JPH07128471A - Method for manufacturing fuel assembly - Google Patents

Method for manufacturing fuel assembly

Info

Publication number
JPH07128471A
JPH07128471A JP5273644A JP27364493A JPH07128471A JP H07128471 A JPH07128471 A JP H07128471A JP 5273644 A JP5273644 A JP 5273644A JP 27364493 A JP27364493 A JP 27364493A JP H07128471 A JPH07128471 A JP H07128471A
Authority
JP
Japan
Prior art keywords
fuel
uranium
fuel assembly
plutonium
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5273644A
Other languages
Japanese (ja)
Inventor
Masaru Sasagawa
勝 笹川
Yukinori Goto
幸徳 後藤
Nobuhiro Kanazawa
信博 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5273644A priority Critical patent/JPH07128471A/en
Priority to FR9412884A priority patent/FR2712112B1/en
Publication of JPH07128471A publication Critical patent/JPH07128471A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/326Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
    • G21C3/328Relative disposition of the elements in the bundle lattice
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To manufacture a fuel assembly wherein the change of nuclear properties of the fuel assembly due to the difference of a uranium-235 content in fuel material can be controlled in a method for manufacturing the fuel assembly filled with the fuel material containing uranium and plutonium. CONSTITUTION:When a fuel assembly filled with fuel material containing uranium and plutonium is manufactured, fissionable material mass of numerals 6, 7, 8 in the fuel material can be adjusted and a neutron effective multiplication constant in the burnup middle period and a local output peaking coefficient in the burnup initial period are made equivalent in response to the differences of the uranium-235 content of the fuel material 6, 7, 8. Therefore, conditions of the fissionable material mass necessary for making reactor core operation cycle intervals constant are satisfied without any excess and lack and the fuel assembly for controlling the change of the neutron effective multiplication constant and the local output peaking coefficient can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ウラン及びプルトニウ
ムを含む燃料物質を使用する原子炉燃料集合体の製造方
法に関する。
FIELD OF THE INVENTION This invention relates to a method of making a nuclear reactor fuel assembly using a fuel material containing uranium and plutonium.

【0002】[0002]

【従来の技術】原子力工業、第31巻、第4号、第9頁
から第15頁に示されるように、ウラン及びプルトニウ
ムを含む燃料物質を使用する原子炉燃料集合体の燃料物
質中のウラン−235含有率に対し、核分裂性物質量
(ウラン−235と熱核分裂性プルトニウムの合計量)
を一定とすることは公知である。
BACKGROUND OF THE INVENTION Uranium in fuel materials for nuclear reactor fuel assemblies using fuel materials containing uranium and plutonium, as shown in Nuclear Industry, Vol. 31, No. 4, pages 9-15. -235 content, fissile material amount (total amount of uranium-235 and thermo-fissile plutonium)
Is known to be constant.

【0003】[0003]

【発明が解決しようとする課題】ウラン、プルトニウム
燃料物質の製造は、プルトニウム物質としては軽水炉等
の使用済燃料から抽出したものを用い、ウラン物質とし
ては軽水炉等の使用済燃料から抽出した減損ウラン(ウ
ラン−235含有率:1.2wt%程度)、天然ウラン
(ウラン−235含有率:0.7wt%)、或いは、ウ
ラン濃縮過程で発生する劣化ウラン(ウラン−235含
有率:0.2wt%程度)を用い、両者を混合する。し
たがって、燃料物質中のウラン−235含有率は、ウラ
ン物質として何を選択するかで大きく変化する。燃料物
質中のウラン−235含有率が変化すると、燃料集合体
の中性子実効増倍率等の核的性質が変動する。この集合
体の核的性質の変動は、炉心運転サイクル間隔及び出力
ピーキング等に影響をおよぼすので、できるだけ抑制す
ることが炉心運用上重要である。
[Problems to be Solved by the Invention] In the production of uranium and plutonium fuel substances, depleted uranium extracted from spent fuel of light water reactors etc. is used as plutonium substance, and that extracted from spent fuel of light water reactors etc. is used as uranium substance. (Uranium-235 content rate: about 1.2 wt%), natural uranium (uranium-235 content rate: 0.7 wt%), or depleted uranium (uranium-235 content rate: 0.2 wt%) generated in the uranium enrichment process. Degree) and mix both. Therefore, the content rate of uranium-235 in the fuel material greatly changes depending on what is selected as the uranium material. When the uranium-235 content in the fuel substance changes, the nuclear properties such as the effective neutron multiplication factor of the fuel assembly change. Since variations in the nuclear properties of the aggregate affect the core operation cycle interval, power peaking, etc., it is important for core operation to suppress it as much as possible.

【0004】本発明の目的は、ウラン−235と熱核分
裂性プルトニウムの核的価値の相違を考慮してウラン−
235の含有率に応じて核分裂性物質量を変え、中性子
無限増倍率等の核的性質の変動を抑制した燃料集合体を
製造できる方法を提供することである。
The object of the present invention is to take into consideration the difference in the nuclear value of uranium-235 and thermofissile plutonium.
It is an object of the present invention to provide a method capable of producing a fuel assembly in which the amount of fissile material is changed according to the content rate of 235 and variation in nuclear properties such as neutron infinite multiplication factor is suppressed.

【0005】[0005]

【課題を解決するための手段】上記目的は、ウラン−2
35の含有率に応じてプルトニウム物質の混合量を調整
して核分裂性物質量を変え、燃焼中期の中性子実効増倍
率及び燃焼初期の局所ピーキング係数を等しくすること
によって解決される。
[Means for Solving the Problems] The above-mentioned object is uranium-2.
This is solved by adjusting the mixing amount of the plutonium material according to the content ratio of 35 to change the amount of fissile material, and making the neutron effective multiplication factor in the middle stage of combustion and the local peaking coefficient in the early stage of combustion equal.

【0006】[0006]

【作用】ウラン−235と熱核分裂性プルトニウムの核
的価値の相違を考慮して、燃焼中期の中性子実効増倍率
を等価とするよう核分裂性物質量を調整することによ
り、炉心運転サイクル間隔を一定にするために必要な核
分裂性物質量の条件を過不足なく満たし、かつ中性子実
効増倍率の変動を抑制できる。また、上記と併せて燃焼
初期の局所ピーキング係数を等価とするよう核分裂性質
量の燃料集合体内分布を設定することにより、局所ピー
キング係数の変動も抑制できる。
[Function] Taking into account the difference in the nuclear value of uranium-235 and thermofissile plutonium, by adjusting the amount of fissile material so that the effective neutron multiplication factor in the middle stage of combustion is equivalent, the core operation cycle interval is kept constant. It is possible to satisfy the condition of the amount of fissile material required to satisfy the above requirement without excess and deficiency, and to suppress the variation of the effective neutron multiplication factor. Further, in addition to the above, by setting the distribution of the fissionable mass in the fuel assembly so that the local peaking coefficient at the early stage of combustion becomes equivalent, the fluctuation of the local peaking coefficient can be suppressed.

【0007】[0007]

【実施例】以下、本発明の一実施例を表1、表2、図
1、図2、図3により説明する。このうち、表1、図
1、図2が本発明によるもので、表2、図3は比較のた
めに示した従来例によるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to Tables 1 and 2 and FIGS. Of these, Tables 1, 2 and 3 are according to the present invention, and Tables 2 and 3 are according to the conventional example shown for comparison.

【0008】図1は燃料集合体の横断面を示したもので
ある。燃料集合体は、18本の外層燃料棒1、12本の
中間層燃料棒2、及び6本の内層燃料棒3の合計36本
の燃料棒と、燃料集合体支持棒4より構成される。各燃
料棒は、被覆管5と燃料物質6、7、8により構成され
る。
FIG. 1 shows a cross section of a fuel assembly. The fuel assembly is composed of a total of 36 fuel rods including 18 outer layer fuel rods 1, 12 intermediate layer fuel rods 2, and 6 inner layer fuel rods 3, and a fuel assembly support rod 4. Each fuel rod is composed of a cladding tube 5 and fuel substances 6, 7, 8.

【0009】[0009]

【表1】 [Table 1]

【0010】表1は、本発明の実施例を示す図1の燃料
の各燃料棒の燃料物質のPu富化度(熱核分裂性プルト
ニウム(Puf(Pu−239、Pu−241))の含
有率)と、核分裂性物質量(ウラン−235(235U)
と熱核分裂性プルトニウム(Puf)の合計量)を示し
たものである。
[0010] Table 1 shows the embodiment of the present invention, the content of Pu enrichment (thermal fissile plutonium (Puf (Pu-239, Pu-241)) of the fuel material of each fuel rod of the fuel of FIG. ) And the amount of fissile material (uranium- 235 ( 235 U))
And the total amount of fissile plutonium (Puf)).

【0011】[0011]

【表2】 [Table 2]

【0012】表2は従来例(ウラン−235含有率に応
じてプルトニウム物質の混合量を変えて核分裂性物質量
を一定とする例)による場合の燃料の各燃料棒の燃料物
質のPu富化度と核分裂性物質量である。
Table 2 shows the Pu enrichment of the fuel material of each fuel rod of the fuel in the case of the conventional example (an example in which the amount of plutonium material is changed according to the uranium-235 content to make the amount of fissile material constant). Degree and fissile material content.

【0013】表1、表2には、ウラン物質としてウラン
濃縮過程より発生する劣化ウラン(ウラン−235含有
率:0.2wt%程度)、天然ウラン(ウラン−235
含有率:0.7wt%)、軽水炉等の使用済燃料燃料よ
り抽出した減損ウラン(ウラン−235含有率:1.2
wt%程度)を各々使用した場合を代表させて、ウラン
−235含有率が0.2wt%、0.7wt%、1.2
wt%の場合を示した。
Tables 1 and 2 show depleted uranium (uranium-235 content: about 0.2 wt%) and natural uranium (uranium-235) which are produced as uranium substances during the uranium enrichment process.
Content rate: 0.7 wt%), depleted uranium extracted from spent fuel fuel such as light water reactor (uranium-235 content rate: 1.2
uranium-235 content is 0.2 wt%, 0.7 wt%, 1.2
The case of wt% is shown.

【0014】表1に示した本発明の実施例では、各ウラ
ン−235含有率ケースの核分裂性物質量は、ウラン−
235含有率が0.7wt%のケースを基準として、燃
焼中期の中性子実効増倍率、及び燃焼初期の局所出力ピ
ーキングが等価となるよう設定している。この結果、表
2に示した従来例とは異なり、ウラン−235含有率の
値により燃料物質の核分裂性物質量は異なっている。こ
れは、ウラン−235と熱核分裂性プルトニウムの核的
価値の相違を考慮して核分裂性物質量を設定したためで
ある。また、燃料集合体平均の核分裂性物質量ばかりで
なく、各燃料層の核分裂性物質量も変化しているのは、
局所出力ピーキング係数を一定にするよう、ウラン−2
35含有率の値により燃料集合体内の核分裂性物質量分
布を設定したためである。この核分裂性物質量分布の設
定によりウラン−235含有率の変化による局所出力ピ
ーキング係数の変動を抑制できる他に、ウラン−235
含有率の変化による反応度フィードバック特性の変動の
抑制も併せて達成できる。
In the examples of the present invention shown in Table 1, the amount of fissile material in each uranium-235 content ratio case is uranium-
Based on the case where the 235 content is 0.7 wt%, the effective neutron multiplication factor in the middle stage of combustion and the local output peaking in the early stage of combustion are set to be equivalent. As a result, unlike the conventional example shown in Table 2, the amount of fissile material in the fuel material differs depending on the value of the uranium-235 content. This is because the amount of fissile material was set in consideration of the difference in nuclear value between uranium-235 and thermofissile plutonium. Moreover, not only the average amount of fissile material in the fuel assembly but also the amount of fissile material in each fuel layer is changing,
To keep the local output peaking coefficient constant, uranium-2
This is because the distribution of the amount of fissile material in the fuel assembly was set by the value of 35 content. By setting the distribution of the amount of fissile material, it is possible to suppress the fluctuation of the local output peaking coefficient due to the change of the uranium-235 content rate.
It is also possible to achieve the suppression of the fluctuation of the reactivity feedback characteristic due to the change of the content rate.

【0015】図2は本発明による図1、表1の燃料集合
体の中性子実効増倍率の燃焼変化を示したものである。
FIG. 2 shows changes in the effective neutron multiplication factor of the fuel assemblies shown in FIGS. 1 and 1 according to the present invention.

【0016】また図3は従来例による図1、表2の燃料
集合体の中性子実効増倍率の燃焼変化を示したものであ
る。
FIG. 3 shows the change in combustion of the effective neutron multiplication factor of the fuel assemblies shown in FIGS. 1 and 2 according to the conventional example.

【0017】図2に示す本発明の実施例では各ウラン−
235含有率ケースの中性子実効増倍率は、燃焼中期
(ここでは、4バッチ燃料交換、取り出し燃焼度約30
GWd/tを想定した場合の、サイクル末期炉心平均燃
焼度約20GWd/tを用いた)で一致させており、こ
れによりウラン−235含有率が変化しても燃料集合体
の交換体数を変更することなく、運転サイクル間隔を一
定にできる。また、燃焼中期の中性子実効増倍率を一致
させたことにより、燃料初期の中性子実効増倍率の各ケ
ースごとの変化も、図3の従来例より小さく、新燃料の
出力ピーキングの変化も比較的小さなものにとどめるこ
とができる。
In the embodiment of the present invention shown in FIG. 2, each uranium-
The effective neutron multiplication factor for the 235 content case is the mid-combustion period (here, 4 batch refueling, removal burnup of about 30
The end-cycle core average burnup of about 20 GWd / t is used when GWd / t is assumed), so that even if the uranium-235 content changes, the number of exchangers in the fuel assembly is changed. The operation cycle interval can be made constant without Also, by matching the neutron effective multiplication factors in the middle stage of combustion, the change in neutron effective multiplication factor in the initial stage of fuel in each case is smaller than that of the conventional example in FIG. 3, and the change in output peaking of the new fuel is also relatively small. It can be limited to things.

【0018】一方、図3の従来例では、燃焼中期の中性
子実効増倍率は、ウラン−235含有率0.2wt%の
ケースでは基準ケース(ウラン−235含有率0.7w
t%)より小さく、運転サイクル間隔を一定に保つには
核分裂性物質量が不足(表1と表2の比較により燃料集
合体平均で0.2wt%不足)しており、燃料集合体の
交換体数を変更しないと運転サイクル間隔は短くなるこ
とになる。また、ウラン−235含有率1.2wt%の
ケースでは燃焼中期の中性子実効増倍率は、基準ケース
(ウラン−235含有率0.7wt%)より大きく、運
転サイクル間隔を一定に保つのに必要な核分裂性物質量
を上回っており(表1と表2の比較により集合体平均で
0.2wt%過剰)、また燃焼初期の中性子実効増倍率
が基準ケースに比べてかなり高くなり、新燃料の出力ピ
ーキングが高くなる。
On the other hand, in the conventional example of FIG. 3, the effective neutron multiplication factor in the middle stage of combustion is the standard case (uranium-235 content 0.7 w) when the uranium-235 content is 0.2 wt%.
t%), and the amount of fissile material is insufficient to keep the operation cycle interval constant (comparing Table 1 and Table 2, the fuel assembly average is insufficient by 0.2 wt%). If the number of bodies is not changed, the operation cycle interval will be shortened. Further, in the case of the uranium-235 content rate of 1.2 wt%, the effective neutron multiplication factor in the middle stage of combustion is larger than that in the reference case (uranium-235 content rate of 0.7 wt%), and it is necessary to keep the operation cycle interval constant. It exceeds the amount of fissile material (compared with Table 1 and Table 2 and has an excess of 0.2 wt% in the aggregate average), and the effective neutron multiplication factor in the early stage of combustion is considerably higher than that of the standard case, and the output of new fuel Higher peaking.

【0019】[0019]

【発明の効果】本発明によれば、ウラン−235と熱核
分裂性プルトニウムの核的価値の相違を考慮してウラン
−235含有率の違いによって核分裂性物質量を調整す
ることにより、中性子実効増倍率等の核的性質の変動を
抑制した燃料集合体を提供することができる。これによ
り、上記燃料集合体を装荷した炉心では、運転サイクル
間隔、出力ピーキング等の炉心特性が、燃料のウラン−
235含有率の変化の影響を受けず、所定の条件を満た
すことが可能となる。
INDUSTRIAL APPLICABILITY According to the present invention, the effective amount of neutrons is increased by adjusting the amount of fissile material depending on the difference in uranium-235 content in consideration of the difference in nuclear value between uranium-235 and thermofissile plutonium. It is possible to provide a fuel assembly in which fluctuations in nuclear properties such as magnification are suppressed. As a result, in the core loaded with the fuel assembly, the core characteristics such as the operation cycle interval and the power peaking are
The predetermined condition can be satisfied without being affected by the change in the 235 content rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料集合体の製造方法の一実施例を示
す燃料集合体の横断面である。
FIG. 1 is a cross-sectional view of a fuel assembly showing an embodiment of a method for manufacturing a fuel assembly of the present invention.

【図2】本発明の一実施例を示す燃料集合体の中性子実
効増倍率の燃焼変化を示す図である。
FIG. 2 is a diagram showing a change in combustion of effective neutron multiplication factor of a fuel assembly showing an embodiment of the present invention.

【図3】従来例の燃料集合体の中性子実効増倍率の燃焼
変化を示す図である。
FIG. 3 is a view showing a change in combustion of effective neutron multiplication factor of a fuel assembly of a conventional example.

【符号の説明】[Explanation of symbols]

1…外層燃料棒、2…中間層燃料棒、3…内層燃料棒、
4…集合体支持棒、5…被覆管、6…外層燃料物質、7
…中間層燃料物質、8…内層燃料物質。
1 ... Outer layer fuel rods, 2 ... Middle layer fuel rods, 3 ... Inner layer fuel rods,
4 ... Assembly support rod, 5 ... Cladding tube, 6 ... Outer layer fuel substance, 7
... middle layer fuel material, 8 ... inner layer fuel material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数本数の燃料棒により燃料集合体を構
成し、それらの燃料棒の一部、またはすべてにウラン及
びプルトニウムを含む燃料物質を充填し、前記ウラン及
びプルトニウム含有燃料物質中のウラン−235の含有
率に応じて、前記ウラン、プルトニウム含有燃料物質中
の核分裂性物質量を変えることを特徴とする燃料集合体
の製造方法。
1. A fuel assembly comprising a plurality of fuel rods, part or all of which are filled with a fuel substance containing uranium and plutonium, and the uranium in the uranium and plutonium-containing fuel substance is filled. -235. A method for producing a fuel assembly, which comprises varying the amount of fissionable material in the uranium- and plutonium-containing fuel material according to the content rate of -235.
【請求項2】 請求項1において、燃焼中期の中性子実
効増倍率及び燃焼初期の局所ピーキング係数がほぼ等し
くなるよう前記ウラン、プルトニウム含有燃料物質中の
核分裂性物質量を選択することを特徴とする燃料集合体
の製造方法。
2. The amount of fissile material in the uranium- and plutonium-containing fuel material is selected so that the effective neutron multiplication factor in the middle stage of combustion and the local peaking coefficient in the early stage of combustion are substantially equal to each other. Fuel assembly manufacturing method.
JP5273644A 1993-11-01 1993-11-01 Method for manufacturing fuel assembly Pending JPH07128471A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5273644A JPH07128471A (en) 1993-11-01 1993-11-01 Method for manufacturing fuel assembly
FR9412884A FR2712112B1 (en) 1993-11-01 1994-10-27 Method for adjusting the content of fissile material in a combustible material in nuclear fuel assemblies.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5273644A JPH07128471A (en) 1993-11-01 1993-11-01 Method for manufacturing fuel assembly

Publications (1)

Publication Number Publication Date
JPH07128471A true JPH07128471A (en) 1995-05-19

Family

ID=17530564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5273644A Pending JPH07128471A (en) 1993-11-01 1993-11-01 Method for manufacturing fuel assembly

Country Status (2)

Country Link
JP (1) JPH07128471A (en)
FR (1) FR2712112B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251321A (en) * 1967-12-15 1981-02-17 General Electric Company Nuclear reactor utilizing plutonium
JPH01197693A (en) * 1988-02-03 1989-08-09 Hitachi Ltd Nuclear fuel rod
JPH01277798A (en) * 1988-04-30 1989-11-08 Hitachi Ltd Nuclear reactor fuel assembly
JPH0636047B2 (en) * 1988-09-02 1994-05-11 動力炉・核燃料開発事業団 Fuel assembly for nuclear reactor
JP2928606B2 (en) * 1990-08-29 1999-08-03 株式会社日立製作所 Fuel assembly
FR2693023B1 (en) * 1992-06-26 1994-09-02 Framatome Sa Fuel assembly containing plutonium and reactor core using such an assembly.

Also Published As

Publication number Publication date
FR2712112B1 (en) 1996-01-19
FR2712112A1 (en) 1995-05-12

Similar Documents

Publication Publication Date Title
JPH0519078A (en) Fuel rod for reactor
US4689195A (en) Fuel assembly
JPH07191176A (en) Fast neutron atomic reactor wherein at least one kind of coolant is integrated into atomic reactor aggregate
US5145635A (en) Fuel assembly and nuclear reactor
JPH0378600B2 (en)
JPH07128471A (en) Method for manufacturing fuel assembly
JP3124046B2 (en) LWR fuel assemblies
JPH0555836B2 (en)
JPS6361990A (en) Fuel aggregate
JPS6228437B2 (en)
CA1268563A (en) Fuel assembly for nuclear reactor
JP2972917B2 (en) Fuel assembly
JP2625404B2 (en) Fuel assembly
JP2538561B2 (en) Fuel assembly for nuclear reactor
JPH1194970A (en) Fuel assembly
JPH01109296A (en) Fuel assembly
JPH02232595A (en) Fuel loading of boiling nuclear reactor
Takada et al. Simulation study on CANDLE burnup applied to an LBE-cooled metallic fuel fast reactor
JPH05164866A (en) Fuel assembly and its manufacture
JPS5824886A (en) Bwr type reactor
Greebler et al. FAST OXIDE BREEDER-REACTOR. PART I. PARAMETRIC STUDY OF 300 (e) MW REACTOR CORE
JPH10260282A (en) Reactor core
Millar Some basic physics aspects of the Canadian nuclear power program
JPH063475A (en) Setting method of concentration of plutonium in fuel assembly
JPS6259278B2 (en)