an integer of 0 to 2000, and m is a number of 1 or more). The present invention also provides a method for producing the protective layer, which comprises rubbing silicon-containing non-oxide ceramics together in the presence of water molecules.
[発明の効果] この発明によると、表面粗さ10nm以下の非常に平滑な表
面を有し、摩擦係数が約0.001と極めて小さな非晶質水
化二酸化ケイ素から成る保護層がケイ素含有非酸化物セ
ラミックス上に提供される。その結果、ケイ素含有非酸
化物セラミックスの脆性破壊がなくなり、応力が均一に
分布し、摩耗速度が大幅に減少する。従って、この発明
の保護層で保護されたケイ素含有非酸化物セラミックス
を断熱型ディゼルエンジンやガスタービンエンジンの摺
動部分、耐摩耗工具として用いると、それらの耐久性が
非常に増大し、また、これをエンジンに用いた場合に
は、摺動部分の摩擦が小さくなるので効率の良いエンジ
ンが得られる。EFFECTS OF THE INVENTION According to the present invention, a protective layer made of amorphous hydrated silicon dioxide having a very smooth surface with a surface roughness of 10 nm or less and a friction coefficient of about 0.001 is a silicon-containing non-oxide. Offered on ceramics. As a result, the brittle fracture of the silicon-containing non-oxide ceramic is eliminated, the stress is evenly distributed, and the wear rate is significantly reduced. Therefore, when the silicon-containing non-oxide ceramics protected by the protective layer of the present invention is used as a sliding part of an adiabatic diesel engine or gas turbine engine, as a wear resistant tool, their durability is greatly increased, and When this is used in an engine, the friction of the sliding portion is reduced, so that an efficient engine can be obtained.
[発明の具体的説明] 上述したように、この発明の保護層は、下記一般式で表
わされる。[Detailed Description of the Invention] As described above, the protective layer of the present invention is represented by the following general formula.
式中、Aはケイ素含有非酸化物セラミックス中の原子、
又はケイ素含有非酸化物セラミックス中の原子に結合し
た酸素を示す。すなわち、ケイ素含有非酸化物セラミッ
クスがSi3N4の場合には、AはSi3N4を構成するSi若しく
はN、又はSi若しくはNに結合したOを示す。同様に、
ケイ素含有非酸化物セラミックスがSiCの場合にはAはS
iCを構成するSi若しくはC、又はSi若しくはCに結合し
たOを示す。nは、式中2本の破線ではさまれた繰返し
単位の数(紙面縦方向の繰返し数)を示し、0ないし20
00の整数である。mは式中括弧でくくられた繰返し単位
の数を示すもので1以上の数である。mは保護層の横方
向の広がりを示すものであるから、特に上限はなく、ま
た、整数である必要もない。なお、この水化二酸化ケイ
素層は非晶質であるので、原子の配列が不規則になって
いる。 In the formula, A is an atom in the silicon-containing non-oxide ceramics,
Alternatively, it represents oxygen bonded to an atom in the silicon-containing non-oxide ceramics. That is, when the silicon-containing non-oxide ceramic is Si 3 N 4 , A represents Si or N constituting Si 3 N 4 , or O bonded to Si or N. Similarly,
If the silicon-containing non-oxide ceramic is SiC, A is S
Indicates Si or C constituting iC, or O bonded to Si or C. n represents the number of repeating units sandwiched by two broken lines in the formula (the number of repeating units in the longitudinal direction of the paper), and is 0 to 20.
It is an integer of 00. m represents the number of repeating units enclosed in parentheses in the formula and is 1 or more. Since m represents the width of the protective layer in the lateral direction, it has no particular upper limit and does not have to be an integer. Since this hydrated silicon dioxide layer is amorphous, the atomic arrangement is irregular.
この発明の保護層は、ケイ素含有非酸化物セラミックス
同志を水分子の存在下において擦り合わせることによっ
て形成することができる。この摩擦操作は水中で行なう
ことが好ましいが、湿気を含む空気中で行なうこともで
きる。摩擦操作は20℃ないし100℃の温度下で行なうこ
とが好ましい。また、摩擦時の荷重は約200グラムない
し約10キログラム、すべり速度は約1cm/secないし約50c
m/secがそれぞれ好ましい。また、すべり距離は約2mな
いし約2700mが好ましい。The protective layer of the present invention can be formed by rubbing silicon-containing non-oxide ceramics in the presence of water molecules. This rubbing operation is preferably carried out in water, but it can also be carried out in moist air. The rubbing operation is preferably carried out at a temperature of 20 ° C to 100 ° C. The friction load is about 200 grams to about 10 kilograms, and the sliding speed is about 1 cm / sec to about 50c.
m / sec is preferred. The slip distance is preferably about 2 m to about 2700 m.
[発明の実施例] 実施例1 Si3N4同志を、20℃の温度下で相対湿度98%のアルゴン
中で、荷重1kg、すべり速度1mm/secの条件下で20分間摩
擦した。摩擦面を走査電子顕微鏡で観察したところ、極
めて平滑な表面が得られ、表面損傷もほとんどなかっ
た。また、この表面の表面粗さを触針式表面粗さ測定機
(商品名Talysurf)で測定したところ10nm以下であっ
た。さらに、この表面の摩擦係数を測定したところ約0.
7であった。摩擦係数の測定はピン/ディスク型の摩擦
試験機で行なった。[Examples of the Invention] Example 1 Si 3 N 4 was rubbed at a temperature of 20 ° C. in argon with a relative humidity of 98% under a load of 1 kg and a sliding speed of 1 mm / sec for 20 minutes. When the friction surface was observed with a scanning electron microscope, an extremely smooth surface was obtained and there was almost no surface damage. The surface roughness of this surface was measured by a stylus type surface roughness measuring device (trade name Talysurf) and found to be 10 nm or less. Furthermore, when the friction coefficient of this surface was measured, it was about 0.
Was 7. The friction coefficient was measured with a pin / disk type friction tester.
得られた摩擦表面を、常法に基づき、走査型オージェ電
子分光法により分析した。分析の条件は以下の通りであ
る。The friction surface thus obtained was analyzed by scanning Auger electron spectroscopy based on a conventional method. The analysis conditions are as follows.
電子ビーム電圧:5kV 走査回数:6回 アルゴンスパッタリング(イオンビームエネルギー):3
kV 結果を第1図及び第2図に示す。また、比較のため、摩
擦していないSi3N4も同様に分析した。この結果を第3
図及び第4図に示す。第3図に示されるように、Si3N4
では、Siのピーク(ピークは図面の下方向に向かう)
(83eV)と、Nのピーク379eVとOのピーク503eVとが現
われる(Oのピークが現われることから、多少SiO2を含
むと考えられる)。Siのピークが83eVであることは、Si
がNと結合していることを示している。一方、本願発明
の保護層である摩擦表面では、第1図に示されるよう
に、Siのピーク76eVとOのピーク503eVとが現われ、N
のピークは現われない。Siのピークが83eVではなく76eV
であり、また、第2図(Siのピーク付近の拡大図)に示
されるように、59eVのピークがさらに現われていること
はSiとOと結合していることを示しており、摩擦表面が
SiO2であることがわかる。Electron beam voltage: 5kV Scanning frequency: 6 times Argon sputtering (ion beam energy): 3
The kV results are shown in FIGS. 1 and 2. For comparison, Si 3 N 4 without friction was also analyzed. This result is the third
Shown in Figures and 4. As shown in FIG. 3 , Si 3 N 4
Then, the peak of Si (the peak goes down in the drawing)
(83 eV), N peak 379 eV and O peak 503 eV appear (because the O peak appears, it is considered that some SiO 2 is included). The peak of Si at 83 eV means that
Indicates that N is linked to N. On the other hand, on the friction surface, which is the protective layer of the present invention, Si peak 76 eV and O peak 503 eV appear as shown in FIG.
Peak does not appear. Si peak is 76eV instead of 83eV
Further, as shown in FIG. 2 (enlarged view near the Si peak), the further appearance of the peak of 59 eV indicates that Si and O are bonded, and the friction surface is
It can be seen that it is SiO 2 .
この走査型オージェ電子分光法では水素が検出されなか
った。しかしながら、(1)上記摩擦表面は水分子の存
在下で摩擦しないと生成しない、すなわち、乾燥空気又
は乾燥酸素中で摩擦しても上記摩擦表面は生成しないこ
と、及び(2)この摩擦表面の摩耗粉は水に溶け、その
水を乾燥させると透明な膜になるが、SiO2は水に極めて
難溶であり、これが水化されるとより易溶になることか
ら、この摩擦表面は水化二酸化ケイ素であると同定でき
る。No hydrogen was detected by this scanning Auger electron spectroscopy. However, (1) the rubbing surface does not form unless it is rubbed in the presence of water molecules, ie, rubbing in dry air or dry oxygen does not produce the rubbing surface, and (2) The abrasion powder dissolves in water, and when the water is dried, it becomes a transparent film, but SiO 2 is extremely difficult to dissolve in water, and when it becomes hydrated, it becomes more easily soluble. It can be identified as silicon dioxide.
上記摩擦表面につき、常法に基づき、100kVの電子顕微
鏡を用いて電子線回折写真を撮ったところ、結晶の回折
像は得られなかった。このことから、摩擦表面は結晶状
態になく、非晶質となっていることがわかる。An electron diffraction photograph was taken of the above friction surface using a 100 kV electron microscope based on a conventional method, and no diffraction image of crystals was obtained. From this, it can be seen that the friction surface is not in a crystalline state but in an amorphous state.
以上の実験結果から、この発明の保護層である前記摩擦
表面は非晶質水化二酸化ケイ素であることがわかる。From the above experimental results, it is understood that the friction surface which is the protective layer of the present invention is amorphous hydrated silicon dioxide.
さらに、上記摩擦表面につき、20kVの電子顕微鏡を用い
て常法に基づきEDAX分析(エネルギー分散型のX線分
析)を行なった。EDAX分析ではもともとH、N、Oは検
出できないが、セラミックスの製造工程においてバイン
ダー元素として用いられるMgやFeが、摩擦により摩擦面
に偏析していないかどうかを調べるために行なった。比
較のため、摩擦していない反対側の面についても分析し
た。その結果、両面ともSiだけが検出された。このこと
から、バインダー元素が摩擦面に偏析していないことが
わかった。Further, the friction surface was subjected to EDAX analysis (energy dispersive X-ray analysis) by a conventional method using a 20 kV electron microscope. Originally, H, N, and O could not be detected by EDAX analysis, but it was conducted to investigate whether Mg or Fe used as a binder element in the ceramic manufacturing process is segregated on the friction surface due to friction. For comparison, the other surface, which was not rubbed, was also analyzed. As a result, only Si was detected on both sides. From this, it was found that the binder element was not segregated on the friction surface.
実施例2 SiCを用いて実施例1と同様な実験を行なった。その結
果、実施例1と同様な平滑な摩擦表面が得られた。これ
を実施例1と同様に分析した。走査型オージェ電子分光
分析の結果は第4図及び第5図に示されている。比較の
ためのSiCの分析結果は第6図及び第7図に示されてい
る。第6図に示されるように、摩擦しないSiCは、Siの
ピーク95eVとCのピーク272eVが現われる。また、第7
図(Siのピーク付近の拡大図)に示されるように、59eV
付近にピークはない。一方、これを水分子の存在下で摩
擦して得られた摩擦表面では、第4図に示されるように
Siのピークが78eVに移動し、Oのピーク503eVが現われ
る。さらに、第5図(Siのピーク付近の拡大図)に示さ
れるように、59eVにピークができていることから、摩擦
面はSiO2であることがわかる。なお、第4図にはCのピ
ークも存在するが、Cと結合したSiのピークである95eV
にピークが全く存在しないことから、このCは摩擦表面
に付着したCOやCO2等の汚れであると考えられる。他の
実験結果も実施例1と同様であるので、この摩擦表面も
非晶質水化二酸化ケイ素であると同定できる。Example 2 The same experiment as in Example 1 was conducted using SiC. As a result, a smooth friction surface similar to that in Example 1 was obtained. This was analyzed in the same manner as in Example 1. The results of the scanning Auger electron spectroscopy analysis are shown in FIGS. 4 and 5. The SiC analysis results for comparison are shown in FIGS. 6 and 7. As shown in FIG. 6, in SiC without friction, a peak 95eV of Si and a peak 272eV of C appear. Also, the seventh
As shown in the figure (enlarged view near the Si peak), 59 eV
There is no peak in the vicinity. On the other hand, on the friction surface obtained by rubbing this in the presence of water molecules, as shown in FIG.
The Si peak moves to 78 eV, and the O peak 503 eV appears. Further, as shown in FIG. 5 (enlarged view near the Si peak), a peak is formed at 59 eV, which indicates that the friction surface is SiO 2 . Although there is also a C peak in Fig. 4, it is 95eV which is the peak of Si bonded to C.
Since there is no peak at 1, it is considered that C is a stain such as CO or CO 2 attached to the friction surface. Since other experimental results are the same as in Example 1, it can be identified that this friction surface is also amorphous hydrated silicon dioxide.
実施例3 相対湿度50%の空気中で、以下の条件でSi3N4同志を摩
擦した。Example 3 Si 3 N 4 comrades were rubbed under the following conditions in air with a relative humidity of 50%.
荷重:1kg すべり速度:1mm/sec すべり距離:4m(すべり時間4000秒) 温度:25℃ その結果、実施例1と同様なスペクトルを有する、極め
て平滑な非晶質水化二酸化ケイ素層が形成された。Load: 1 kg Sliding speed: 1 mm / sec Sliding distance: 4 m (Sliding time 4000 seconds) Temperature: 25 ° C. As a result, an extremely smooth amorphous hydrated silicon dioxide layer having the same spectrum as in Example 1 was formed. It was
実施例4 相対湿度100%の空気中で、以下の条件でSi3N4同志を摩
擦した。Example 4 Si 3 N 4 was rubbed under the following conditions in air with a relative humidity of 100%.
荷重:1kg すべり速度:1mm/sec すべり距離:4m(すべり時間4000秒) 温度:25℃ その結果、実施例1と同様なスペクトルを有する、極め
て平滑な非晶質水化二酸化ケイ素層が形成された。Load: 1 kg Sliding speed: 1 mm / sec Sliding distance: 4 m (Sliding time 4000 seconds) Temperature: 25 ° C. As a result, an extremely smooth amorphous hydrated silicon dioxide layer having the same spectrum as in Example 1 was formed. It was
実施例5 相対湿度80%のアルゴン中で、以下の条件でSi3N4同志
を摩擦した。Example 5 Si 3 N 4 comrades were rubbed under the following conditions in argon with a relative humidity of 80%.
荷重:1kg すべり速度:1mm/sec すべり距離:4m(すべり時間4000秒) 温度:25℃ その結果、実施例1と同様なスペクトルを有する、極め
て平滑な非晶質水化二酸化ケイ素層が形成された。Load: 1 kg Sliding speed: 1 mm / sec Sliding distance: 4 m (Sliding time 4000 seconds) Temperature: 25 ° C. As a result, an extremely smooth amorphous hydrated silicon dioxide layer having the same spectrum as in Example 1 was formed. It was
実施例6 相対湿度50%の空気中で、以下の条件でSi3N4同志を摩
擦した。Example 6 Si 3 N 4 rubs with each other under the following conditions in air with relative humidity of 50%.
荷重:1kg すべり速度:10cm/sec すべり距離:180m(すべり時間1800秒) 温度:25℃ その結果、実施例1と同様なスペクトルを有する、極め
て平滑な非晶質水化二酸化ケイ素層が形成された。Load: 1 kg Sliding speed: 10 cm / sec Sliding distance: 180 m (Sliding time 1800 seconds) Temperature: 25 ° C. As a result, an extremely smooth amorphous hydrated silicon dioxide layer having the same spectrum as in Example 1 was formed. It was
実施例7 相対湿度50%の空気中で、以下の条件でSiC同志を摩擦
した。Example 7 SiC rubs were rubbed under the following conditions in air with a relative humidity of 50%.
荷重:1kg すべり速度:1mm/sec すべり距離:4m(すべり時間4000秒) 温度:25℃ その結果、実施例2と同様なスペクトルを有する、極め
て平滑な非晶質水化二酸化ケイ素層が形成された。Load: 1 kg Sliding speed: 1 mm / sec Sliding distance: 4 m (Sliding time 4000 seconds) Temperature: 25 ° C. As a result, an extremely smooth amorphous hydrated silicon dioxide layer having the same spectrum as in Example 2 was formed. It was
実施例8 相対湿度100%の空気中で、以下の条件でSiC同志を摩擦
した。Example 8 SiC rubs were rubbed under the following conditions in air with a relative humidity of 100%.
荷重:1kg すべり速度:1mm/sec すべり距離:4m(すべり時間4000秒) 温度:25℃ その結果、実施例2と同様なスペクトルを有する、極め
て平滑な非晶質水化二酸化ケイ素層が形成された。Load: 1 kg Sliding speed: 1 mm / sec Sliding distance: 4 m (Sliding time 4000 seconds) Temperature: 25 ° C. As a result, an extremely smooth amorphous hydrated silicon dioxide layer having the same spectrum as in Example 2 was formed. It was
実施例9 相対湿度50%の空気中で、以下の条件でSiC同志を摩擦
した。Example 9 SiC rubs were rubbed under the following conditions in air with a relative humidity of 50%.
荷重:1kg すべり速度:10cm/sec すべり距離:180m(すべり時間1800秒) 温度:25℃ その結果、実施例2と同様なスペクトルを有する、極め
て平滑な非晶質水化二酸化ケイ素層が形成された。Load: 1 kg Sliding speed: 10 cm / sec Sliding distance: 180 m (Sliding time: 1800 seconds) Temperature: 25 ° C. As a result, an extremely smooth amorphous hydrated silicon dioxide layer having the same spectrum as in Example 2 was formed. It was
実施例10 水中で以下の条件下でSi3N4同志を摩擦した。Example 10 Si 3 N 4 comrades were rubbed in water under the following conditions.
荷重:500g 温度:25℃ すべり速度及び時間:1cm/secで20分間 3cm/secで20分間 5cm/secで20分間 7cm/secで30分間 その結果、表面粗さ10nm以下の極めて平滑な表面が得ら
れ、これを走査型電子顕微鏡で観察すると表面傷が非常
に少なかった。Load: 500g Temperature: 25 ℃ Slip rate and time: 1cm / sec for 20 minutes 3cm / sec for 20 minutes 5cm / sec for 20 minutes 7cm / sec for 30 minutes As a result, an extremely smooth surface with a surface roughness of 10nm or less can be obtained. Obtained and observed by a scanning electron microscope, the number of surface scratches was very small.
実施例11 水中で以下の条件下でSi3N4同志を摩擦した。Example 11 Si 3 N 4 comrades were rubbed in water under the following conditions.
荷重:1000g 温度:50℃ すべり速度及び時間: 2cm/secで20分間 6cm/secで20分間 10cm/secで20分間 14cm/secで30分間 その結果、表面粗さ10nm以下の極めて平滑な表面が得ら
れ、これを走査型電子顕微鏡で観察すると表面傷が非常
に少なかった。Load: 1000g Temperature: 50 ℃ Slip rate and time: 2cm / sec for 20 minutes 6cm / sec for 20 minutes 10cm / sec for 20 minutes 14cm / sec for 30 minutes As a result, an extremely smooth surface with a surface roughness of 10nm or less is obtained. Obtained and observed by a scanning electron microscope, the number of surface scratches was very small.
実施例12 水中で以下の条件下でSiCプレートをSi3N4で研磨した。Example 12 A SiC plate was polished with Si 3 N 4 in water under the following conditions.
荷重:500g 温度:25℃ すべり速度及び時間: 2cm/secで20分間 4cm/secで20分間 10cm/secで20分間 18cm/secで30分間 その結果、SiCプレート上に表面粗さ10nm以下の極めて
平滑な表面が得られ、これを走査型電子顕微鏡で観察す
ると表面傷が非常に少なかった。Load: 500g Temperature: 25 ℃ Sliding speed and time: 2cm / sec for 20 minutes 4cm / sec for 20 minutes 10cm / sec for 20 minutes 18cm / sec for 30 minutes As a result, surface roughness on the SiC plate of 10nm or less A smooth surface was obtained, which was observed with a scanning electron microscope and had very few surface scratches.
実施例13 水中で以下の条件下でSi3N4プレートをSiCビンで研磨し
た。Example 13 A Si 3 N 4 plate was polished with a SiC bottle in water under the following conditions.
荷重:500g 温度:25℃ すべり速度及び時間: 2cm/secで20分間 4cm/secで20分間 10cm/secで20分間 18cm/secで30分間 その結果、Si3N4プレート上に表面粗さ10nm以下の極め
て平滑な表面が得られ、これを走査型電子顕微鏡で観察
すると表面傷が非常に少なかった。Load: 500g Temperature: 25 ℃ Sliding speed and time: 2cm / sec for 20 minutes 4cm / sec for 20 minutes 10cm / sec for 20 minutes 18cm / sec for 30 minutes As a result, the surface roughness on Si 3 N 4 plate is 10nm. The following extremely smooth surface was obtained, and when observed with a scanning electron microscope, surface scratches were very small.
実施例14 水中で以下の条件下でSiC同志を摩擦した。Example 14 SiC members were rubbed in water under the following conditions.
荷重:500g 温度:25℃ すべり速度及び時間: 2cm/secで20分間 4cm/secで20分間 12cm/secで20分間 25cm/secで30分間 その結果、SiC上に表面粗さ10nm以下の極めて平滑な表
面が得られ、これを走査型電子顕微鏡で観察すると表面
傷が非常に少なかった。Load: 500g Temperature: 25 ℃ Slip rate and time: 2cm / sec for 20 minutes 4cm / sec for 20 minutes 12cm / sec for 20 minutes 25cm / sec for 30 minutes As a result, surface roughness on SiC is extremely smooth with a surface roughness of 10nm or less. A smooth surface was obtained, and the surface scratches were very small when observed with a scanning electron microscope.
第1図はSi3N4同志を摩擦して得られたこの発明の非晶
質水化二酸化ケイ素層を走査型オージェ電子分光法によ
り分析した際に得られたスペクトルを示す図、第2図は
第1図のSiのピーク付近の拡大図、第3図は比較のため
Si3N4を走査型オージェ電子分光分析した際に得られた
スペクトルを示す図、第4図はSiC同志を摩擦して得ら
れたこの発明の非晶質水化二酸化ケイ素層を走査型オー
ジェ電子分光法により分析した際に得られたスペクトル
を示す図、第5図は第4図のSiのピーク付近の拡大図、
第6図は比較のためSiCを走査型オージェ電子分光分析
した際に得られたスペクトルを示す図、第7図は第6図
のSiのピーク付近の拡大図である。FIG. 1 is a diagram showing a spectrum obtained when an amorphous hydrated silicon dioxide layer of the present invention obtained by rubbing Si 3 N 4 with each other was analyzed by a scanning Auger electron spectroscopy, FIG. 2 Is an enlarged view near the Si peak in Fig. 1, and Fig. 3 is for comparison.
FIG. 4 is a diagram showing a spectrum obtained by scanning Auger electron spectroscopy analysis of Si 3 N 4, and FIG. 4 is a scanning Auger showing the amorphous hydrated silicon dioxide layer of the present invention obtained by rubbing SiC The figure which shows the spectrum obtained when it analyzed by the electron spectroscopy, FIG. 5 is the enlarged view of the Si peak vicinity of FIG.
FIG. 6 is a diagram showing a spectrum obtained by performing scanning Auger electron spectroscopy on SiC for comparison, and FIG. 7 is an enlarged view of the vicinity of the Si peak in FIG.
Claims (3)
され、下記一般式で表わされる非晶質水化二酸化ケイ素
から成る保護層。 (ただし、式中Aはケイ素含有非酸化物セラミックス中
の原子又はケイ素含有非酸化物セラミックス中の原子と
結合した酸素原子、nは0ないし2000の整数、mは1以
上の数を示す)1. A protective layer formed on a non-oxide ceramic containing silicon and comprising amorphous hydrated silicon dioxide represented by the following general formula. (Wherein A is an atom in the silicon-containing non-oxide ceramics or an oxygen atom bonded to an atom in the silicon-containing non-oxide ceramics, n is an integer of 0 to 2000, and m is a number of 1 or more)
3N4又はSiCである特許請求の範囲第1項記載の保護層。2. The silicon-containing non-oxide ceramic is Si
The protective layer according to claim 1, which is 3 N 4 or SiC.
物セラミックス同志を擦り合わせることから成る、非晶
質水化二酸化ケイ素から成る保護層の製造方法。3. A method for producing a protective layer comprising amorphous hydrous silicon dioxide, which comprises rubbing silicon-containing non-oxide ceramics together in the presence of water molecules.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18262386A JPH0712988B2 (en) | 1986-08-05 | 1986-08-05 | Silicon-containing non-oxide ceramic protective layer and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18262386A JPH0712988B2 (en) | 1986-08-05 | 1986-08-05 | Silicon-containing non-oxide ceramic protective layer and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6340785A JPS6340785A (en) | 1988-02-22 |
JPH0712988B2 true JPH0712988B2 (en) | 1995-02-15 |
Family
ID=16121524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18262386A Expired - Lifetime JPH0712988B2 (en) | 1986-08-05 | 1986-08-05 | Silicon-containing non-oxide ceramic protective layer and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0712988B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE519110C2 (en) | 1999-05-04 | 2003-01-14 | Sandvik Ab | Coated silicon nitride based cutting tool |
EP2813720B1 (en) * | 2013-03-09 | 2017-04-19 | Wieland-Werke AG | bearing system |
-
1986
- 1986-08-05 JP JP18262386A patent/JPH0712988B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6340785A (en) | 1988-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina | |
US6596040B2 (en) | Functionally graded coatings for abrasive particles and use thereof in vitreous matrix composites | |
Pohanka et al. | Effect of the phase transformation on the fracture behavior of BaTiO3 | |
Uchiyama et al. | Atomic and electronic structures of oxygen-adsorbed Si (001) surfaces | |
CN105764871A (en) | Cordierite sintered compact, method for manufacturing same, composite substrate, and electronic device | |
US6013322A (en) | Surface treatment of 312 ternary ceramic materials and products thereof | |
JPH0712988B2 (en) | Silicon-containing non-oxide ceramic protective layer and method for producing the same | |
US5670253A (en) | Ceramic wafers and thin film magnetic heads | |
JPH0587991A (en) | Mirror for sor | |
Weitering et al. | Electronic properties of the AgGe (111) interface | |
Odén et al. | Near‐Surface Deformation in an Alumina–Silicon Carbide‐Whisker Composite due to Surface Machining | |
Carlotti et al. | Elastic properties of spin‐on glass thin films | |
KR100300850B1 (en) | Method For Strengthening And Oxidation Prevention Of AIN By Formation Of Silica Layer On The Surface | |
Speiser et al. | Surface vibrations in the T 4 and H 3 Pb phases on Si (111) | |
Bertran et al. | Mechanical properties of nanometric structures of Si/SiC, C/SiC and C/SiN produced by PECVD | |
US6033727A (en) | Method for strengthening and aging-prevention of TZP by formation of silica/zircon layer on the surface thereof | |
Yasunaga et al. | Mechanism and application of the mechanochemical polishing method using soft powder | |
Liu et al. | Investigation of strength degradation and strength recovery via short time heating for ground alumina ceramics with different grain size | |
Liu et al. | Strength recovery of ground ceramics via electric furnace heating | |
JPS6191083A (en) | Enhancement for alumina ceramics | |
Hollstein et al. | The Strength and Fracture Behaviour of Engineering Ceramics—Influence of Machining and Residual Stresses | |
JPH0725033B2 (en) | Hard composite powder abrasive | |
JPH01271477A (en) | Abrasive grain and its production | |
JPH06216049A (en) | Reflecting mirror and manufacture thereof | |
JP2746911B2 (en) | High strength sialon and method for improving strength of sialon |