JPH07128648A - Liquid crystal optical element and its production - Google Patents
Liquid crystal optical element and its productionInfo
- Publication number
- JPH07128648A JPH07128648A JP29757193A JP29757193A JPH07128648A JP H07128648 A JPH07128648 A JP H07128648A JP 29757193 A JP29757193 A JP 29757193A JP 29757193 A JP29757193 A JP 29757193A JP H07128648 A JPH07128648 A JP H07128648A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- optical element
- substrate
- polymer composite
- composite film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶光学素子に関し、
更に詳しくは高分子物質中に液晶を分散させた液晶/高
分子複合膜を使用した液晶光学素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal optical element,
More specifically, it relates to a liquid crystal optical element using a liquid crystal / polymer composite film in which a liquid crystal is dispersed in a polymer substance.
【0002】[0002]
【従来の技術】従来、液晶ディスプレイは、低消費電
力、軽量、薄型等の特徴を有している為、文字や画像の
表示媒体として、腕時計、電卓、パソコン、テレビ等に
幅広く用いられている。一般的なTN及びSTN型液晶
ディスプレイは、透明電極を有する一対のガラス板間に
所定のシール等が施された液晶セル中に液晶を封入し、
更に両面から偏光板でサンドイッチされたものである。2. Description of the Related Art Conventionally, liquid crystal displays have been widely used as wristwatches, calculators, personal computers, televisions, etc., as a display medium for characters and images because they have characteristics such as low power consumption, light weight and thin shape. . In general TN and STN type liquid crystal displays, liquid crystal is enclosed in a liquid crystal cell in which a predetermined seal is provided between a pair of glass plates having transparent electrodes,
Further, it is sandwiched by polarizing plates from both sides.
【0003】しかしながら、上記従来の液晶ディスプレ
イは、(1)二枚の偏光板が必要な為視野角が狭く、
又、輝度が不足している為、高消費電力のバックライト
が必要である、(2)セル厚依存性が大きく大面積化が
困難である、(3)配向膜の形成、そのラビング処理及
びセルへの液晶の封入等、その製造工程が複雑な為に製
造コストが高い等の問題があり、液晶ディスプレイの軽
量化、薄型化、大面積化、低消費電力化、低コスト化に
限界がある。However, the above-mentioned conventional liquid crystal display (1) has a narrow viewing angle because it requires two polarizing plates.
In addition, because of insufficient brightness, a backlight with high power consumption is required. (2) Cell thickness dependency is large and it is difficult to increase the area. (3) Formation of alignment film, rubbing treatment There is a problem that the manufacturing cost is high due to the complicated manufacturing process such as encapsulation of liquid crystal in the cell, and there is a limit to the weight reduction, thinning, large area, low power consumption, and cost reduction of the liquid crystal display. is there.
【0004】この様な問題点を解決する液晶表示媒体と
して、液晶を高分子マトリックス中に分散させた液晶/
高分子複合膜の応用が期待され、その研究開発が活発化
してきた。液晶/高分子複合膜の製造方法は主としてエ
マルジョン法と相分離法に分類することが出来る。エマ
ルジョン法としては、ポリビニルアルコール(PVA)
を保護コロイドとして液晶を乳化した水溶液から作製す
る方法(特表昭58−501631号公報)、液晶エマ
ルジョンをラテックスと混合して水溶液から作製する方
法(特開昭60−252687号公報)等が挙げられ
る。As a liquid crystal display medium for solving such problems, a liquid crystal in which a liquid crystal is dispersed in a polymer matrix /
Applications of polymer composite membranes are expected, and their research and development have been activated. The liquid crystal / polymer composite film manufacturing method can be mainly classified into an emulsion method and a phase separation method. As an emulsion method, polyvinyl alcohol (PVA)
A protective liquid is used as a protective colloid to prepare a liquid crystal from an aqueous solution (JP-A-58-501631), a liquid crystal emulsion is mixed with a latex to prepare an aqueous solution (JP-A-60-252687), and the like. To be
【0005】[0005]
【発明が解決しようとしている問題点】エマルジョン法
を用いることにより、塗布方法によって光利用効率の高
い明るい液晶表示素子が得られ、低価格化の可能性もあ
って一見極めて有利な方法である様に思えるが、実際の
製造においては種々の問題が存在する。特に、塗布液で
ある液晶エマルジョン自体の塗布適性が好ましくない為
に、塗布方法によっては特性の優れた均一な液晶/高分
子複合膜が得られないという問題がある。Problems to be Solved by the Invention By using the emulsion method, a bright liquid crystal display device having high light utilization efficiency can be obtained by the coating method, and there is a possibility of cost reduction. However, there are various problems in actual manufacturing. In particular, since the coating suitability of the liquid crystal emulsion itself as the coating liquid is not preferable, there is a problem that a uniform liquid crystal / polymer composite film having excellent characteristics cannot be obtained depending on the coating method.
【0006】水溶性高分子物質の水溶液と液晶とを混合
・撹拌して得られる液晶エマルジョンは、駆動電圧の低
下等の電気光学特性を向上させる為に、液晶成分を80
〜90重量%とし高分子物質成分を出来る限り少なくす
ることで行なわれているが、液晶エマルジョンは水溶性
高分子物質の水溶液に特有のチキソトロピック性を有す
る為に、混入した空気の気泡の除去が困難となる。表示
装置の様な製品では気泡の存在は致命的な問題であり、
特に塗布時に混入した気泡は除去することが出来ず、製
品化が極めて困難である。従って、液晶光学素子におい
て要求される電圧特性の全面均一化を満足させることも
困難である。A liquid crystal emulsion obtained by mixing and stirring an aqueous solution of a water-soluble polymer substance and liquid crystal contains 80 parts of a liquid crystal component in order to improve electro-optical characteristics such as reduction of driving voltage.
It is carried out by making the amount of the polymer substance to be 90% by weight or less, but the liquid crystal emulsion has the thixotropic property peculiar to the aqueous solution of the water-soluble polymer substance. Will be difficult. The presence of air bubbles is a fatal problem in products such as display devices.
In particular, air bubbles mixed in at the time of application cannot be removed, and it is extremely difficult to commercialize it. Therefore, it is difficult to satisfy the requirement of uniforming the entire voltage characteristics of the liquid crystal optical element.
【0007】従って本発明の目的は、上記従来技術の問
題点を解決し、液晶エマルジョンの浪費がなく且つ液晶
光学素子における液晶/高分子複合膜中に気泡が全く含
有していない表示特性に優れた液晶光学素子を提供する
ことである。Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and to have excellent display characteristics in which no liquid crystal emulsion is wasted and no bubbles are contained in the liquid crystal / polymer composite film in the liquid crystal optical element. Another object of the present invention is to provide a liquid crystal optical element.
【0008】[0008]
【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、少なくとも一方
の基板が透明である一対の導電性基板で液晶/高分子複
合膜を狭持してなる液晶光学素子において、少なくとも
一方の基板が中央が内側に隆起した形状を有することを
特徴とする液晶光学素子、少なくとも一方の基板が透明
である一対の導電性基板で液晶/高分子複合膜を狭持し
てなる液晶光学素子の製造方法において、少なくとも一
方の基板が中央が内側に隆起した形状を有し、少なくと
も一方の基板面に液晶/高分子複合膜を形成した後、対
向電極基板を貼り合わせることを特徴とする液晶光学素
子の製造方法、及び少なくとも一方の基板が透明である
一対の導電性基板で液晶/高分子複合膜を狭持してなる
液晶光学素子の製造方法において、少なくとも一方の基
板に液晶/高分子複合膜を形成した後、真空脱気しなが
ら対向電極基板を貼り合わせることを特徴とする液晶光
学素子の製造方法である。The above object can be achieved by the present invention described below. That is, the present invention provides a liquid crystal optical element in which a liquid crystal / polymer composite film is sandwiched between a pair of conductive substrates in which at least one substrate is transparent, and at least one substrate has a shape in which the center is raised inward. A method for producing a liquid crystal optical element comprising a liquid crystal / polymer composite film sandwiched between a pair of conductive substrates, at least one substrate of which is transparent, wherein at least one substrate is a center. And a counter electrode substrate are bonded together after forming a liquid crystal / polymer composite film on at least one substrate surface, and at least one substrate In a method for producing a liquid crystal optical element in which a liquid crystal / polymer composite film is sandwiched between a pair of transparent conductive substrates, after forming a liquid crystal / polymer composite film on at least one substrate, While air-degassed is a manufacturing method of the liquid crystal optical element characterized by bonding the counter electrode substrate.
【0009】[0009]
【作用】基板上に形成された液晶/高分子複合膜が、基
板と同様に中心部が隆起しており、対向基板の貼り合せ
時に、対向基板が上記膜の中央部に先ず接触し膜を若干
押し潰す状況で貼り合わされるので、液晶/高分子複合
膜中に気泡が残ることがない。又、本発明の別の実施例
では、少なくとも一方の基板に液晶/高分子複合膜を形
成した後、真空脱気しながら対向電極基板を貼り合わせ
るので、同様に液晶/高分子複合膜中に気泡が残ること
がない。The liquid crystal / polymer composite film formed on the substrate has a raised central portion as in the case of the substrate. When the opposing substrates are bonded together, the opposing substrate first comes into contact with the central portion of the film to form the film. Since they are pasted together in a slightly crushed state, air bubbles do not remain in the liquid crystal / polymer composite film. Further, in another embodiment of the present invention, after the liquid crystal / polymer composite film is formed on at least one of the substrates, the counter electrode substrate is attached while degassing under vacuum. No bubbles remain.
【0010】[0010]
【好ましい実施態様】次に好ましい実施態様を挙げて本
発明を更に詳しく説明する。本発明で云う液晶とは、常
温付近で液晶状態を示す有機混合物であって、ネマチッ
ク液晶、コレステリック液晶、スメクチック液晶が含ま
れる。このうちネマチック液晶若しくはコレステリック
液晶を添加したネマチック液晶が特性上好ましい。これ
らの液晶はマイクロカプセル化されたものであってもよ
い。上記の液晶は二色性色素で着色しておくことも出来
る。液晶を着色する理由としては、着色によるカラー表
示という目的もあるが、電圧印加時と無印加時の光の吸
収の差を利用して表示画像のコントラストを高めるとい
う目的もある。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the preferred embodiments. The liquid crystal referred to in the present invention is an organic mixture showing a liquid crystal state at around room temperature, and includes nematic liquid crystal, cholesteric liquid crystal and smectic liquid crystal. Among them, nematic liquid crystal or nematic liquid crystal to which cholesteric liquid crystal is added is preferable in view of characteristics. These liquid crystals may be microencapsulated. The above liquid crystal may be colored with a dichroic dye. The reason for coloring the liquid crystal is also for the purpose of color display by coloring, but also for the purpose of enhancing the contrast of the displayed image by utilizing the difference in light absorption between when voltage is applied and when voltage is not applied.
【0011】着色に使用する二色性色素は、TN及びS
TN型液晶ディスプレイで一般的に使用されているゲス
ト・ホストタイプのものを用いてもよいし、液晶/高分
子複合膜用の色素を用いてもよい。但し、液晶への溶解
度が大きくて高分子への溶解度が小さく、しかも2色比
が大きく、電圧印加時の吸収が少ないものが良いが、こ
れらの特性は、用いる液晶によって異なるので液晶毎に
決定する必要がある。色素の添加量が多過ぎると高分子
への溶解が多くなり、電圧印加時の色残りが生じて好ま
しくない。又、色素の量が少な過ぎると電圧印加時と無
印加時の光の吸収の差が小さくなり、コントラストの向
上効果が十分ではない。その為に、用いる液晶に対して
0.1〜5重量%の範囲で使用することが好ましい。更
には1〜3重量%の濃度に溶解させるのが好ましい。The dichroic dyes used for coloring are TN and S.
Guest-host type ones generally used in TN type liquid crystal displays may be used, or dyes for liquid crystal / polymer composite film may be used. However, it is preferable that the solubility in the liquid crystal is large, the solubility in the polymer is small, the dichroic ratio is large, and the absorption when a voltage is applied is small, but these characteristics are different depending on the liquid crystal used, and thus are determined for each liquid crystal. There is a need to. When the amount of the dye added is too large, the amount of the dye dissolved in the polymer increases, and color residue occurs when a voltage is applied, which is not preferable. On the other hand, if the amount of the dye is too small, the difference in light absorption between when voltage is applied and when voltage is not applied becomes small, and the effect of improving the contrast is not sufficient. Therefore, it is preferably used in the range of 0.1 to 5% by weight with respect to the liquid crystal used. Furthermore, it is preferable to dissolve it in a concentration of 1 to 3% by weight.
【0012】本発明で使用する液晶エマルジョンは従来
公知の液晶エマルジョン法によるものでも、又、相分離
法によるものであってもよく、特に限定されないが、エ
マルジョン法によるものが好ましい。液晶エマルジョン
は前記液晶を適当なマトリックス樹脂を含む水溶液中に
乳化分散させることによって得られる。マトッリクス水
溶液に上記液晶を分散させる方法としては、超音波分散
機等の各種の撹拌装置による混合方法や、膜乳化法(中
島忠夫・清水政高、PHARMTECH JAPAN
4巻、10号(1988)参照)等の分散方法が有効で
ある。液晶エマルジョン粒子の大きさは、用いる分散方
法に依存するが、一般的には平均粒径が0.5〜7μm
の範囲にあることが好ましく、1〜5μmの範囲である
ことが更に好ましい。液晶エマルジョンの作成に使用す
るマトリックス樹脂としては、PVAが好ましく用いら
れるが、ゼラチン、アクリル酸共重合体、水溶性アルキ
ド樹脂等、水に分散若しくは溶解するものであればよ
い。The liquid crystal emulsion used in the present invention may be a conventionally known liquid crystal emulsion method or a phase separation method, and is not particularly limited, but the emulsion method is preferable. The liquid crystal emulsion is obtained by emulsifying and dispersing the above liquid crystal in an aqueous solution containing a suitable matrix resin. As a method of dispersing the above liquid crystal in the Matricex aqueous solution, a mixing method using various stirring devices such as an ultrasonic disperser or a film emulsification method (Tadao Nakajima, Masataka Shimizu, PHARMTECH JAPAN)
Dispersion methods such as Volume 4, No. 10, (1988)) are effective. The size of the liquid crystal emulsion particles depends on the dispersion method used, but generally the average particle size is 0.5 to 7 μm.
Is more preferable, and the range of 1-5 μm is still more preferable. PVA is preferably used as the matrix resin used in the preparation of the liquid crystal emulsion, but may be gelatin, acrylic acid copolymer, water-soluble alkyd resin or the like as long as it can be dispersed or dissolved in water.
【0013】液晶とマトリックス樹脂の使用量として
は、マトリックス樹脂/液晶の混合比(重量比)が5/
95〜50/50であり、液晶の使用量が少なすぎる
と、電圧オン時の透明性が不足するだけでなく、膜を透
明状態にする為に多大の電圧を必要とする等の点で不十
分であり、一方、液晶の使用量が多すぎると、電圧オフ
時の散乱(濁度)が不足するだけでなく、膜の強度が低
下したりするので好ましくない。本発明の液晶光学素子
を形成する為の基板としては、少なくともいずれか一方
が、例えば、ITO、SnO2 系、ZnO系の様な透明
導電性を付与したガラスや高分子フイルム等の様な一対
の基板である。The amount of liquid crystal and matrix resin used is such that the mixture ratio (weight ratio) of matrix resin / liquid crystal is 5 /.
If the amount of the liquid crystal used is too small, not only the transparency when the voltage is turned on is insufficient, but also a large voltage is required to bring the film into a transparent state. On the other hand, when the amount of the liquid crystal used is too large, not only the scattering (turbidity) when the voltage is off is insufficient, but also the strength of the film is reduced, which is not preferable. As the substrate for forming the liquid crystal optical element of the present invention, at least one of them is a pair such as glass, polymer film or the like to which transparent conductivity such as ITO, SnO 2 system, ZnO system is provided. It is the substrate of.
【0014】次に本発明の液晶光学素子の製造方法を説
明する。図1は本発明の好ましい実施態様の液晶光学素
子の製造工程を図解的に説明する図である。先ず、第1
の方法では、図1(a)に示す様に、基板1が緩い曲率
で上方に凸状に形成され、該曲面に沿って電極2が形成
され、且つその表面に液晶/高分子複合膜3が形成され
ている。この状態で電極2´を形成した通常に基板1´
を矢印で示す様に平行に貼り合わせると、対向基板1´
の電極2´面は先ず膜3の頂部に接触し、次いで膜3を
押し潰す様にして貼り合せられるので、膜3の表面に多
少の気泡が存在しても気泡は押し出されるので最終的に
得られる素子中に気泡が残ることはない。Next, a method for manufacturing the liquid crystal optical element of the present invention will be described. FIG. 1 is a diagram schematically illustrating a manufacturing process of a liquid crystal optical element according to a preferred embodiment of the present invention. First, the first
1A, the substrate 1 is formed in a convex shape upward with a gentle curvature, the electrode 2 is formed along the curved surface, and the liquid crystal / polymer composite film 3 is formed on the surface thereof. Are formed. In this state, the electrode 2'is usually formed on the substrate 1 '.
Are attached in parallel as indicated by the arrows, the counter substrate 1 '
The surface of the electrode 2'of is first contacted with the top of the membrane 3 and then the membrane 3 is squeezed together so that even if some bubbles are present on the surface of the membrane 3, the bubbles will be extruded. No bubbles remain in the resulting device.
【0015】図1(b)に示す例は、基板1及び電極2
共に図面上上方に凸状に湾曲しており、上記の例と同様
な作用効果を奏する。図1(c)に示す例は、基板1面
及び電極2面が共に球面状に形成されており、上記例と
同様な作用効果を奏する。図1(d)に示す例は、上記
例とは異なり、基板1の外径と一致した筒状体4を用意
しておき、基板1上に形成した電極2面に液晶/高分子
複合膜3を形成し、一方、対向基板を膜3の面に対向さ
せ、両基板間から真空脱気し、両基板の外側から矢印で
示す様に大気圧をかけて両者を密着させる方法であり、
この方法によれば、上記実施例と同様に得られる素子の
液晶/高分子複合膜中に気泡が残ることがない。尚、上
記の実施例では、中央が隆起した基板面に液晶/高分子
複合膜を形成しているが、対向電極である平面状の基板
面に液晶/高分子複合膜を形成し、該膜面に中央が隆起
した基板を貼り合わせても同様な作用効果が得られる。
上記基板の隆起において、隆起が大き過ぎると基板同士
を密着させた後、液晶/高分子複合膜の膜厚が中央と周
辺とで異なり、その結果電圧を印加しないときの透過率
が周辺と中央で異なり、商品の外観として好ましくな
い。この様な問題が生じない様にする為には、基板の隆
起の程度を基板のサイズを縦10cm×横10cmの正
方形とした場合、基板の中央と辺の高さの差が1〜8μ
mとすることが好ましい。In the example shown in FIG. 1B, the substrate 1 and the electrode 2 are used.
Both of them are convexly curved upward in the drawing, and have the same effect as the above example. In the example shown in FIG. 1C, both the surface of the substrate 1 and the surface of the electrode 2 are formed in a spherical shape, and the same operational effect as the above example is achieved. In the example shown in FIG. 1D, unlike the above example, a tubular body 4 having the same outer diameter as the substrate 1 is prepared, and a liquid crystal / polymer composite film is formed on the electrode 2 surface formed on the substrate 1. 3 is formed, on the other hand, a counter substrate is made to face the surface of the film 3, vacuum degassing is performed between both substrates, and atmospheric pressure is applied from the outside of both substrates as indicated by an arrow to bring them into close contact with each other.
According to this method, bubbles do not remain in the liquid crystal / polymer composite film of the device obtained in the same manner as in the above embodiment. In the above embodiment, the liquid crystal / polymer composite film is formed on the substrate surface with the center raised, but the liquid crystal / polymer composite film is formed on the flat substrate surface which is the counter electrode. The same action and effect can be obtained by laminating a substrate whose center is raised on the surface.
In the ridge of the substrate, if the ridge is too large, after the substrates are brought into close contact with each other, the film thickness of the liquid crystal / polymer composite film differs between the center and the periphery, and as a result, the transmittance when no voltage is applied is the periphery and the center. However, the appearance of the product is not preferable. In order to prevent such a problem from occurring, when the degree of protrusion of the substrate is a square of 10 cm in length and 10 cm in width, the difference in height between the center of the substrate and the side is 1 to 8 μm.
It is preferably m.
【0016】電極上に液晶/高分子複合膜を形成する方
法としては、任意の方法が採用されるが、液晶エマルジ
ョンを用いる場合には、電気泳動方法、スクリーン印
刷、メタルマスクを用いたステンシル印刷、流延、刷毛
塗り、スプレー、ブレードコーティング、ドクターコー
ティング等いずれの方法でもよい。特に電気泳動方法を
用いる場合には、電極2をパターン状に形成したり、電
着浴中の対向電極の形状をパターン化することにより液
晶/高分子複合膜3をパターン状に形成することが出来
る。又、パターン状に液晶/高分子複合膜を形成する方
法としては、電極基板面に熱硬化性樹脂、ホトレジスト
等を利用して任意のパターン状の隔壁を形成し、該隔壁
で区画された室内に液晶エマルジョンを充填及び乾燥す
る方法も採用することが出来る。液晶/高分子複合膜3
は、液晶エマルジョンを塗布後、室温又は液晶エマルジ
ョンに影響を与えない程度の温度で乾燥させることによ
って得られる。As a method for forming the liquid crystal / polymer composite film on the electrode, any method is adopted. When a liquid crystal emulsion is used, an electrophoresis method, screen printing, stencil printing using a metal mask are used. , Casting, brush coating, spraying, blade coating, doctor coating and the like may be used. In particular, when the electrophoresis method is used, the liquid crystal / polymer composite film 3 can be formed in a pattern by forming the electrode 2 in a pattern or patterning the shape of the counter electrode in the electrodeposition bath. I can. Further, as a method of forming the liquid crystal / polymer composite film in a pattern, a partition wall having an arbitrary pattern is formed on the surface of the electrode substrate by using a thermosetting resin, photoresist, or the like, and the chamber is partitioned by the partition wall. A method of filling and drying a liquid crystal emulsion can also be adopted. Liquid crystal / polymer composite film 3
Can be obtained by applying the liquid crystal emulsion and then drying it at room temperature or at a temperature that does not affect the liquid crystal emulsion.
【0017】[0017]
【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。 実施例1 研磨によってガラス基板中央を隆起させた後、スパッタ
リングによってパターニングされたITO透明電極を設
けた。下記の方法で作製された電着液に対向電極と共に
浸漬し、電着塗装法(20Vで10秒間通電)によっ
て、基板上の必要な部分のみに液晶/高分子複合膜を1
0μmの膜厚(乾燥時)となる様に形成した。次に形成
された液晶/高分子複合膜の1mm外側に幅1mmとな
る様に、スクリーン印刷でUV硬化型シール剤を形成し
ておいた。一方、対向電極は通常用いられる様な平坦な
ITOガラス基板を用意し、これら一対の基板を液晶/
高分子複合膜を挟んで加熱圧着した後、UV照射してシ
ール剤を硬化させたところ、気泡を全く含有しない液晶
/高分子複合膜を有する本発明の液晶光学素子は得られ
た。上記液晶光学素子は電圧を印加しなければ白色不透
明であるが、電圧を印加すると速やかに無色透明になっ
た。EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. Example 1 After raising the center of a glass substrate by polishing, an ITO transparent electrode patterned by sputtering was provided. The liquid crystal / polymer composite film was applied to only the necessary portion on the substrate by electrodeposition coating method (current application at 20V for 10 seconds) by immersing the electrodeposition liquid prepared by the following method together with the counter electrode.
It was formed to have a film thickness of 0 μm (when dried). Next, a UV-curable sealant was formed by screen printing so as to have a width of 1 mm on the outer side of 1 mm of the formed liquid crystal / polymer composite film. On the other hand, for the counter electrode, a flat ITO glass substrate that is usually used is prepared, and a pair of these substrates is used as a liquid crystal /
After thermocompression bonding with the polymer composite film sandwiched between them, UV irradiation was performed to cure the sealant, and a liquid crystal optical element of the present invention having a liquid crystal / polymer composite film containing no bubbles was obtained. The liquid crystal optical element was white and opaque when no voltage was applied, but immediately became colorless and transparent when a voltage was applied.
【0018】*電着液の作製 伊勢化学工業(株)製の膜乳化システムを用い、下記の
条件で連続相と分散相の重量比が200:20の液晶エ
マルジョンを得た。 分散相:ネマチック液晶(E−44、メルク社製) 18部 メタクリル酸メチル 2部 アゾビスイソブチロニトリル 0.05部 連続相:PVA(KP−06、日本合成化学工業(株)製)5重量%水溶液 多孔質ガラス:細孔径0.27μmのMPG、伊勢化学工業(株)製 管内圧力:2.85〜2.95kgf/cm2 管内流速:0.8m/sec 得られた液晶エマルジョンを撹拌せずに70℃で6時間
加熱して、液晶を内包するマイクロカプセルを得、これ
を遠心分離により単離した後、下記の組成の電着液を調
製した。* Preparation of electrodeposition liquid Using a membrane emulsification system manufactured by Ise Chemical Industry Co., Ltd., a liquid crystal emulsion having a continuous phase and dispersed phase weight ratio of 200: 20 was obtained under the following conditions. Dispersed phase: Nematic liquid crystal (E-44, manufactured by Merck) 18 parts Methyl methacrylate 2 parts Azobisisobutyronitrile 0.05 parts Continuous phase: PVA (KP-06, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 5 Weight% aqueous solution Porous glass: MPG with a pore size of 0.27 μm, manufactured by Ise Chemical Industry Co., Ltd. Internal pressure: 2.85 to 2.95 kgf / cm 2 Internal flow rate: 0.8 m / sec The obtained liquid crystal emulsion is stirred. Without heating, the mixture was heated at 70 ° C. for 6 hours to obtain microcapsules containing a liquid crystal, which were isolated by centrifugation, and then an electrodeposition solution having the following composition was prepared.
【0019】 上記マイクロカプセル 40部 メタクリル酸−メタクリル酸ブチル共重合体 5部 トリエチルアミン 1.4部 エタノール 30部 水 200部 メタクリル酸−メタクリル酸ブチル共重合体は、メタク
リル酸28部とメタクリル酸ブチル82部をメエチルソ
ルブ170部に溶解し、アゾイソブチロニトリルを添加
した後、60℃で6時間反応させて合成した。反応終了
後、大量の水/メタノール中に投入し、再沈澱法で精製
して使用した。Microcapsules 40 parts Methacrylic acid-butyl methacrylate copolymer 5 parts Triethylamine 1.4 parts Ethanol 30 parts Water 200 parts Methacrylic acid-butyl methacrylate copolymer is 28 parts methacrylic acid and 82 parts butyl methacrylate. Part was dissolved in 170 parts of methyethylsolve, azoisobutyronitrile was added, and the mixture was reacted at 60 ° C. for 6 hours to synthesize. After completion of the reaction, the mixture was poured into a large amount of water / methanol, purified by the reprecipitation method and used.
【0020】実施例2 平坦な透明電極付きガラス基板に、下記に示す液晶エマ
ルジョンをメタルマスク(膜厚20μm)を用いたステ
ンシル印刷法で塗布及び乾燥し、膜厚10μm、サイズ
20cm×20cmの液晶/高分子複合膜を形成した。
一方、対向電極はとしてITO透明電極付ポリエチレン
テレフタレートフィルム(T−COAT、膜厚125μ
m、帝人(株)製)を用い、減圧圧着可能な中央が隆起
したスクリーン印刷用のステージに固定した。次いで紫
外線硬化型のシール剤XNR5493−4A5(長瀬チ
バ(株)製)をスクリーン印刷で、幅1mmで一辺が2
0.2cmの正方形となる様に液晶/高分子複合膜の周
囲に塗布し、液晶/高分子複合膜を塗布した上述したガ
ラス基板と圧着した。そして、紫外線を照射してシール
剤を硬化させたところ、気泡を全く含有しない液晶/高
分子複合膜を有する本発明の液晶光学素子は得られた。
上記液晶光学素子は電圧を印加しなければ白色不透明で
あるが、電圧を印加すると速やかに無色透明になった。Example 2 A liquid crystal having a thickness of 10 μm and a size of 20 cm × 20 cm was applied to a flat glass substrate with a transparent electrode by applying the liquid crystal emulsion shown below by a stencil printing method using a metal mask (film thickness 20 μm) and drying. / Polymer composite film was formed.
On the other hand, the counter electrode is an ITO transparent electrode-attached polyethylene terephthalate film (T-COAT, film thickness 125 μm.
m, manufactured by Teijin Ltd., and fixed to a stage for screen printing with a raised central portion capable of vacuum pressure bonding. Then, a UV-curable sealant XNR5493-4A5 (manufactured by Nagase Ciba Co., Ltd.) was screen-printed to have a width of 1 mm and two sides.
It was applied to the periphery of the liquid crystal / polymer composite film so as to form a 0.2 cm square, and pressure-bonded to the above-mentioned glass substrate coated with the liquid crystal / polymer composite film. Then, when the sealant was cured by irradiation with ultraviolet rays, a liquid crystal optical element of the present invention having a liquid crystal / polymer composite film containing no bubbles was obtained.
The liquid crystal optical element was white and opaque when no voltage was applied, but immediately became colorless and transparent when a voltage was applied.
【0021】*液晶エマルジョンの作製 KP−06(日本合成化学工業(株)製、重合度:約6
00、鹸化度:71.0〜75.0)の5重量%水溶液
に、ネマチック液晶BL−010(メルク社製)をPV
A/液晶=10/90(w/w)となる様に添加して、
超音波分散で液晶エマルジョンを作製した。次いでKH
−20(日本合成化学工業(株)製、重合度:約2,0
00、鹸化度:78.5〜81.5)の20重量%水溶
液を全PVA/液晶=20/80(w/w)となる様に
添加した後、ゆっくりと振とうして最終的なステンシル
印刷に適した液晶エマルジョンを得た。* Preparation of liquid crystal emulsion KP-06 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., degree of polymerization: about 6)
00, saponification degree: 71.0 to 75.0) and 5 wt% aqueous solution of nematic liquid crystal BL-010 (manufactured by Merck) in PV
A / Liquid crystal = 10/90 (w / w)
A liquid crystal emulsion was prepared by ultrasonic dispersion. Then KH
-20 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., degree of polymerization: about 2,0)
00, saponification degree: 78.5 to 81.5) and added 20 wt% aqueous solution so that total PVA / liquid crystal = 20/80 (w / w), and then shaken slowly to give a final stencil. A liquid crystal emulsion suitable for printing was obtained.
【0022】実施例3 透明電極付き平面状ガラス基板(厚さ:1.1mm、大
きさ:20cm×20cm)上の周囲10mmの部分
に、熱硬化性樹脂(ソノコム(株)製、TC−580−
SN)をスクリーン印刷法で塗布し、170℃で10分
間加熱硬化することによって、厚さ16μmの隔壁を形
成した。この基板に実施例2で作製した液晶エマルジョ
ンを隔壁内に充填し、グラビアコーティング用ドクター
で乾燥後の隔壁の厚さとなる様にスキージングした。乾
燥後、隔壁を剥離して厚さ10μmの液晶/高分子複合
膜が得られた。対向電極基板はITO付き平面状ガラス
基板(厚さ:1.1mm、大きさ:20cm×20c
m)を平坦な金属盤上に置き、離型処理を施した深さ1
μmのガラス基板と同じ大きさの凹型金属盤にポリメチ
ルメタクリレート(PMMA)を溶融充填した金型を加
熱しプレスした。その結果、中央が1μm隆起した対向
電極基板が得られ、これを液晶/高分子複合膜を形成し
た基板と80℃で圧着して気泡のない液晶/高分子複合
膜を有する本発明の液晶光学素子を得た。上記液晶光学
素子は電圧を印加しなければ白色不透明であるが、電圧
を印加すると速やかに無色透明になった。Example 3 A thermosetting resin (manufactured by Sonocom Co., Ltd., TC-580) was placed on a flat glass substrate with a transparent electrode (thickness: 1.1 mm, size: 20 cm × 20 cm) at a periphery of 10 mm. −
SN) was applied by a screen printing method and heat-cured at 170 ° C. for 10 minutes to form partition walls having a thickness of 16 μm. This substrate was filled with the liquid crystal emulsion prepared in Example 2 in the partition walls, and squeezed with a gravure coating doctor so that the thickness of the partition walls after drying was obtained. After drying, the partition walls were peeled off to obtain a liquid crystal / polymer composite film having a thickness of 10 μm. The counter electrode substrate is a flat glass substrate with ITO (thickness: 1.1 mm, size: 20 cm × 20 c).
m) is placed on a flat metal plate and subjected to mold release treatment to a depth of 1
A mold in which polymethylmethacrylate (PMMA) was melt-filled in a concave metal plate having the same size as the glass substrate of μm was heated and pressed. As a result, a counter electrode substrate having a 1 .mu.m bulge in the center was obtained, which was pressure-bonded to a substrate on which a liquid crystal / polymer composite film was formed at 80.degree. The device was obtained. The liquid crystal optical element was white and opaque when no voltage was applied, but immediately became colorless and transparent when a voltage was applied.
【0023】実施例4 透明電極付き平面状ガラス基板に、実施例2で作製した
エマルジョンから、実施例3と同じ方法で液晶/高分子
複合膜を形成した。この基板と対向基板とを基板とを液
晶/高分子複合膜が内側になる様にして基板と同一サイ
ズの内型を有する矩形の筒に入れ、両基板の間から真空
脱気して両基板を圧着することによって、気泡のない液
晶/高分子複合膜を有する本発明の液晶光学素子を得る
ことが出来た。上記液晶光学素子は電圧を印加しなけれ
ば白色不透明であるが、電圧を印加すると速やかに無色
透明になった。Example 4 A liquid crystal / polymer composite film was formed from the emulsion prepared in Example 2 on a flat glass substrate with a transparent electrode by the same method as in Example 3. The substrate and the counter substrate are placed in a rectangular tube having an inner mold of the same size as the substrates, with the liquid crystal / polymer composite film inside, and the substrates are vacuum degassed between the substrates. By pressure bonding, it was possible to obtain the liquid crystal optical element of the present invention having a liquid crystal / polymer composite film without bubbles. The liquid crystal optical element was white and opaque when no voltage was applied, but immediately became colorless and transparent when a voltage was applied.
【0024】比較例1 透明電極付き平面状ガラス基板に、実施例1で示した電
着法で液晶/高分子複合膜を形成した。次いで透明電極
付き平面状ガラス基板で加熱圧着したが、気泡の入った
光学素子しか得られなかった。Comparative Example 1 A liquid crystal / polymer composite film was formed on the flat glass substrate with a transparent electrode by the electrodeposition method shown in Example 1. Then, it was heat-pressed with a flat glass substrate with a transparent electrode, but only an optical element containing bubbles was obtained.
【0025】[0025]
【効果】以上の如き本発明によれば、基板上に形成され
た液晶/高分子複合膜が基板と同様に中心部が隆起して
おり、対向基板の貼り合せ時に、対向基板が上記膜の中
央部に先ず接触し膜を若干押し潰す状況で貼り合わされ
るので、液晶/高分子複合膜中に気泡が残ることがな
い。又、本発明の別の実施例では、少なくとも一方の基
板に液晶/高分子複合膜を形成した後、真空脱気しなが
ら対向電極基板を貼り合わせるので、同様に液晶/高分
子複合膜中に気泡が残ることがない。As described above, according to the present invention, the central portion of the liquid crystal / polymer composite film formed on the substrate is raised like the substrate, and when the counter substrate is bonded, the counter substrate has the above film. Since the films are pasted together in such a state that they first come into contact with the central portion and squeeze the film slightly, air bubbles do not remain in the liquid crystal / polymer composite film. Further, in another embodiment of the present invention, after the liquid crystal / polymer composite film is formed on at least one of the substrates, the counter electrode substrate is attached while degassing under vacuum. No bubbles remain.
【0026】[0026]
【図1】本発明の液晶光学素子の製造工程を図解的に説
明する図。FIG. 1 is a diagram schematically illustrating a manufacturing process of a liquid crystal optical element of the present invention.
1,1’:透明基板 2,2’:透明導電膜 3:液晶/高分子複合膜 4:筒 1, 1 ': transparent substrate 2, 2': transparent conductive film 3: liquid crystal / polymer composite film 4: cylinder
Claims (4)
の導電性基板で液晶/高分子複合膜を狭持してなる液晶
光学素子において、少なくとも一方の基板が中央が内側
に隆起した形状を有することを特徴とする液晶光学素
子。1. A liquid crystal optical element in which a liquid crystal / polymer composite film is sandwiched between a pair of conductive substrates, at least one of which is transparent, wherein at least one of the substrates has a shape in which the center is inwardly raised. A liquid crystal optical element characterized by the above.
m×横10cmの正方形とした場合、基板の中央と辺の
高さの差が1〜8μmである請求項1に記載の液晶光学
素子。2. The degree of protrusion determines the size of the substrate by 10c in the vertical direction.
The liquid crystal optical element according to claim 1, wherein the difference in height between the center and the side of the substrate is 1 to 8 μm when the square is m × width 10 cm.
の導電性基板で液晶/高分子複合膜を狭持してなる液晶
光学素子の製造方法において、少なくとも一方の基板が
中央が内側に隆起した形状を有し、少なくとも一方の基
板面に液晶/高分子複合膜を形成した後、対向電極基板
を貼り合わせることを特徴とする液晶光学素子の製造方
法。3. A method of manufacturing a liquid crystal optical element comprising a pair of electrically conductive substrates, at least one of which is transparent, sandwiching a liquid crystal / polymer composite film, wherein at least one of the substrates has a center bulged inward. A method for manufacturing a liquid crystal optical element, which has a shape, and after forming a liquid crystal / polymer composite film on at least one substrate surface, bonding a counter electrode substrate.
の導電性基板で液晶/高分子複合膜を狭持してなる液晶
光学素子の製造方法において、少なくとも一方の基板に
液晶/高分子複合膜を形成した後、一対の基板間を真空
脱気しながら対向電極基板を貼り合わせることを特徴と
する液晶光学素子の製造方法。4. A method of manufacturing a liquid crystal optical element comprising a pair of conductive substrates, at least one of which is transparent, sandwiching a liquid crystal / polymer composite film, wherein at least one of the substrates has a liquid crystal / polymer composite film. A method for manufacturing a liquid crystal optical element, characterized in that the counter electrode substrate is bonded while the pair of substrates is degassed in vacuum after forming.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29757193A JPH07128648A (en) | 1993-11-04 | 1993-11-04 | Liquid crystal optical element and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29757193A JPH07128648A (en) | 1993-11-04 | 1993-11-04 | Liquid crystal optical element and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07128648A true JPH07128648A (en) | 1995-05-19 |
Family
ID=17848280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29757193A Pending JPH07128648A (en) | 1993-11-04 | 1993-11-04 | Liquid crystal optical element and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07128648A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001194656A (en) * | 2000-01-06 | 2001-07-19 | Eastman Kodak Co | Method for manufacturing material having uniform incorporation restricting domain |
-
1993
- 1993-11-04 JP JP29757193A patent/JPH07128648A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001194656A (en) * | 2000-01-06 | 2001-07-19 | Eastman Kodak Co | Method for manufacturing material having uniform incorporation restricting domain |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3271025B2 (en) | Polymer dispersed liquid crystal display device and method of manufacturing the same | |
JP3231087B2 (en) | Manufacturing method of liquid crystal optical element, microencapsulated liquid crystal and manufacturing method thereof | |
JP3708983B2 (en) | Liquid crystal-containing / polymer microcapsule and liquid crystal electro-optical element | |
JPH07134288A (en) | Liquid crystal optical element and its production | |
JPH07128648A (en) | Liquid crystal optical element and its production | |
JP3271018B2 (en) | Manufacturing method of liquid crystal optical element | |
JPH0854611A (en) | Liquid crystal/polymer composite film type display element and its production | |
JPH07120732A (en) | Liquid crystal/polymer composite type optical element | |
JP3791224B2 (en) | REFLECTIVE LIQUID CRYSTAL DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE | |
JPH06160819A (en) | Liquid crystal/high polymer composite film type display device and its production | |
JPH06281917A (en) | Polymer distributed liquid crystal display device and manufacture of the same | |
JPH07325294A (en) | Microcapsule containing liquid crystal, production thereof and production of liquid crystal/high polymer composite film | |
JPH07301785A (en) | Production of liquid crystal optical element | |
JPH05150227A (en) | Liquid crystal display device | |
JPH0756154A (en) | Production of liquid crystal optical element | |
JPH06242424A (en) | Polymer dispersion type liquid crystal display device and its manufacture | |
JP3243340B2 (en) | Light modulation element and method of manufacturing the same | |
JP3295493B2 (en) | Light modulation element and method of manufacturing the same | |
JP3396492B2 (en) | Method for producing PVA-dispersed liquid crystal / polymer composite film | |
JPH06273733A (en) | Liquid crystal optical element and its production | |
JPH06148604A (en) | Liquid crystal display element and its production | |
JPH07261163A (en) | Liquid crystal-containing mole microcapsule, its production and liquid crystal recording display medium | |
JPH06242425A (en) | Polymer dispersion type liquid crystal display device and its manufacture | |
JPH0634954A (en) | Optical modulating element and its production | |
JP3232139B2 (en) | Liquid crystal optical element and manufacturing method thereof |