JPH0712923Y2 - Gas introduction path for GC-IR - Google Patents

Gas introduction path for GC-IR

Info

Publication number
JPH0712923Y2
JPH0712923Y2 JP8687387U JP8687387U JPH0712923Y2 JP H0712923 Y2 JPH0712923 Y2 JP H0712923Y2 JP 8687387 U JP8687387 U JP 8687387U JP 8687387 U JP8687387 U JP 8687387U JP H0712923 Y2 JPH0712923 Y2 JP H0712923Y2
Authority
JP
Japan
Prior art keywords
gas
tube
cell
inner tube
introduction path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8687387U
Other languages
Japanese (ja)
Other versions
JPS63195260U (en
Inventor
宏 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8687387U priority Critical patent/JPH0712923Y2/en
Publication of JPS63195260U publication Critical patent/JPS63195260U/ja
Application granted granted Critical
Publication of JPH0712923Y2 publication Critical patent/JPH0712923Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ)産業上の利用分野 この考案はGC−IR用ガス導入路に関する。さらに詳しく
はガスクロマトグラフ(GC)により分離した気体試料を
フーリエ変換形赤外分光光度計(FT−IR)により、赤外
吸収スペクトルを測定する装置(GC/FT−IR)のガス導
入路関する。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention relates to a gas introduction path for GC-IR. More specifically, it relates to a gas introduction path of a device (GC / FT-IR) for measuring an infrared absorption spectrum of a gas sample separated by a gas chromatograph (GC) by a Fourier transform infrared spectrophotometer (FT-IR).

(ロ)従来の技術 GC/FT−IRにおいてGCとFT−IRをリンクするガス導入路
は、GCカラムに接続され該カラムで分離された気体試料
をIR測定用セルに導入する溶融石英管と、該溶融石英管
の外側周囲を覆う金属パイプと、該金属パイプの外側に
接設されるシースヒータとから主として構成され、さら
に該シースヒータが断熱材で覆われたものが使用されて
いる。このような構成のガス導入管において上記石英管
内を移送される気体試料は、金属パイプおよび石英管壁
を介するシースヒータからの熱伝導および熱輻射により
加熱状態が保持されている。
(B) Conventional technology In GC / FT-IR, a gas introduction path that links GC and FT-IR is connected to a GC column and a fused quartz tube that introduces a gas sample separated by the column into an IR measurement cell. A metal pipe that covers the outer periphery of the fused silica tube and a sheath heater that is provided in contact with the outer side of the metal pipe are mainly used, and the sheath heater that is covered with a heat insulating material is used. The gas sample transferred in the quartz tube in the gas introducing tube having such a configuration is kept in a heated state by heat conduction and heat radiation from the sheath heater through the metal pipe and the quartz tube wall.

また一方、GC/FT−IRではセル内に導入される測定対象
の気体試料は、セル入り口で窒素等の不活性ガスからな
るメイクアップガスと混合された状態で赤外吸収スペク
トルが測定されており、従ってこのメイクアップガス用
の流量制御、加熱制御等も必要であった。
On the other hand, in the case of GC / FT-IR, the gas sample to be measured that is introduced into the cell has an infrared absorption spectrum measured in the state of being mixed with a make-up gas consisting of an inert gas such as nitrogen at the cell inlet. Therefore, it is necessary to control the flow rate of the makeup gas, control the heating, and the like.

(ハ)考案が解決しようとする問題点 しかしながら上記のごとき構成のガス導入路では、金属
パイプの接続部では熱容量が大きいため、気体試料の流
路系全体を均等な負荷容量のヒータで加熱した場合この
接続部に温度低下が生じて冷却点となり、この部分に対
応する溶融石英管内に高温分離成分ガスの吸着等がおこ
り、該溶融石英管の劣化の原因となる。また溶融石英管
に温度分布が生じ、分離成分ガスの溶融石英管内での吸
着・拡散がおこり分離度が低下する原因ともなる。
(C) Problems to be solved by the device However, in the gas introduction path having the above-described configuration, since the heat capacity is large at the connection part of the metal pipe, the entire flow path system of the gas sample is heated by the heater having an even load capacity. In this case, a temperature drop occurs at this connecting portion to serve as a cooling point, and the high temperature separation component gas is adsorbed in the fused silica tube corresponding to this portion, which causes deterioration of the fused quartz tube. Further, a temperature distribution is generated in the fused silica tube, and the separation component gas is adsorbed and diffused in the fused silica tube, which causes a decrease in the degree of separation.

この考案はかかる状況に鑑みなされたものであり、温度
分布の均等がはかれるガス導入路を提供しようとするも
のである。
The present invention has been made in view of such a situation, and an object thereof is to provide a gas introduction passage having an even temperature distribution.

(ニ)問題点を解決するための手段 かくしてこの考案によれば、ガスクロマトグラフ(GC)
と赤外吸収スペクトル(IR)測定用セルとを接続し、GC
で分離された気体試料を加熱状態を保持して上記セルに
導入しうるよう構成されたガス導入路であって、 GCのカラムに接続され上記セル内にカラムで分離された
気体試料を導入する内管と、該内管の周囲を覆いかつ内
管の外側に沿って所定温度に加熱された不活性ガスを移
送して上記セル内に導入する外管と、該外管の外周に沿
って設けられた加熱手段とから構成されてなるGC−IR用
ガス導入路が提供される。
(D) Means for solving the problems Thus, according to this invention, a gas chromatograph (GC)
Connect the infrared absorption spectrum (IR) measurement cell to the GC
A gas introduction path configured so that the gas sample separated by the above can be introduced into the cell while keeping the heating state, and is connected to the column of GC to introduce the gas sample separated by the column into the cell. Along the outer circumference of the inner tube, an outer tube that covers the circumference of the inner tube and transfers an inert gas heated to a predetermined temperature along the outer side of the inner tube to introduce the inert gas into the cell. There is provided a gas introduction path for GC-IR, which is composed of a heating means provided.

この考案は、気体試料の加熱手段が、気体試料移送用内
管外側に接して設けられる加熱ガス流通層と、該流通層
の外側に管壁を介して接設される通常の加熱手段との二
重構造から構成されたことを特徴とする。
According to this invention, the heating means for the gas sample comprises a heating gas flow layer provided in contact with the outside of the gas sample transfer inner tube, and a normal heating means provided outside the flow layer through a tube wall. It is characterized by having a double structure.

この考案において上記流通加熱ガスには不活性ガスが用
いられるが、該ガスは上記のごとき加熱用途以外に赤外
吸収スペクトル測定用のメイクアップガスとして兼用さ
れうるものが選択され、例えば窒素、ヘリウム等が挙げ
られる。
In this invention, an inert gas is used as the circulation heating gas, and the gas is selected so that it can be used as a makeup gas for infrared absorption spectrum measurement in addition to the above heating applications, for example, nitrogen or helium. Etc.

上記不活性ガスは、加熱温度および流量を制御して供給
されねばならないが、このための制御機構が独立して設
定されていてもよいが、上記不活性ガスはガスクロマト
グラフ(GC)のキャリアガスと同種のガスを用いること
ができ、従ってGCにおけるキャリアガス供給流路を分岐
構成することにより、GC側での加熱・流量制御を利用し
てこの考案の加熱不活性ガスとして用いるよう構成され
ることが好ましい。上記不活性ガスの加熱温度は、内管
を移送される気体試料がIR測定用セルまでの流路途上で
冷却析出しない温度が選択される。
The above-mentioned inert gas must be supplied while controlling the heating temperature and flow rate, but a control mechanism for this may be set independently, but the above-mentioned inert gas is the carrier gas of a gas chromatograph (GC). It is possible to use the same kind of gas as the above, therefore, by branching the carrier gas supply channel in the GC, it is configured to be used as the heating inert gas of the present invention by utilizing the heating / flow rate control on the GC side. It is preferable. As the heating temperature of the inert gas, a temperature at which the gas sample transferred through the inner tube does not cool and precipitate on the way to the IR measurement cell is selected.

この考案において用いられる上記内管は、GCの溶融石英
製カラムを延設して構成されることが好ましく、また上
記外管は熱伝導性の点で金属製のものが好ましいが、こ
れらに限定されない。
The inner tube used in this invention is preferably constructed by extending a fused silica column of GC, and the outer tube is preferably made of metal in terms of thermal conductivity, but is not limited to these. Not done.

(ホ)作用 この考案によれば、ガスクロマトグラフ(GC)と赤外吸
収スペクトル(IR)測定用セルとを接続しかつ加熱手段
が外周に設けられた外管と、該外管内に挿入配設されGC
カラムで分離された気体試料を上記測定用セルに導入す
る内管との間隙により構成されるGC内からIR測定用セル
内までの連通路に、所定温度に加熱された不活性ガスが
移送されることにより、該加熱不活性ガスおよび上記加
熱手段による熱伝導・熱輻射が内管内を移送される気体
試料のGCカラムから上記セルまでの流路全体にわたって
行われ、GCからセルまで気体試料は均等に加熱されて移
送されるとともに該気体試料に上記加熱不活性ガスがメ
イクアップガスとして測定用セル内で混合されることと
なる。
(E) Action According to the present invention, an outer tube that connects the gas chromatograph (GC) and the infrared absorption spectrum (IR) measuring cell and is provided with heating means on the outer periphery, and is inserted and disposed in the outer tube. Done GC
The inert gas heated to a predetermined temperature is transferred to the communication path from the inside of the GC to the inside of the IR measurement cell, which is formed by the gap between the gas sample separated by the column and the inner tube that introduces it into the measurement cell. As a result, heat conduction / heat radiation by the heated inert gas and the heating means is performed over the entire flow path from the GC column of the gas sample transferred in the inner tube to the cell, and the gas sample from the GC to the cell is The heated sample is uniformly heated and transferred, and the heated inert gas is mixed with the gas sample as makeup gas in the measurement cell.

以下実施例によりこの考案を詳細に説明するが、これに
よりこの考案は限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

(ヘ)実施例 第1図はこの考案のGC−IR用ガス導入路の一例の構成説
明図である。図においてガスクロマトグラフ(GC)側と
赤外吸収スペクトル(IR)測定側とを接続するガス導入
路(1)は、GCオーブン(6)内の分離カラム(7)か
ら延設されIR測定用セル(8)のガス導入管(81)に挿
入された溶融石英製内管(2)と、GCオーブン内に開口
端(イ)を有して上記セルのガス導入管(81)端部まで
その内部に上記溶融石英製内管(2)を挿入して配管さ
れる金属製外管(3)と、該外管(3)に沿ってその外
側に巻き付けられたシースヒータ(4)と該シースヒー
タ(4)を所定温度に加熱する温度コントローラ(5)
とから主として構成されている。このシースヒータ
(4)は図示しない断熱材で被覆されさらにその外側は
金属パイプ(9)により保護されている。
(F) Embodiment FIG. 1 is a structural explanatory view of an example of the gas introduction path for GC-IR of the present invention. In the figure, the gas introduction path (1) connecting the gas chromatograph (GC) side and the infrared absorption spectrum (IR) measurement side is extended from the separation column (7) in the GC oven (6), and an IR measurement cell is provided. The inner tube (2) made of fused silica inserted into the gas introduction tube (81) of (8) and the end of the gas introduction tube (81) of the cell having an open end (a) inside the GC oven A metallic outer tube (3), into which the fused quartz inner tube (2) is inserted, and a sheath heater (4) wound around the outer tube along the outer tube (3) and the sheath heater ( Temperature controller (5) that heats 4) to a predetermined temperature
It is mainly composed of and. The sheath heater (4) is covered with a heat insulating material (not shown), and the outside thereof is protected by a metal pipe (9).

IR測定用セル(8)は、両端に赤外線透過可能な窓材を
有して密閉された円筒状のライトパイプ(82)と、該ラ
イトパイプ(82)の各端部近傍の筒壁にその筒内に開口
して設定されたガス導入管(81)およびガス排出管(8
3)と、ライトパイプ、ガス導入管およびガス排出管を
加熱する加熱ブロック(84)とから主として構成され、
さらに上記ライトパイプ内を軸方向に透過する一対の図
示しない赤外干渉光光源および集光器と同じく図示しな
い赤外検出器とが具備されている。
The IR measuring cell (8) has a cylindrical light pipe (82) which has a window material capable of transmitting infrared rays at both ends and is hermetically sealed, and a cylindrical wall near each end of the light pipe (82). A gas inlet pipe (81) and a gas exhaust pipe (8
3) and a heating block (84) for heating the light pipe, the gas introduction pipe and the gas discharge pipe,
Further, there are provided a pair of infrared interference light sources (not shown) and a condenser (not shown) that transmit through the light pipe in the axial direction, and an infrared detector (not shown).

上記溶融石英製内管(2)は内径0.1〜0.3mm,外径0.2〜
0.4mmのものが、一方金属製外管(3)は内径約1mmのス
テンレススチール製管が使用されており、さらに金属製
外管の開口端(イ)は、GCのキャリアガス供給部からフ
ローコントローラ(10)を介して分流されたメイクアッ
プガス供給路(11)と第2図に示すごときコネクタ(1
2)により接続されている。該コネクタ(12)は一端が
上記開口端(イ)と接続され、他端が溶融石英製内管
(2)に貫通された筒状体で、該筒状体の胴体にはメイ
クアップガス供給路が接続されており、上記貫通部は筒
状体内からグラファイト・フェノール(13)でシールさ
れている。またIR測定用セルのガス導入管(81)に挿入
された溶融石英製内管(2)はガス導入管内を間隙を保
持して配管され、セル入口で開口されている。
The fused quartz inner tube (2) has an inner diameter of 0.1 to 0.3 mm and an outer diameter of 0.2 to
On the other hand, the outer metal pipe (3) is 0.4 mm, but the stainless steel pipe with an inner diameter of about 1 mm is used, and the open end (a) of the metal outer pipe flows from the carrier gas supply part of the GC. A makeup gas supply path (11) shunted through the controller (10) and a connector (1) as shown in FIG.
Connected by 2). The connector (12) is a cylindrical body having one end connected to the opening end (a) and the other end penetrating the fused silica inner tube (2), and makeup gas is supplied to the body of the cylindrical body. The passages are connected and the penetrations are sealed from inside the cylinder with graphite phenol (13). The inner tube (2) made of fused silica inserted in the gas introduction pipe (81) of the IR measurement cell is arranged with a gap in the gas introduction pipe and is opened at the cell inlet.

以上のごとく構成されたこの考案のガス導入路(1)を
用いたGC−IRにおいては、温度コントローラにより所定
温度にシースヒータが加熱されて、該シースヒータから
の熱伝導によりこのシースヒータに接触している金属製
外管が加熱され、該外管からの熱輻射により外管内に挿
入配管されている溶融石英製内管が加熱される。一方GC
側のキャリアガス供給部から分流されたキャリアガス
は、所定の流量でGCオーブン内のメイクアップガス供給
路に送られる。該流路内においてオーブン温度に加熱さ
れたキャリアガス(メイクアップガス)は、上記供給路
からコネクタを経て、上記のごとく加熱されている溶融
石英製内管外部と金属製外管内部の間隙を通って上記内
管の外部に沿って移送され、さらにIR測定用セルのガス
導入管と上記内管との間隙を通って該セル内に導入され
る。ここにおいてコネクタからIR測定用セルまでのメイ
クアップガス流路は、加熱メイクアップガスの流動とシ
ースヒータからの熱伝導により上記流路全体に均一な温
度分布の加熱状態が保持される。この状態において分離
カラムにより分離された気体試料は所定温度で所定のキ
ャリアガス流量によりカラムと連続する溶融石英製内管
内を順次移送されて、該内管先端からIR測定用セル内に
導入される。上記内管内を移送される間、気体試料はそ
の内管の全外壁を接触流動する上記加熱メイクアップガ
スの熱伝導・熱輻射により終始均一な加熱は行われるこ
ととなる。
In the GC-IR using the gas introduction path (1) of the present invention configured as described above, the sheath heater is heated to a predetermined temperature by the temperature controller and is in contact with the sheath heater by heat conduction from the sheath heater. The metal outer tube is heated, and the heat radiation from the outer tube heats the fused silica inner tube inserted into the outer tube. On the other hand, GC
The carrier gas diverted from the carrier gas supply unit on the side is sent to the makeup gas supply passage in the GC oven at a predetermined flow rate. The carrier gas (make-up gas) heated to the oven temperature in the flow path passes through the connector from the supply path and flows through the gap between the inside of the fused silica inner tube and the inside of the metal outer tube heated as described above. It is then transferred along the outside of the inner tube and then introduced into the cell through the gap between the gas introducing tube of the IR measurement cell and the inner tube. Here, in the makeup gas flow path from the connector to the IR measurement cell, the heating state of a uniform temperature distribution is maintained in the entire flow path due to the flow of the heating makeup gas and the heat conduction from the sheath heater. In this state, the gas sample separated by the separation column is sequentially transferred in a fused silica inner tube continuous with the column at a predetermined carrier gas flow rate at a predetermined temperature, and is introduced into the IR measurement cell from the tip of the inner tube. . While being transferred in the inner tube, the gas sample is uniformly heated from beginning to end due to heat conduction and heat radiation of the heating makeup gas flowing in contact with all the outer walls of the inner tube.

(ト)考案の効果 この考案によれば、GCとIR測定用セルとを接続しかつGC
カラムで分離される気体試料をIR測定用セルに移送する
ガス導入路は、温度分布が均一化されすなわち冷却点が
生じないので、移送される気体試料の溶融石英管内での
吸着等が生じず、該石英管の劣化を防ぐことができ、ま
た気体試料の溶融石英管内での吸着・拡散による分離度
の低下を回避することができる。メイクアップガスのた
めの加熱装置、流量制御等をGC側のアクセサリにより行
うことができ、システムの簡略化が計れる。
(G) Effect of the device According to this device, the GC is connected to the IR measurement cell and the GC is connected.
The gas introduction path for transferring the gas sample separated by the column to the IR measurement cell has a uniform temperature distribution, that is, no cooling point is generated, so that the transferred gas sample is not adsorbed in the fused quartz tube. The deterioration of the quartz tube can be prevented, and the deterioration of the degree of separation due to the adsorption / diffusion of the gas sample in the fused quartz tube can be avoided. The heating device for make-up gas, flow rate control, etc. can be controlled by the accessory on the GC side, and the system can be simplified.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案のGC−IR用ガス導入路の一例の構成説
明図、第2図は第1図の溶融石英製内管と金属製外管と
メイクアップガス供給路との接続状態の説明図である。 (1)……ガス導入路、(2)……溶融石英製内管、
(3)……金属製外管、(4)……シースヒータ、
(5)……温度コントローラ、(6)……GCオーブン、
(7)……分離カラム、(8)……IR測定用セル、
(9)……金属パイプ、
FIG. 1 is an explanatory view of the configuration of an example of a gas introduction path for GC-IR of the present invention, and FIG. 2 is a connection state of the fused silica inner tube, the metal outer tube and the makeup gas supply path of FIG. FIG. (1) …… Gas introduction path, (2) …… Fused quartz inner tube,
(3) …… Metal outer tube, (4) …… Sheath heater,
(5) …… Temperature controller, (6) …… GC oven,
(7) …… Separation column, (8) …… IR measurement cell,
(9) …… Metal pipe,

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ガスクロマトグラフ(GC)と赤外吸収スペ
クトル(IR)測定用セルとを接続し、GCで分離された気
体試料を加熱状態を保持して上記セルに導入しうるよう
構成されたガス導入路であって、 GCのカラムに接続され上記セル内にカラムで分離された
気体試料を導入する内管と、該内管の周囲を覆いかつ内
管の外側に沿って所定温度に加熱された不活性ガスを移
送して上記セル内に導入する外管と、該外管の外周に沿
って設けられた加熱手段とから構成されてなるGC−IR用
ガス導入路。
1. A gas chromatograph (GC) and an infrared absorption spectrum (IR) measuring cell are connected to each other so that a gas sample separated by the GC can be introduced into the cell while maintaining a heated state. A gas introduction path, which is connected to a GC column and introduces a gas sample separated by the column into the cell, and a predetermined temperature along the outside of the inner tube that covers the circumference of the inner tube. A gas introduction path for GC-IR, comprising an outer tube for transferring the introduced inert gas and introducing it into the cell, and a heating means provided along the outer circumference of the outer tube.
JP8687387U 1987-06-03 1987-06-03 Gas introduction path for GC-IR Expired - Lifetime JPH0712923Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8687387U JPH0712923Y2 (en) 1987-06-03 1987-06-03 Gas introduction path for GC-IR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8687387U JPH0712923Y2 (en) 1987-06-03 1987-06-03 Gas introduction path for GC-IR

Publications (2)

Publication Number Publication Date
JPS63195260U JPS63195260U (en) 1988-12-15
JPH0712923Y2 true JPH0712923Y2 (en) 1995-03-29

Family

ID=30943582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8687387U Expired - Lifetime JPH0712923Y2 (en) 1987-06-03 1987-06-03 Gas introduction path for GC-IR

Country Status (1)

Country Link
JP (1) JPH0712923Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522219B2 (en) * 2012-09-03 2014-06-18 株式会社島津製作所 Gas chromatograph
US20210132012A1 (en) * 2019-11-01 2021-05-06 Waters Technologies Corporation Techniques for temperature control of separation devices and optical detection devices of mass analysis systems

Also Published As

Publication number Publication date
JPS63195260U (en) 1988-12-15

Similar Documents

Publication Publication Date Title
CN106898537B (en) The transmission line of heating
US4914276A (en) Efficient high temperature radiant furnace
US6599484B1 (en) Apparatus for processing radionuclides
US9244044B2 (en) Method for a gas chromatograph to mass spectrometer interface
EP0152946B1 (en) Apparatus for heating a length of tubing
US5915072A (en) Infrared heater apparatus
JP2005504969A (en) Apparatus for performing high temperature liquid chromatography analysis
CA1147979A (en) Sample pyrolysis oven
EP0855596B1 (en) Gas chromatograph system
JPH0712923Y2 (en) Gas introduction path for GC-IR
JPH0122980B2 (en)
US4728776A (en) Heated transfer line for capillary tubing
US5608838A (en) Blackbody type heating element for calibration furnace with pyrolytic graphite coating disposed on end cap electrode members
CN1642630B (en) Reaction apparatus and reaction method applying the device
JP3108545B2 (en) Optical fiber drawing furnace
JP2931967B2 (en) Inductively coupled plasma torch for introduction of high boiling gaseous molecules
US3544277A (en) Dual heat zone pyrolytic furnace
Yamada et al. High‐Temperature Furnace Systems for Realizing Metal‐Carbon Eutectic Fixed Points
US5408316A (en) Arrangement for electrothermally atomizing specimens to be analyzed
JPH0412633Y2 (en)
JPH0336919Y2 (en)
JPH0122108Y2 (en)
JP2940085B2 (en) Induction heating device for slab material
Sapritsky et al. High-temperature blackbody sources for precision radiometry
JPH0517143Y2 (en)