JPH0712960B2 - Silica fumes for cement mixing - Google Patents

Silica fumes for cement mixing

Info

Publication number
JPH0712960B2
JPH0712960B2 JP23900484A JP23900484A JPH0712960B2 JP H0712960 B2 JPH0712960 B2 JP H0712960B2 JP 23900484 A JP23900484 A JP 23900484A JP 23900484 A JP23900484 A JP 23900484A JP H0712960 B2 JPH0712960 B2 JP H0712960B2
Authority
JP
Japan
Prior art keywords
cement
amount
average particle
silica fume
reaction rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23900484A
Other languages
Japanese (ja)
Other versions
JPS61222949A (en
Inventor
悦郎 坂井
啓一 小野
幸夫 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP23900484A priority Critical patent/JPH0712960B2/en
Publication of JPS61222949A publication Critical patent/JPS61222949A/en
Publication of JPH0712960B2 publication Critical patent/JPH0712960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セメント混和用シリカヒューム、特に、特定
の非晶質SiO2量、比表面積、及び平均粒径を持つセメン
ト混和用シリカヒュームに関する。
Description: TECHNICAL FIELD The present invention relates to a cement-mixing silica fume, and more particularly to a cement-mixing silica fume having a specific amount of amorphous SiO 2 , a specific surface area, and an average particle size. .

〔従来技術〕[Prior art]

従来、シリカヒュームはセメントに混和することによ
り、セメントペースト、セメントモルタル、セメントコ
ンクリート(以下コンクリートという)を緻密にし、そ
の力学性状や水密性等を著しく改善することが指適され
ている(例えば、M.Malhotra and G.G.Garette;Concret
e Int′l、40-46(1984.5))。これはセメントから溶
出するCa(OH)2とシリカヒユームとの反応(いわゆるポ
ゾラン反応)により硬化したセメント組織が緻密化し、
強度が増進するためと考えることができる。
Conventionally, silica fume is admixed with cement to densify cement paste, cement mortar, and cement concrete (hereinafter referred to as concrete), and it is pointed out that the mechanical properties and watertightness thereof are remarkably improved (for example, M. Malhotra and GG Garette; Concret
e Int'l, 40-46 (1984.5)). This is because the cement structure hardened by the reaction of the Ca (OH) 2 eluted from the cement and the silica fume (so-called pozzolan reaction) becomes dense,
It can be considered that the strength is increased.

しかしながら、シリカヒユームはフエロシリコンや金属
シリコン等の製造時に副生する産業副産物であることよ
り、セメントに混和した場合に、コンクリートの特徴を
示す原因となるポゾラン反応性が、大きく変動し、実際
の使用にあたつては問題となつていた。
However, since silica hyme is an industrial by-product that is produced as a by-product during the production of ferrosilicon, metallic silicon, etc., when mixed with cement, the pozzolanic reactivity, which causes the characteristics of concrete, fluctuates greatly, and There was a problem in using it.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者は、この問題点を解決すべく種々検討を加えた
結果、シリカヒュームの非晶質SiO2量、比表面積、及び
平均粒径を特定化することによって、ポゾラン反応性が
大きくなり、セメント混和用シリカヒユームとして有効
となる知見を得て本発明を完成するに到つた。
The present inventors have made various studies to solve this problem, by specifying the amount of amorphous SiO 2 of silica fume, the specific surface area, and the average particle size, the pozzolanic reactivity increases, The present invention has been completed based on the finding that it is effective as a silica fume for admixing cement.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、非晶質SiO2量が80重量%以上、BET法
で測定した比表面積が21m2/g以上、並びに、平均粒径が
0.12μ以下であることを特徴とするセメント混和用シリ
カヒュームである。
That is, the present invention, the amount of amorphous SiO 2 is 80% by weight or more, the specific surface area measured by the BET method is 21 m 2 / g or more, and the average particle size is
A silica fume for admixing with cement, characterized by having a particle size of 0.12 μ or less.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明で使用するシリカヒユーム(以下SFという)はフ
エロシリコンや金属シリコン等の製造時に副生する産業
副産物である。そして超微粉であり、セメントに混和す
ることにより強度発現性状、水密性や耐久性が改善され
る。しかし、副産物であることより炉の運転状況等によ
り、そのコンクリートへの性能が変動する。
The silica fume (hereinafter referred to as SF) used in the present invention is an industrial by-product produced as a by-product during the production of ferrosilicon, metallic silicon and the like. Since it is an ultrafine powder, its strength development properties, watertightness and durability can be improved by mixing it with cement. However, since it is a by-product, the performance of the concrete varies depending on the operating conditions of the furnace.

本発明における非晶質SiO2量の測定法は特に限定される
ものではないが、通常、全SiO2量と結晶質SiO2量との差
から求める。
The method for measuring the amount of amorphous SiO 2 in the present invention is not particularly limited, but it is usually determined from the difference between the total amount of SiO 2 and the amount of crystalline SiO 2 .

全SiO2量は、例えば、アルカリ融解後、凝集沈殿法や吸
光光度法により求める化学分析で測定できる。その他、
螢光X線によつて測定されるSi量からも求めることがで
きる。
The total amount of SiO 2 can be measured, for example, by chemical analysis obtained by a coagulation-sedimentation method or an absorptiometric method after melting with alkali. Other,
It can also be obtained from the amount of Si measured by fluorescent X-ray.

又、結晶質SiO2量は、例えば、α‐Al2O3を標準物質と
し、粉末X線回折内部標準法によつて、α‐クオルツ,
クリストバライト,トリジマイト等の結晶質SiO2の回折
ピークから、予め作成した検量線に基づき求めることが
できる。その他顕微鏡観察より求めることもできる。
Further, the amount of crystalline SiO 2 is, for example, α-Al 2 O 3 as a standard substance, and α-quartz is determined by the powder X-ray diffraction internal standard method.
It can be obtained from diffraction peaks of crystalline SiO 2 such as cristobalite and tridymite based on a calibration curve prepared in advance. Alternatively, it can be determined by microscopic observation.

セメント混和用SFとしてのSF中の非晶質SiO2量は80重量
%以上であり、80重量%より低いとポゾラン反応量が低
下し、セメント混和用には不適である。
The content of amorphous SiO 2 in SF as SF for cement admixture is 80% by weight or more, and if it is less than 80% by weight, the amount of reaction of pozzolan decreases and it is not suitable for admixture with cement.

本発明における平均粒径(D)は、例えばピクノメータ
ー等を用いて測定した比重(ρ)とガス吸着法であるBE
T法(1点法)で測定した比表面積(SBET)から、次式
により算出されるものである。
The average particle diameter (D) in the present invention is the specific gravity (ρ) measured by using, for example, a pycnometer, and BE which is a gas adsorption method.
It is calculated from the specific surface area (S BET ) measured by the T method (1-point method) by the following formula.

D=6/ρSBET その他平均粒径は透過電子顕微鏡観察より求めることも
できる。
D = 6 / ρ S BET and other average particle diameters can also be obtained by observation with a transmission electron microscope.

セメント混和用SFとしての平均粒径は0.12μ以下であ
る。0.12μより大きいとポゾラン反応速度が低下し、セ
メント混和用には不適である。
The average particle size of SF for cement mixing is 0.12μ or less. If it is larger than 0.12μ, the pozzolanic reaction rate will decrease and it is not suitable for cement mixing.

〔実施例〕〔Example〕

以下実施例に基づいて本発明を更に説明する。 The present invention will be further described based on examples below.

実施例 世界各地に副生する市販のシリカヒユーム11種類につい
て実験を行つた。
Example An experiment was carried out on 11 kinds of commercially available silica fumes produced as by-products in various parts of the world.

アルカリ融解後、凝集沈殿法および吸光光度法により全
SiO2量を求め、さらに、α−Al2O3を内部標準として粉
末X線法により石英量を求め両者の差より非晶質SiO2
を求めた。また、ピクノメーターを用い比重を測定し、
ガス吸着BET法(1点法)により比表面積を求めた平均
粒径(D=6/ρSBET)を算出した。
After melting with alkali, the total amount is measured by coagulation-sedimentation method and absorption spectrophotometry
The amount of SiO 2 was determined, the amount of quartz was determined by the powder X-ray method using α-Al 2 O 3 as an internal standard, and the amount of amorphous SiO 2 was determined from the difference between the two . Also, using a pycnometer to measure the specific gravity,
The average particle size (D = 6 / ρS BET ) of which the specific surface area was obtained by the gas adsorption BET method (1-point method) was calculated.

SFのポゾラン反応性は普通ポルトランドセメント(住友
セメント社製)とSFを80:20重量部の割合で混合し、水
粉体比を0.5とし、反応温度を70℃において6時間,12時
間,24時間,48時間後にアセトンで水和反応を停止させ、
105℃で乾燥後グリセリン‐アルコール法によりCa(OH)2
量を測定することから求めた。なお、標準としては、普
通ポルトランドセメントとTiO2粉末を混合したものを用
い、その際に生成するCa(OH)2をAとし、シリカヒユー
ムを添加した際のCa(OH)2量をBとし、100(A−B)/A
をもつて、Ca(OH)2の反応率とした。その結果をもと
に、Ca(OH)2の反応率が50%になる時間(t50)を反応速
度の1指標とし、最終反応率としては、ほぼ反応が終了
していると考えられる48h後の反応率(R48)を指標とし
た。ポゾラン反応性はt50が小さく、R48の大なるもの
が、すぐれていると考えることができ、t50が10h以下、
R48が95%以上のものが好しい。
Regarding the pozzolanic reactivity of SF, ordinary Portland cement (Sumitomo Cement Co., Ltd.) and SF are mixed at a ratio of 80:20 parts by weight, the water powder ratio is 0.5, and the reaction temperature is 70 ° C for 6 hours, 12 hours, 24 hours. After 48 hours, stop the hydration reaction with acetone,
Ca (OH) 2 by glycerin-alcohol method after drying at 105 ℃
It was determined by measuring the amount. As a standard, a mixture of ordinary Portland cement and TiO 2 powder was used, Ca (OH) 2 generated at that time was A, and Ca (OH) 2 amount when silica fume was added was B, 100 (AB) / A
The reaction rate of Ca (OH) 2 was defined as Based on the results, the time at which the reaction rate of Ca (OH) 2 reaches 50% (t 50 ) is used as one index of the reaction rate, and the final reaction rate is considered to be almost complete for 48 h. The subsequent reaction rate (R 48 ) was used as an index. Pozzolanic reactivity has a small t 50 and a large R 48 can be considered excellent, and t 50 is 10 h or less,
R 48 of 95% or more is preferable.

〔発明の効果〕 実施例及び比較例からわかるように、本発明のSFは、反
応率が約95%以上、かつ反応速度が10時間以内に対し、
本発明以外のSFは反応率及び反応速度は不良であつた。
[Effect of the invention] As can be seen from the examples and comparative examples, the SF of the present invention has a reaction rate of about 95% or more, and a reaction rate within 10 hours,
SF other than the present invention had a poor reaction rate and reaction rate.

以上のことから、SFの非晶質SiO2量と平均粒径を特定化
することによつて、ポゾラン反応性の高いものが得ら
れ、コンクリート混和用SFとして効果があるものであ
る。
From the above, by specifying the amount of amorphous SiO 2 and the average particle size of SF, a high pozzolanic reactivity can be obtained, which is effective as SF for admixing concrete.

又、遊離石灰の減少に伴ない、耐化学薬品性や耐久性及
び耐火性等の増進の効果がある。
Further, with the decrease of free lime, there is an effect of enhancing chemical resistance, durability and fire resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非晶質SiO2量が80重量%以上、BET法で測
定した比表面積が21m2/g以上、並びに、平均粒径が0.12
μ以下であることを特徴とするセメント混和用シリカヒ
ューム。
1. An amorphous SiO 2 amount of 80% by weight or more, a specific surface area measured by the BET method of 21 m 2 / g or more, and an average particle size of 0.12.
Silica fume for admixing cement, characterized in that it is μ or less.
JP23900484A 1984-11-13 1984-11-13 Silica fumes for cement mixing Expired - Lifetime JPH0712960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23900484A JPH0712960B2 (en) 1984-11-13 1984-11-13 Silica fumes for cement mixing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23900484A JPH0712960B2 (en) 1984-11-13 1984-11-13 Silica fumes for cement mixing

Publications (2)

Publication Number Publication Date
JPS61222949A JPS61222949A (en) 1986-10-03
JPH0712960B2 true JPH0712960B2 (en) 1995-02-15

Family

ID=17038461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23900484A Expired - Lifetime JPH0712960B2 (en) 1984-11-13 1984-11-13 Silica fumes for cement mixing

Country Status (1)

Country Link
JP (1) JPH0712960B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182244A (en) * 1987-01-23 1988-07-27 久保孝ペイント株式会社 Waterproofing mortar composition
FR2776945B1 (en) * 1998-04-06 2000-06-16 Cs Systemes De Securite 3Cs PROCESS FOR DEAGGREGATION OR DEAGGLOMERATION OF PARTICULATE CLUSTERS, PROCESS FOR PREPARING CONCRETE OR MORTAR AND CONCRETE OR MORTAR THUS OBTAINED
JP2006182645A (en) * 2006-03-08 2006-07-13 Taiheiyo Cement Corp Binding material
JP5526466B2 (en) * 2007-07-17 2014-06-18 株式会社大林組 Refractory segment manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117218A (en) * 1974-08-01 1976-02-12 Denki Kagaku Kogyo Kk SAKANYOSEMENT OSOSEIBUTSU
JPS5580762A (en) * 1978-12-07 1980-06-18 Asahi Glass Co Ltd Inorganic dressing material with good adherence
JPS5777055A (en) * 1980-10-28 1982-05-14 Asahi Glass Co Ltd Slag-gypsum hardened body
EP0165388B1 (en) * 1981-06-16 1989-09-27 Dansk Eternit-Fabrik A/S Shaped article and composite material for its preparation

Also Published As

Publication number Publication date
JPS61222949A (en) 1986-10-03

Similar Documents

Publication Publication Date Title
JP5730325B2 (en) Inorganic binder systems for the production of chemically resistant building chemicals
Guo et al. Compressive strength and microstructural characteristics of class C fly ash geopolymer
CA1065901A (en) Process for preparing a foamed body
US10472282B2 (en) Particulate compositions for the formation of geopolymers, their use and methods for forming geopolymers therewith, and geopolymers obtained therefrom
Baltakys et al. Influence of modification of SiO2 on the formation of calcium silicate hydrate
US2410954A (en) Silica modified cement
JP5813116B2 (en) Use of compounds containing aluminum oxide and silicon oxide to produce hydrophilic building materials
CA1218387A (en) Cementitious composite material
US5762701A (en) Pozzolanic compositions
MXPA05001211A (en) Improved microsilica, its application like pozzolanic material and methods for its obtaining.
JP2006219312A (en) Solidifying material composition
JP3105518B2 (en) Cement admixture and cement composition
JPH0712960B2 (en) Silica fumes for cement mixing
JP4994056B2 (en) Cement admixture, cement composition, and cement concrete
CN109415263B (en) Mixed cement
JP2000007400A (en) Fine powder for cement mixing
JP2503226B2 (en) Alkali aggregate reaction inhibitor
JPH0978063A (en) Soil-improving agent
JP2503235B2 (en) Curing accelerator
KR102488083B1 (en) Concrete Admixture using Silica-rich Solution, and Concrete Composition having such Admixture and Recycled Coarse Aggregates
JPH0288451A (en) Waterproof cement admixture
JPH0812321A (en) Magnesia powder and its production
WO1992004295A1 (en) Method for preparing a spherosilicate-type cement and cement thereby obtained
JP3307821B2 (en) High-strength concrete admixture
JP2023028446A (en) Hydraulic cement composition and cement-concrete composition