JPH07128382A - Antenna measuring method - Google Patents

Antenna measuring method

Info

Publication number
JPH07128382A
JPH07128382A JP27696093A JP27696093A JPH07128382A JP H07128382 A JPH07128382 A JP H07128382A JP 27696093 A JP27696093 A JP 27696093A JP 27696093 A JP27696093 A JP 27696093A JP H07128382 A JPH07128382 A JP H07128382A
Authority
JP
Japan
Prior art keywords
phase
antenna
amplitude
electric field
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27696093A
Other languages
Japanese (ja)
Other versions
JP3094756B2 (en
Inventor
Hisataka Kojima
央任 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP05276960A priority Critical patent/JP3094756B2/en
Publication of JPH07128382A publication Critical patent/JPH07128382A/en
Application granted granted Critical
Publication of JP3094756B2 publication Critical patent/JP3094756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To measure the exciting amplitude and phase of each element of a phased array antenna in a short time. CONSTITUTION:The phase of a phase shifter 2 for an element antenna 1 is set M times between O to 2pi radian at a constant interval, e.g. 2pim/M (M: a natural number depending on the form of the phase shifter, m=O, M-1). An amplitude/phase receiver 7 measures the amplitude and the phase of combined radiation field of the phased array antenna to determine a complex combined field vector Em. M measurements of complex combined field vector Em are then multiplied by exp (-j2pim/M) (exp: exponential function, j<2>=-1) and an arithmetic average of M products of Em.exp (-j2pim/M) is determined thus obtaining the exciting amplitude and phase of a relevant element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は複数個の素子アンテナ
から成り、各素子に可変移相器をつなぎ、これらの移相
器の位相を制御して電子的にビーム走査、あるいはパタ
ーン成形を行うアレーアンテナ、すなわちフェーズドア
レーアンテナにおいて、全素子アンテナの動作状態にお
ける各素子アンテナの励振振幅位相を精度良く測定でき
るアンテナ測定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a plurality of element antennas, each element is connected to a variable phase shifter, and the phase of these phase shifters is controlled to electronically perform beam scanning or pattern shaping. In an array antenna, that is, in a phased array antenna, the present invention relates to an antenna measurement method capable of accurately measuring the excitation amplitude phase of each element antenna in the operating state of all element antennas.

【0002】[0002]

【従来の技術】通常、フェーズドアレーアンテナは基本
的に図6の様な構成に成っている。すなわち、図6にお
いて1は素子アンテナ、2は移相器、3は電力分配回
路、4は送信器、5は計測用のピックアップアンテナ、
6は計測用の受信器、8はフェーズドアレーアンテナで
ある。
2. Description of the Related Art Generally, a phased array antenna is basically constructed as shown in FIG. That is, in FIG. 6, 1 is an element antenna, 2 is a phase shifter, 3 is a power distribution circuit, 4 is a transmitter, 5 is a pickup antenna for measurement,
6 is a receiver for measurement, and 8 is a phased array antenna.

【0003】次に動作について説明する。図6は送信の
例であり、送信機4より発生した信号電力は電力分配回
路3により所望の分配比に分配されて、各移相器2に送
られる。そして、所望の移相量にコントロールされた移
相器2により位相が変えられ、素子アンテナ1から放射
され、所望のアンテナ特性を得る。受信の場合も送信機
と受信機が入れ替わるだけで送信の場合と同一である。
Next, the operation will be described. FIG. 6 shows an example of transmission, in which the signal power generated by the transmitter 4 is distributed to a desired distribution ratio by the power distribution circuit 3 and sent to each phase shifter 2. Then, the phase is changed by the phase shifter 2 controlled to have a desired amount of phase shift, and radiated from the element antenna 1 to obtain desired antenna characteristics. The case of reception is the same as the case of transmission except that the transmitter and the receiver are exchanged.

【0004】さて、上記フェーズドアレーアンテナ8に
おいて、各構成のところで特性のバラツキが存在する。
所望のアンテナ特性を得るためには、これらのバラツキ
を含んだ各素子アンテナ1の励振振幅位相を正確に知る
事が必要である。
In the phased array antenna 8 described above, there are variations in characteristics among the various configurations.
In order to obtain the desired antenna characteristics, it is necessary to accurately know the excitation amplitude phase of each element antenna 1 including these variations.

【0005】そこで、各素子の移相器の位相を変化させ
て、フェーズドアレーアンテナの合成電界をピックアッ
プアンテナ5で測定し、その電界レベルの変化の最大対
最小比r2 と最大値を与える位相変化量Δ0 を求め、全
アレー動作状態で各素子アンテナの振幅位相を求める方
法があった。従来のこの方法を図6を用いて説明する。
まず図6の全アレー動作状態において、ピックアップア
ンテナ5で受信される合成電界ベクトルE0 exp(j
φ0 )は図2に示すように各素子アンテナ1による電界
ベクトルの和で表される。ここで第n番目の素子アンテ
ナ1(以下第n素子)の電界ベクトルをEn exp(j
φn )としてこの位相φn を変化させれば、全アレー合
成の電界ベクトルは第n素子の電界ベクトルの回転に従
って、変化する。この合成電界ベクトルの振幅の変化の
み測定することによって第n素子の相対振幅位相En
0 ,φn −φ0 が以下のようにして求められる。第n
素子の位相をΔだけ変化させたときの合成電界ベクトル
は“数1”で表される。
Therefore, the phase of the phase shifter of each element is changed, the combined electric field of the phased array antenna is measured by the pickup antenna 5, and the phase giving the maximum to minimum ratio r 2 and the maximum value of the change of the electric field level is measured. There has been a method in which the amount of change Δ 0 is obtained and the amplitude and phase of each element antenna are obtained in all array operating states. This conventional method will be described with reference to FIG.
First, in the full array operation state of FIG. 6, the combined electric field vector E 0 exp (j
φ 0 ) is represented by the sum of the electric field vectors of the element antennas 1 as shown in FIG. Here the electric field vector of the n-th antenna element 1 (hereinafter the n-th element) to E n exp (j
If this phase φ n is changed as φ n ), the electric field vector of all array synthesis changes according to the rotation of the electric field vector of the n-th element. By measuring only the change in the amplitude of the composite electric field vector, the relative amplitude phase E n /
E 0 , φ n −φ 0 are obtained as follows. Nth
The combined electric field vector when the phase of the element is changed by Δ is represented by “Equation 1”.

【0006】[0006]

【数1】 [Equation 1]

【0007】ここで、変数Xを次のように定義する。Here, the variable X is defined as follows.

【0008】[0008]

【数2】 [Equation 2]

【0009】“数2”を用いて、“数1”を変形すれ
ば、次のようになる。
If "Equation 1" is transformed using "Equation 2", the following is obtained.

【0010】[0010]

【数3】 [Equation 3]

【0011】次に変数Kを次式で定義する。Next, the variable K is defined by the following equation.

【0012】[0012]

【数4】 [Equation 4]

【0013】“数4”を用いて“数3”の絶対値を求め
ると次式が導かれる。
When the absolute value of "Equation 3" is obtained using "Equation 4", the following equation is derived.

【0014】[0014]

【数5】 [Equation 5]

【0015】“数5”におけるY、Δ0 の定義を次式に
示す。
The definition of Y and Δ 0 in "Equation 5" is shown in the following equation.

【0016】[0016]

【数6】 [Equation 6]

【0017】[0017]

【数7】 [Equation 7]

【0018】すなわち、第n素子の位相変化により合成
電力レベルは“数5”のようにcosineで変化す
る。ここで、cosineの変化の最大値と最小値の比
をr2とすれば“数5”より
That is, the combined power level changes with cosine as shown in "Equation 5" due to the phase change of the n-th element. Here, if the ratio of the maximum value and the minimum value of the change in cosine is r 2 , then from Equation 5

【0019】[0019]

【数8】 [Equation 8]

【0020】となる。また“数5”より−Δ0 はcos
ine変化の最大値を与える位相変化量である。これら
rとΔ0 は“数5”の相対電力の測定により求められる
量であり、このrとΔ0 より第n素子の相対振幅(K=
n /E0 )と相対位相(X=φn −φ0 )が以下の様
にして決定される。“数8”より
[0020] In addition, from “Equation 5”, −Δ 0 is cos
It is the amount of phase change that gives the maximum value of ine change. These r and Δ 0 are quantities obtained by measuring the relative electric power of “Equation 5”, and from this r and Δ 0 , the relative amplitude of the n-th element (K =
E n / E 0 ) and the relative phase (X = φ n −φ 0 ) are determined as follows. From "Number 8"

【0021】[0021]

【数9】 [Equation 9]

【0022】が成り立つ。“数9”における正符号の場
合を考えると、次式が成り立つ。
Is satisfied. Considering the case of the plus sign in “Equation 9”, the following equation holds.

【0023】[0023]

【数10】 [Equation 10]

【0024】となり、また“数7”より、次式が成り立
つ。
[Mathematical formula-see original document] Also, the following equation is established from "Equation 7".

【0025】[0025]

【数11】 [Equation 11]

【0026】[0026]

【数12】 [Equation 12]

【0027】従って、“数10”、“数11”、“数1
2”よりYを消去すればKとXに関する次の連立方程式
が得られる。
Therefore, "Equation 10", "Equation 11", "Equation 1"
Eliminating Y from 2 ″ gives the following system of equations for K and X.

【0028】[0028]

【数13】 [Equation 13]

【0029】[0029]

【数14】 [Equation 14]

【0030】“数13”、“数14”を解けば、相対振
幅Kと相対振幅Xの解が次式の様に得られる。
By solving "Equation 13" and "Equation 14", a solution of the relative amplitude K and the relative amplitude X can be obtained by the following equation.

【0031】[0031]

【数15】 [Equation 15]

【0032】[0032]

【数16】 [Equation 16]

【0033】但し“数15”、“数16”におけるPは
次式で与えられる。
However, P in "Equation 15" and "Equation 16" is given by the following equation.

【0034】[0034]

【数17】 [Equation 17]

【0035】以上は“数9”の右辺が正符号の場合であ
るが、同じく負符号の場合については同様にして次式が
得られる。
The above is the case where the right side of "Equation 9" has a positive sign, but in the case of a negative sign as well, the following equation is similarly obtained.

【0036】[0036]

【数18】 [Equation 18]

【0037】[0037]

【数19】 [Formula 19]

【0038】すなわち、第n素子の位相を移相器2によ
って変化させて合成電力レベルの変化をピックアップア
ンテナ5で測定すれば位相変化に対するcosine状
のレベル変化(“数5”に対応)が得られ、そのデータ
より最大/最小比r及び最大点Δ0 が求められる。これ
らrとΔ0 を用いて“数15”、“数16”または“数
18”、“数19”を計算すれば位相変化させた素子ア
ンテナ1の相対振幅、位相が決定されることになる。初
期設定を同じにしてすべての素子アンテナ1について同
様の測定とデータ処理と計算を繰り返し行えばすべての
素子アンテナ1の相対振幅位相を知ることができる。ま
た、“数15”、“数16”と“数18”、“数19”
の二組の解のいずれかを採るべきかについては、初期設
定の位相分布を変えてもう一度全ての素子アンテナにつ
いて上記の測定を行ってKとXを求め1回目の結果と比
較してKが同じとなる解を選ぶことで決めることができ
る。
That is, if the phase of the n-th element is changed by the phase shifter 2 and the change of the combined power level is measured by the pickup antenna 5, a cosine-like level change with respect to the phase change (corresponding to "Equation 5") is obtained. Then, the maximum / minimum ratio r and the maximum point Δ 0 are obtained from the data. By calculating "Equation 15", "Equation 16" or "Equation 18" and "Equation 19" using these r and Δ 0 , the relative amplitude and phase of the element antenna 1 with the phase changed can be determined. . By repeating the same measurement, data processing, and calculation for all element antennas 1 with the same initial setting, the relative amplitude and phase of all element antennas 1 can be known. Also, "Equation 15", "Equation 16" and "Equation 18", "Equation 19"
As to which of the two solutions of (1) should be adopted, the above-mentioned measurement is performed again for all the element antennas by changing the default phase distribution and K and X are obtained, and K is compared with the result of the first time. It can be decided by choosing the same solution.

【0039】[0039]

【発明が解決しようとする課題】従来のアンテナ装置は
以上のような測定法により、素子アンテナの励振振幅お
よび位相を測定するものであり、合成放射電界の振幅測
定値のみで解が求められる反面、“数15”、“数1
6”と“数18”、“数19”の二組の解のいずれかを
採るべきかについては、初期設定の位相分布を変えても
う一度全ての素子アンテナについて上記の測定を行って
KとXを求め1回目の結果と比較してKが同じとなる解
を選ぶ必要があり、同一の計測を2回以上繰り返す必要
があった。
The conventional antenna device measures the excitation amplitude and phase of the element antenna by the above-described measurement method, and the solution can be obtained only by the amplitude measurement value of the synthetic radiated electric field. , "Equation 15", "Equation 1"
6 ”,“ Equation 18 ”, and“ Equation 19 ”, whichever of two sets of solutions should be adopted, the above-mentioned measurement is performed again for all the element antennas by changing the initial phase distribution and K and X Therefore, it is necessary to select a solution in which K is the same as that of the first result, and the same measurement needs to be repeated twice or more.

【0040】この発明は上記の様な問題点を解消するた
めになされたもので、合成放射電界の振幅測定値のみで
はなく位相測定値も使用して計算する事で、従来の方法
では2回以上繰り返し測定する必要が有ったものを一回
の計測で解が求められるアンテナ測定法を提供するもの
である。
The present invention has been made in order to solve the above-mentioned problems, and the calculation is performed using not only the amplitude measurement value of the combined radiation electric field but also the phase measurement value, and the calculation is performed twice by the conventional method. The present invention provides an antenna measurement method in which a solution is obtained by a single measurement of what needs to be repeatedly measured.

【0041】またこの発明に係るアンテナ測定法は合成
放射電界の振幅位相測定値から移相器の故障の有無及び
故障箇所を特定できるアンテナ測定法を提供するもので
ある。
The antenna measuring method according to the present invention also provides an antenna measuring method capable of specifying the presence / absence of a failure of the phase shifter and the failure location from the amplitude / phase measurement value of the combined radiation electric field.

【0042】[0042]

【課題を解決するための手段】この発明に係るアンテナ
測定法は着目する上記素子アンテナの移相器の設定位相
ΔをΔ=2πm/M(Mは移相器の形式等で決まる自然
数、m=0、・・・、M−1)の様に0から2π(ラジ
アン)の間の等間隔にM回設定して上記フェーズドアレ
ーアンテナの合成放射電界の振幅と位相を測定し、複素
合成電界ベクトルEm を求め、上記M個の複素合成電界
ベクトル測定値Em から着目する素子アンテナの励振振
幅および位相を算出するものである。
In the antenna measuring method according to the present invention, the set phase Δ of the phase shifter of the element antenna of interest is Δ = 2πm / M (M is a natural number, m determined by the type of phase shifter, etc.) = 0, ..., M−1), the amplitude and phase of the combined radiated electric field of the phased array antenna are measured by setting M times at equal intervals between 0 and 2π (radian), and the complex combined electric field is measured. The vector E m is obtained, and the excitation amplitude and phase of the element antenna of interest are calculated from the M complex combined electric field vector measurement values E m .

【0043】またこの発明に係るアンテナ測定法は着目
する上記素子アンテナの移相器の設定位相ΔをΔ=2π
m/M(Mは移相器の形式等で決まる自然数、m=0、
・・・、M−1)の様に0から2π(ラジアン)の間の
等間隔にM回設定して上記フェーズドアレーアンテナの
合成放射電界の振幅と位相を測定し、複素合成電界ベク
トルEm を求め、上記複素合成電界ベクトルEm を離散
的フーリエ変換し、そのスペクトルを求め、上記スペク
トルの分布から移相器の故障の有無及び故障箇所を特定
する。
In the antenna measuring method according to the present invention, the set phase Δ of the phase shifter of the element antenna of interest is Δ = 2π.
m / M (M is a natural number determined by the type of phase shifter, m = 0,
, M-1), the amplitude and phase of the combined radiated electric field of the phased array antenna are measured by setting M times at equal intervals between 0 and 2π (radian), and the complex combined electric field vector E m Then, the complex composite electric field vector E m is subjected to discrete Fourier transform, the spectrum thereof is obtained, and the presence or absence of the phase shifter failure and the failure location are specified from the distribution of the spectrum.

【0044】[0044]

【作用】この発明に係るアンテナ測定法は、着目する素
子アンテナの移相器の設定位相ΔをΔ=2πm/M(M
は移相器の形式等で決まる自然数、m=0、・・・、M
−1)の様に0から2π(ラジアン)の間に等間隔にM
回設定して上記フェーズドアレーアンテナの合成電界の
振幅と位相を測定し、複素合成電界ベクトルEmを求
め、上記M個の複素合成電界ベクトル測定値Em にex
p(−j2πm/M)(exp()は指数関数、j2
−1)を掛け合わせ、M個のEm ・exp(−j2πm
/M)の算術平均を求める事で着目する素子アンテナの
振幅および位相を算出する事で、従来は初期設定の位相
分布を変えて2回以上繰り返し測定し、解の判定を行う
必要が有ったのに対し一回の計測で解が求められるもの
である。
In the antenna measuring method according to the present invention, the set phase Δ of the phase shifter of the element antenna of interest is Δ = 2πm / M (M
Is a natural number determined by the type of phase shifter, m = 0, ..., M
-1), M at equal intervals between 0 and 2π (radian)
The complex composite electric field vector E m is obtained by measuring the amplitude and the phase of the composite electric field of the phased array antenna once set to the ex of the M complex composite electric field vector measurement values E m .
p (-j2πm / M) (exp () is an exponential function, j 2 =
-1), and M E m · exp (−j2πm
/ M) is calculated to calculate the amplitude and phase of the target element antenna by calculating the arithmetic mean, and conventionally it is necessary to change the initial phase distribution and measure repeatedly twice or more to determine the solution. On the other hand, the solution can be obtained by one measurement.

【0045】またこの発明に係るアンテナ測定法は、着
目する上記素子アンテナの移相器の設定位相ΔをΔ=2
πm/M(Mは移相器の形式等で決まる自然数、m=
0、・・・、M−1)の様に0から2π(ラジアン)の
間に等間隔にM回設定して上記フェーズドアレーアンテ
ナの合成放射電界の振幅と位相を測定し、複素合成電界
ベクトルEm を求め、上記複素合成電界ベクトルEm
離散的フーリェ変換し、そのスペクトルを求め、上記ス
ペクトルの分布から移相器の故障の有無及び故障箇所を
特定することができるものである。
In the antenna measuring method according to the present invention, the set phase Δ of the phase shifter of the element antenna of interest is Δ = 2.
πm / M (M is a natural number determined by the type of phase shifter, m =
0, ..., M-1), the amplitude and phase of the combined radiated electric field of the phased array antenna are measured by setting M times at equal intervals between 0 and 2π (radian), and the complex combined electric field vector seeking E m, and discrete Fourier transform of the complex composite electric field vector E m, the spectrum calculated and is able to identify the presence and fault location of the failure of the phase shifter from the distribution of the spectrum.

【0046】[0046]

【実施例】【Example】

実施例1.以下この発明の実施例を図について説明す
る。図1において1は素子アンテナ、2は移相器、3は
電力分配回路、4は送信機、5はピックアップアンテ
ナ、7は振幅位相受信器である。
Example 1. Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is an element antenna, 2 is a phase shifter, 3 is a power distribution circuit, 4 is a transmitter, 5 is a pickup antenna, and 7 is an amplitude phase receiver.

【0047】次に動作についてする。まず図1の全アレ
ー動作状態において、ピックアップアンテナ5で受信さ
れる合成電界ベクトルは図2に示すように各素子アンテ
ナ1による電界ベクトルの和で表される。ここで第n番
目の素子アンテナ1(以下第n素子)の電界ベクトルを
n exp(jφn )としてこの位相φn を変化させれ
ば、全アレー合成の電界ベクトルは第n素子の電界ベク
トルの回転に従って、変化する。第n素子の位相をΔだ
け変化させたときの合成電界ベクトルは“数1”で表さ
れる。“数1”におけるΔを次の様に0から2πの間の
等間隔に設定する。
Next, the operation will be described. First, in the full array operation state of FIG. 1, the combined electric field vector received by the pickup antenna 5 is represented by the sum of the electric field vectors of the element antennas 1 as shown in FIG. Here, if the electric field vector of the n-th element antenna 1 (hereinafter referred to as the n-th element) is set to E n exp (jφ n ) and this phase φ n is changed, the electric field vector of the total array synthesis is the electric field vector of the n-th element. Changes according to the rotation of. The combined electric field vector when the phase of the n-th element is changed by Δ is represented by “Equation 1”. Δ in “Equation 1” is set at equal intervals between 0 and 2π as follows.

【0048】[0048]

【数20】 [Equation 20]

【0049】“数20”を“数1”に代入すると、Substituting "Equation 20" into "Equation 1",

【0050】[0050]

【数21】 [Equation 21]

【0051】移相器2の位相を“数20”に示す値に設
定し、合成電界を振幅位相受信器7で測定することで、
M個の複素合成電界ベクトルEm を測定する事ができ
る。このM個のEm に対しexp(−j2πm/M)を
掛け合わせ、次の演算を行う。
By setting the phase of the phase shifter 2 to the value shown in "Equation 20" and measuring the combined electric field with the amplitude phase receiver 7,
It is possible to measure M complex composite electric field vectors E m . Multiplied by exp (-j2πm / M) to the M number of E m, performs the following operation.

【0052】[0052]

【数22】 [Equation 22]

【0053】従って、素子nの電界ベクトルは、Therefore, the electric field vector of the element n is

【0054】[0054]

【数23】 [Equation 23]

【0055】と表す事ができ、素子nの振幅En 、位相
φn を知る事ができる。ここで、“数23”はEm ・e
xp(−j2πm/M)の算術平均値を求める事に相当
する。全ての素子アンテナ1について同様の測定とデー
タ処理と計算を繰り返し行えば全ての素子アンテナの振
幅、位相を知る事ができる。
It can be expressed as follows, and the amplitude E n and phase φ n of the element n can be known. Here, “Numeral 23” is E m · e
This corresponds to obtaining the arithmetic mean value of xp (−j2πm / M). By repeating the same measurement, data processing and calculation for all the element antennas 1, the amplitude and phase of all the element antennas can be known.

【0056】上記測定法は従来のアンテナ測定法が合成
電界の振幅変動の測定を行い、求められる2つの解の組
み合わせ“数15”・“数16”と“数18”・“数1
9”のいずれかを採るべきかについて判定するために初
期設定の位相分布を変えてもう一度全ての素子アンテナ
について測定を行い、二つの解の比較から解を選ぶ必要
が有るのに対し、この発明によれば1回の計測で所望の
解を得る事ができるため、計測時間が短縮でき、2つの
解の判定に伴う計測結果の曖昧さを取り除く事ができ
る。
In the above-mentioned measurement method, the conventional antenna measurement method measures the amplitude fluctuation of the composite electric field, and the combination of the two solutions to be obtained is obtained from "Equation 15", "Equation 16" and "Equation 18".
In order to determine which of 9 "should be adopted, it is necessary to change the default phase distribution and measure again for all element antennas, and to select the solution from the comparison of the two solutions. According to the method, a desired solution can be obtained with one measurement, so that the measurement time can be shortened and the ambiguity of the measurement result associated with the determination of two solutions can be removed.

【0057】実施例2.上記アンテナ測定法における
“数23”はEm (m=1・・・M−1)を時系列デー
タと見なした場合、周波数1の成分のスペクトルを求め
る事に等しい。従って高次周波数成分のスペクトルを求
める事により、移相器の故障の有無及び故障箇所を特定
することができる。以下その原理を説明する。
Example 2. “Equation 23” in the above antenna measurement method is equivalent to obtaining the spectrum of the component of frequency 1 when E m (m = 1 ... M−1) is regarded as time series data. Therefore, by obtaining the spectrum of the high-order frequency component, it is possible to identify the presence or absence of a failure of the phase shifter and the failure location. The principle will be described below.

【0058】一般的な移相器2の構成例を図3に示す。
図3は5ビット移相器の場合である。図3において9は
180度可変移相回路、10は90度可変移相回路、1
1は45度可変移相回路、12は22.5度可変移相回
路、13は11.25度可変移相回路であり、14は上
記各可変移相回路を制御する制御回路である。以下図3
を用いて説明する。移相器2の故障が無い場合、制御回
路14への設定位相に対する実際の位相設定値は図4
(a)に示すように変化する。
FIG. 3 shows an example of the structure of a general phase shifter 2.
FIG. 3 shows the case of a 5-bit phase shifter. In FIG. 3, 9 is a 180 degree variable phase shift circuit, 10 is a 90 degree variable phase shift circuit, 1
Reference numeral 1 is a 45 degree variable phase shift circuit, 12 is a 22.5 degree variable phase shift circuit, 13 is a 11.25 degree variable phase shift circuit, and 14 is a control circuit for controlling each of the variable phase shift circuits. Figure 3 below
Will be explained. When there is no failure in the phase shifter 2, the actual phase set value for the set phase for the control circuit 14 is shown in FIG.
It changes as shown in (a).

【0059】実施例1.と同様、移相器2の位相を“数
20”に示す値に設定し、合成電界を振幅位相受信器7
で測定することで、M個の複素合成電界ベクトルEm
測定する事ができる。このM個のEm に対しexp(−
j2πmk/M)(k=1・・・M−1)を掛け合わ
せ、次の演算を行う。
Example 1. Similarly to, the phase of the phase shifter 2 is set to the value shown in "Equation 20", and the combined electric field is set to the amplitude phase receiver 7
It is possible to measure M complex composite electric field vectors E m . For this the M E m exp (-
j2πmk / M) (k = 1 ... M-1) are multiplied and the following calculation is performed.

【0060】[0060]

【数24】 [Equation 24]

【0061】“数24”におけるE(k)はEm (m=
1・・・M−1)を時系列データと見なした場合、周波
数kの成分のスペクトルを離散的フーリエ変換により求
めた事に等しい。
E (k) in "Equation 24" is E m (m =
When 1 ... M-1) is regarded as time-series data, it is equivalent to obtaining the spectrum of the component of frequency k by discrete Fourier transform.

【0062】図4(a)の様に移相器2の故障が無い場
合、スペクトルE(k)の振幅は図5(a)に示す様
に、k=1において素子アンテナ1の振幅En となり、
その他のkに対しては0となる。
When there is no failure of the phase shifter 2 as shown in FIG. 4A, the amplitude of the spectrum E (k) is, as shown in FIG. 5A, the amplitude E n of the element antenna 1 at k = 1. Next to
It becomes 0 for other k.

【0063】一方、移相器2に故障がある場合、たとえ
ば45度可変移相回路11が故障した場合、制御回路1
4への設定位相に対する実際の位相設定値はたとえば図
4(b)に示すように変化する。図4(b)の場合に
“数24”によりスペクトルE(k)の振幅は図5
(b)に示す様に、k=5、13、21、29にスペク
トルが現れる。
On the other hand, when the phase shifter 2 has a failure, for example, when the 45 ° variable phase shift circuit 11 has a failure, the control circuit 1
The actual phase set value for the set phase to 4 changes, for example, as shown in FIG. In the case of FIG. 4B, the amplitude of the spectrum E (k) is shown in FIG.
As shown in (b), spectra appear at k = 5, 13, 21, and 29.

【0064】図4、図5に示した様に移相器の故障に起
因するスペクトルE(k)(k≠1)の発生位置と振幅
は故障部位と故障内容によって一義的に定まる。従っ
て、“数24”によりスペクトルE(k)を求める事で
移相器の故障の有無及び故障箇所を特定することができ
る。
As shown in FIGS. 4 and 5, the generation position and amplitude of the spectrum E (k) (k ≠ 1) due to the failure of the phase shifter are uniquely determined by the failure site and the failure content. Therefore, by obtaining the spectrum E (k) from "Equation 24", it is possible to specify the presence or absence of a failure of the phase shifter and the failure location.

【0065】以上の説明では図1のフェーズドアレーア
ンテナを例にしたが、測定理論の説明で明らかなように
本発明によるアンテナ計測法は素子アンテナの形式、素
子アンテナの配列構成、給電回路の構成や形式などの種
類は一切問わず全てのフェーズドアレーアンテナに実施
可能なものである。
In the above description, the phased array antenna of FIG. 1 was taken as an example, but as is clear from the description of the measurement theory, the antenna measuring method according to the present invention is the type of element antenna, the arrangement configuration of element antennas, and the configuration of the feeding circuit. It can be applied to all phased array antennas regardless of type or type.

【0066】[0066]

【発明の効果】以上のようにこの発明によれば1回の計
測で所望の解を得る事ができるので、計測時間が短縮で
き、2つの解の判定に伴う計測結果の曖昧さを取り除く
事ができる。
As described above, according to the present invention, a desired solution can be obtained by a single measurement, so that the measurement time can be shortened and the ambiguity of the measurement result associated with the determination of two solutions can be eliminated. You can

【0067】またこの発明の別の発明によれば、着目す
る上記素子アンテナの移相器の設定位相ΔをΔ=2πm
/M(Mは移相器の形式等で決まる自然数、m=0、・
・・、M−1)の様に0から2π(ラジアン)の間の等
間隔にM回で設定して上記フェーズドアレーアンテナの
合成電界の振幅と位相を測定し、複素合成電界ベクトル
m を求め、上記M個の複素合成電界ベクトル測定値E
m を時系列データと見なして離散的フーリェ変換を行う
事で、M個のスペクトルを求め、上記スペクトルの分布
から移相器の故障の有無及び故障箇所を特定することが
できるものである。
According to another invention of the present invention, the set phase Δ of the phase shifter of the element antenna of interest is Δ = 2πm
/ M (M is a natural number determined by the type of phase shifter, m = 0,
.., M-1), the amplitude and phase of the composite electric field of the phased array antenna are measured by setting M times at equal intervals between 0 and 2π (radian), and the complex composite electric field vector E m is calculated. Then, the above M complex composite electric field vector measurement values E are obtained.
By performing the discrete Fourier transform by regarding m as time-series data, M spectra are obtained, and it is possible to specify the presence / absence of a failure of the phase shifter and the failure location from the distribution of the spectrum.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による素子アンテナ振幅位
相測定の回路構成を示す図である。
FIG. 1 is a diagram showing a circuit configuration of an element antenna amplitude / phase measurement according to an embodiment of the present invention.

【図2】素子アンテナの電界ベクトルと合成電界ベクト
ルの説明図である。
FIG. 2 is an explanatory diagram of an electric field vector of an element antenna and a combined electric field vector.

【図3】一般的な移相器の構成を示す図である。FIG. 3 is a diagram showing a configuration of a general phase shifter.

【図4】移相器の制御回路への位相設定値と実際の設定
位相の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a phase setting value for a control circuit of a phase shifter and an actual setting phase.

【図5】スペクトルE(k)の分布を示す図である。FIG. 5 is a diagram showing a distribution of a spectrum E (k).

【図6】従来の素子アンテナ振幅位相測定の回路構成を
示す図である。
FIG. 6 is a diagram showing a circuit configuration of a conventional element antenna amplitude / phase measurement.

【符号の説明】[Explanation of symbols]

1 素子アンテナ 2 移相器 3 電力分配回路 4 送信機 5 ピックアップアンテナ 6 受信器 7 振幅位相受信器 8 フェーズドアレーアンテナ 9 180度可変移相回路 10 90度可変移相回路 11 45度可変移相回路 12 22.5度可変移相回路 13 11.25度可変移相回路 14 制御回路 1 element antenna 2 phase shifter 3 power distribution circuit 4 transmitter 5 pickup antenna 6 receiver 7 amplitude phase receiver 8 phased array antenna 9 180 degree variable phase shift circuit 10 90 degree variable phase shift circuit 11 45 degree variable phase shift circuit 12 22.5 degree variable phase shift circuit 13 11.25 degree variable phase shift circuit 14 Control circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の素子アンテナ、上記各素子アンテ
ナにつながれた移相器とを有するフェーズドアレーアン
テナの上記各素子アンテナの励振電流、又は励振電圧の
振幅及び、位相を測定するアンテナ測定法において、着
目する上記素子アンテナの移相器の設定位相を2πm/
M(Mは移相器の形式等で決まる自然数、m=0、・・
・、M−1)の様に0から2π(ラジアン)の間の等間
隔にM回設定して上記フェーズドアレーアンテナの合成
放射電界の振幅と位相を測定し、複素合成電界ベクトル
m を求め、上記M個の複素合成電界ベクトル測定値E
m にexp(−j2πm/M)(exp()は指数関
数、j2 =−1)を掛け合わせ、上記M個のEm ・ex
p(−j2πm/M)の算術平均を求める事で着目する
素子アンテナの振幅および位相を算出することを特徴と
するアンテナ測定法。
1. An antenna measuring method for measuring an amplitude and a phase of an excitation current or an excitation voltage of each element antenna of a phased array antenna having a plurality of element antennas and a phase shifter connected to each element antenna. , Set the phase of the phase shifter of the element antenna of interest to 2πm /
M (M is a natural number determined by the type of phase shifter, m = 0, ...
., M-1), M times are set at equal intervals between 0 and 2π (radian), the amplitude and phase of the combined radiated electric field of the phased array antenna are measured, and the complex combined electric field vector E m is obtained. , The above M complex composite electric field vector measurement values E
m is multiplied by exp (−j2πm / M) (exp () is an exponential function, j 2 = −1), and the M number of Em · ex
An antenna measuring method characterized by calculating an amplitude and a phase of a target element antenna by obtaining an arithmetic mean of p (-j2πm / M).
【請求項2】 複数の素子アンテナ、上記各素子アンテ
ナにつながれた移相器とを有するフェーズドアレーアン
テナの上記各素子アンテナの励振電流、又は励振電圧の
振幅及び、位相を測定するアンテナ測定法において、着
目する上記素子アンテナの移相器の設定位相を2πm/
M(Mは移相器の形式等で決まる自然数、m=0、・・
・、M−1)の様に0から2π(ラジアン)の間の等間
隔にM回設定して上記フェーズドアレーアンテナの合成
放射電界の振幅と位相を測定し、複素合成電界ベクトル
m を求め、上記M個の複素合成電界ベクトル測定値E
m を時系列データと見なして離散的フーリエ変換を行う
事で、M個のスペクトルを求め、上記スペクトルの分布
から移相器の故障の有無及び故障箇所を特定するアンテ
ナ測定法。
2. An antenna measuring method for measuring an amplitude and a phase of an exciting current or an exciting voltage of each element antenna of a phased array antenna having a plurality of element antennas and a phase shifter connected to each element antenna. , Set the phase of the phase shifter of the element antenna of interest to 2πm /
M (M is a natural number determined by the type of phase shifter, m = 0, ...
., M-1), M times are set at equal intervals between 0 and 2π (radian), the amplitude and phase of the combined radiated electric field of the phased array antenna are measured, and the complex combined electric field vector E m is obtained. , The above M complex composite electric field vector measurement values E
An antenna measurement method for determining the presence / absence of a phase shifter failure and the failure location from the spectrum distribution by performing a discrete Fourier transform by regarding m as time-series data.
JP05276960A 1993-11-05 1993-11-05 Antenna measurement method Expired - Lifetime JP3094756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05276960A JP3094756B2 (en) 1993-11-05 1993-11-05 Antenna measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05276960A JP3094756B2 (en) 1993-11-05 1993-11-05 Antenna measurement method

Publications (2)

Publication Number Publication Date
JPH07128382A true JPH07128382A (en) 1995-05-19
JP3094756B2 JP3094756B2 (en) 2000-10-03

Family

ID=17576813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05276960A Expired - Lifetime JP3094756B2 (en) 1993-11-05 1993-11-05 Antenna measurement method

Country Status (1)

Country Link
JP (1) JP3094756B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114391A (en) * 2003-10-03 2005-04-28 Mitsubishi Electric Corp Antenna measuring apparatus
JP2015106878A (en) * 2013-12-02 2015-06-08 三菱電機株式会社 Phased array antenna device and communication system
RU2758979C1 (en) * 2021-04-01 2021-11-03 Акционерное общество "Научно-производственный центр Тверских военных пенсионеров" (АО "НПЦ ТВП") Method for automatic measurement of antenna direction diagram parameters in the far zone by flight method using uav

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114391A (en) * 2003-10-03 2005-04-28 Mitsubishi Electric Corp Antenna measuring apparatus
JP2015106878A (en) * 2013-12-02 2015-06-08 三菱電機株式会社 Phased array antenna device and communication system
RU2758979C1 (en) * 2021-04-01 2021-11-03 Акционерное общество "Научно-производственный центр Тверских военных пенсионеров" (АО "НПЦ ТВП") Method for automatic measurement of antenna direction diagram parameters in the far zone by flight method using uav

Also Published As

Publication number Publication date
JP3094756B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
Long et al. Fast amplitude-only measurement method for phased array calibration
Miller Model-based parameter estimation in electromagnetics. II. Applications to EM observables
EP2202537A2 (en) A detection and ranging apparatus and a method of designing a detection and ranging apparatus
Long et al. Calibration method of phased array based on near-field measurement system
CN110007267A (en) A kind of uniform circular array interferometer direction finding ambiguity solution method based on mixed baseline
US5181040A (en) Method of measuring the null angle of a monopulse antenna and apparatus therefor
JP5527184B2 (en) Antenna measuring apparatus and antenna measuring method
JP2001201526A (en) Antenna measuring device and antenna measuring method
JPH07128382A (en) Antenna measuring method
JPH0130112B2 (en)
JPH0137882B2 (en)
JPH0338548B2 (en)
Salonen et al. Linear pattern correction in a small microstrip antenna array
JP2010112749A (en) Radar apparatus
JPH01195374A (en) Antenna measuring system
JP5371852B2 (en) Antenna measuring apparatus and antenna measuring method
JP2001201525A (en) Antenna measuring device and antenna measuring method
Fadamiro et al. A Fast and Accurate Multi-Element Calibration Algorithm of an Active Phased Antenna Array
JP4864285B2 (en) Antenna measuring device
JPH0215122B2 (en)
JP3336881B2 (en) Antenna measurement method and antenna measurement device
RU2634735C1 (en) Determination method of amplitude-phase distribution in aperture of phased antenna array
JP2003143046A (en) Calibration device for receiving array antenna
RU2692125C1 (en) Method of determining amplitude-phase distribution in a phasing antenna array opening
Kim et al. Digital beamforming technique with high resolution digital phase shifter and digital phase calibration using SDR

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

EXPY Cancellation because of completion of term