JPH0712816A - Bio-substance measuring method utilizing specific bonding reaction - Google Patents

Bio-substance measuring method utilizing specific bonding reaction

Info

Publication number
JPH0712816A
JPH0712816A JP15718693A JP15718693A JPH0712816A JP H0712816 A JPH0712816 A JP H0712816A JP 15718693 A JP15718693 A JP 15718693A JP 15718693 A JP15718693 A JP 15718693A JP H0712816 A JPH0712816 A JP H0712816A
Authority
JP
Japan
Prior art keywords
substance
measured
reaction
time
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15718693A
Other languages
Japanese (ja)
Inventor
Akihiro Nanba
昭宏 南波
Takeo Takahashi
威夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15718693A priority Critical patent/JPH0712816A/en
Publication of JPH0712816A publication Critical patent/JPH0712816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To determine an object to be measured with high sensitivity in a short time by determining the object based on the secular change of the detected intensity of light emission or fluorescence. CONSTITUTION:By catching the specific bonding reaction of a sample of a known concentration through an enzyme-substrate reaction, the detected intensity of generated luminescence (fluorescence) is continuously measured for a prescribed period of time. A characteristic curve prepared based on the measured results and indicating the relation between the measuring time and detected intensity, namely, the time characteristic is approximated to a straight line by using the method of least squares. The inclination of the straight line represents the secular change of the detected intensity and depends upon the quantity of a bio-substance contained in the sample. Therefore, by using a plurality of samples of known concentrations, a calibration curve representing the relation between the inclination of the time characteristic and concentration of a substance to be measured is prepared. Then, by receiving 12 the light emitted from a sample contained in a reaction container 11 and measuring 14 the inclination of the time characteristic of the sample containing the substance by an unknown amount, the substance to be measured in the sample is determined 15 from the calibration curve. Therefore, the substance can be determined without waiting for the saturation of detected intensity nor being affected by background noise caused by the stray light, etc., from the measuring instrument.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、免疫反応のような生体
の特異結合反応を利用した測定反応に関する。
TECHNICAL FIELD The present invention relates to a measurement reaction utilizing a specific binding reaction of a living body such as an immune reaction.

【0002】[0002]

【従来の技術】従来、抗原または抗体を定量するため
に、酵素活性を標識として抗体または抗原と被測定物質
の間で抗原抗体反応を追跡し、その結果に基づいて抗原
または抗体を定量する酵素免疫測定法が主に医療または
バイオテクノロジーの分野で行われている。この酵素免
疫測定法の一つとして、生物発光、化学発光または蛍光
を利用するものがある。これは、酵素標識抗原または抗
体と基質とを反応させ、この酵素反応により生じる発光
または蛍光を受光器で検出し、その強度を測定すること
により行われる。
2. Description of the Related Art Conventionally, in order to quantify an antigen or an antibody, an enzyme which uses an enzyme activity as a label to trace an antigen-antibody reaction between the antibody or the antigen and a substance to be measured and quantifies the antigen or the antibody based on the result. Immunoassays are performed primarily in the medical or biotechnology fields. As one of the enzyme immunoassay methods, there is a method utilizing bioluminescence, chemiluminescence, or fluorescence. This is performed by reacting an enzyme-labeled antigen or antibody with a substrate, detecting luminescence or fluorescence generated by this enzyme reaction with a light receiver, and measuring the intensity thereof.

【0003】上述の酵素および基質の反応により生じる
発光または蛍光の強度の測定は、例えば、光子計数(フ
ォトンカウント)法により行っている。この場合、ある
時点での発光または蛍光の強度、あるいは、特定の時間
範囲での発光または蛍光の強度を測定している。
The intensity of luminescence or fluorescence generated by the reaction of the above-mentioned enzyme and substrate is measured by, for example, a photon counting method. In this case, the intensity of luminescence or fluorescence at a certain time point or the intensity of luminescence or fluorescence within a specific time range is measured.

【0004】[0004]

【発明が解決しようとする課題】上述の酵素免疫測定法
において、発光または蛍光を生じる基質として、ルミノ
ールやアクリジニウム・エステルのように極めて短時間
で発光を起こす物質を用いる場合には、測定も極めて短
時間で終了する。しかしながら、短時間で発光または蛍
光のピークが現れる場合には、応答性の速い測定装置を
構成しない限り、操作が困難であり、自動化する上でも
障害となる。そこで、一般に用いられる基質の中には、
例えばジオキセタン誘導体やルミノール・p−ヨードフ
ェノール系のように、発光または蛍光反応が緩慢に進行
する場合がある。例えば、ジオキセタン誘導体は、図9
に示すように、酵素基質反応開始後約20分まで発光強
度がゆっくり増加し続ける。なお、図9ではアルカリフ
ォスファターゼの濃度は10-4unit/ mlとなっている。
In the above-described enzyme immunoassay, when a substance that emits light in an extremely short time such as luminol or acridinium ester is used as a substrate that emits light or fluorescence, the measurement is also extremely difficult. Finish in a short time. However, when a peak of luminescence or fluorescence appears in a short time, it is difficult to operate unless a measuring device having a high responsiveness is configured, which is an obstacle to automation. So, among the commonly used substrates,
For example, as in the case of a dioxetane derivative or a luminol / p-iodophenol system, the luminescence or fluorescence reaction may proceed slowly. For example, a dioxetane derivative is shown in FIG.
As shown in, the emission intensity continues to increase slowly until about 20 minutes after the start of the enzyme-substrate reaction. In FIG. 9, the concentration of alkaline phosphatase is 10 −4 unit / ml.

【0005】このような発光または蛍光反応が遅い基質
を用いた場合、発光または蛍光のピーク値を逃す問題は
解消される反面、測定は短時間で行うことが極めて難し
い。なぜならば、酵素基質反応が開始した後短時間で
は、発光または蛍光の強度が十分でなく測定が難しく、
測定に十分な強度が得られるまでには長時間を要するか
らである。また、被測定物質が低濃度になる程、発光ま
たは蛍光のピークが不明瞭になるので、ピーク部分の発
見が遅れてしまう可能性すらある。
When such a substrate having a slow luminescence or fluorescence reaction is used, the problem of missing the peak value of luminescence or fluorescence is solved, but it is extremely difficult to carry out the measurement in a short time. Because the intensity of luminescence or fluorescence is not sufficient in the short time after the initiation of the enzyme-substrate reaction, and measurement is difficult,
This is because it takes a long time to obtain sufficient strength for measurement. In addition, the lower the concentration of the substance to be measured, the more unclear the emission or fluorescence peaks, which may even delay the discovery of the peak portion.

【0006】また、従来の光子計数方式では、測定装置
での迷光等によりバックグランド・ノイズが発生する
と、計数結果にバックグランド・ノイズが含まれてベー
スが上昇し、高感度測定が難しくなる。
Further, in the conventional photon counting method, when background noise is generated due to stray light or the like in the measuring device, the background noise is included in the counting result and the base rises, making it difficult to perform high-sensitivity measurement.

【0007】なお、以上の説明では、酵素免疫測定法に
おける問題について説明したが、同様の問題は、相補的
DNA鎖による反応やDNA結合鎖とDNAとの間の反
応のような生体の特異結合反応においても認められてい
る。本発明は、かかる点に鑑みてなされたものであり、
短時間かつ高感度で被測定物質を定量できる特異結合反
応を利用した生体物質の測定方法を提供する。
In the above explanation, the problem in the enzyme immunoassay was explained, but the similar problem is the specific binding of the living body such as the reaction by the complementary DNA strand or the reaction between the DNA binding strand and the DNA. It is also recognized in the reaction. The present invention has been made in view of such points,
Provided is a method for measuring a biological substance using a specific binding reaction, which can quantify a substance to be measured in a short time and with high sensitivity.

【0008】[0008]

【課題を解決するための手段】本発明は、被測定物質と
前記被測定物質に特異的に結合しかつ酵素で標識された
特異反応物質とを反応させた後、前記被測定物質および
前記特異反応物質に前記酵素と反応して発光または蛍光
を示す基質を反応させて生じた発光または蛍光を検出す
ることにより被測定物質を定量する生体物質の測定方法
であって、発光または蛍光の検出強度の経時変化量に基
づいて前記被測定物質を定量することを特徴とする特異
結合反応を利用した生体物質の測定方法を提供する。
According to the present invention, a substance to be measured and a specific reaction substance specifically bound to the substance to be measured and labeled with an enzyme are reacted, and then the substance to be measured and the specific substance are reacted. A method for measuring a biological substance, which comprises quantifying a substance to be measured by detecting luminescence or fluorescence generated by reacting a reaction substance with a substrate that emits luminescence or fluorescence when reacting with the enzyme, the detection intensity of luminescence or fluorescence. There is provided a method for measuring a biological substance using a specific binding reaction, which comprises quantifying the substance to be measured based on the amount of change with time.

【0009】以下、本発明の生体物質の測定方法をさら
に詳細に説明する。ここで、特異結合反応とは、例え
ば、抗原抗体反応、相補的DNA鎖による反応(DNA
−RNA結合も含む)を包含する。
The method for measuring a biological substance of the present invention will be described in more detail below. Here, the specific binding reaction means, for example, an antigen-antibody reaction, a reaction by a complementary DNA chain (DNA
-Including RNA binding).

【0010】また、被測定物質は、特異結合反応が抗原
抗体反応である場合には抗原または抗体であり、固相酵
素免疫測定法(ELISA法)におけるサンドイッチア
ッセイのように、担体に結合された抗原に結合した抗体
であっても良い。かかる被測定物質の例としては、各種
病原菌、ウイルス、ホルモン、アレルゲン、血液型抗
原、組織型抗原、アミノ酸等の抗原またはその抗体が挙
げられる。
The substance to be measured is an antigen or an antibody when the specific binding reaction is an antigen-antibody reaction, and is bound to a carrier as in a sandwich assay in a solid-phase enzyme-linked immunosorbent assay (ELISA method). It may be an antibody bound to an antigen. Examples of such substances to be measured include various pathogenic bacteria, viruses, hormones, allergens, blood group antigens, tissue group antigens, antigens such as amino acids, or antibodies thereof.

【0011】標識に用いる酵素としては、通常標識酵素
として用いられるものであれば特に限定されないが、例
えば、アルカリフォスファターゼ、西洋ワサビペルオキ
シダーゼ、β−ガラクトシダーゼを好ましく用いること
ができる。
The enzyme used for labeling is not particularly limited as long as it is usually used as a labeling enzyme. For example, alkaline phosphatase, horseradish peroxidase and β-galactosidase can be preferably used.

【0012】酵素と反応して発光または蛍光を生じる基
質は、標識に用いられる酵素に応じて選択される。例え
ば、標識酵素としてアルカリフォスファターゼやβ−ガ
ラクトシダーゼを用いた場合には基質としてはジオキセ
タン誘導体が好ましく用いられる。
The substrate that reacts with the enzyme to generate luminescence or fluorescence is selected according to the enzyme used for labeling. For example, when alkaline phosphatase or β-galactosidase is used as the labeling enzyme, a dioxetane derivative is preferably used as the substrate.

【0013】本発明の生体物質の測定方法において、生
体物質の定量は、発光または蛍光の検出強度の経時変化
量に基づいて行う。すなわち、酵素基質反応を開始して
所定の時間経過した後、所定時間の間、発光または蛍光
の検出強度を連続して測定する。この測定結果から検出
強度の経時変化量を求める。
In the method for measuring a biological substance of the present invention, the quantification of the biological substance is performed based on the amount of change over time in the detected intensity of luminescence or fluorescence. That is, the detection intensity of luminescence or fluorescence is continuously measured for a predetermined time after the enzyme substrate reaction is started and a predetermined time has elapsed. From this measurement result, the amount of change in the detected intensity over time is obtained.

【0014】例えば、濃度既知のサンプルを用意し、こ
のサンプルにおける特異結合反応を酵素基質反応で捕捉
し、酵素基質反応により生じる発光または蛍光の検出強
度を上述のように連続して測定する。得られた測定結果
に基づいて、測定時間および検出強度の関係(以下、時
間特性ともいう)を示す特性線を作成し、この特性線に
対して最小自乗法を施し、この特性線を直線に近似させ
る。この直線の傾きが、検出強度の経時変化量を示し、
試料溶液中の特異結合反応の状態、すなわち、試料溶液
中の生体物質の量に依存する。従って、複数の濃度既知
のサンプルを用いて、上記の時間特性の傾きと被測定物
質の濃度との関係からなる検量線を作成し、未知量の被
測定物質を含有するサンプルの時間特性の傾きを測定し
て、検量線からサンプル中の被測定物質の定量を行うこ
とができる。
For example, a sample having a known concentration is prepared, a specific binding reaction in this sample is captured by an enzyme substrate reaction, and the detection intensity of luminescence or fluorescence generated by the enzyme substrate reaction is continuously measured as described above. Based on the obtained measurement results, create a characteristic line showing the relationship between measurement time and detection intensity (hereinafter also referred to as time characteristic), apply the least squares method to this characteristic line, and make this characteristic line a straight line. To approximate. The slope of this line indicates the amount of change in the detected intensity over time,
It depends on the state of the specific binding reaction in the sample solution, that is, the amount of the biological substance in the sample solution. Therefore, using a plurality of samples of known concentration, create a calibration curve consisting of the relationship between the slope of the time characteristics and the concentration of the substance to be measured, and the slope of the time characteristic of the sample containing an unknown amount of the substance to be measured. Can be measured and the substance to be measured in the sample can be quantified from the calibration curve.

【0015】また、検量線は、被測定物質の濃度と検出
強度の経時変化量との関係からなるものではなく、異な
る濃度で酵素を含有するサンプルを用いて検量線を作成
し、酵素濃度と検出強度の経時変化量との関係からなる
ものであっても良い。酵素の量は、その酵素で標識され
た特異反応物質が結合する被測定物質の量と常に一定の
相関を持っているので、酵素量から被測定物質の量を決
定できる。
The calibration curve does not consist of the relationship between the concentration of the substance to be measured and the amount of change in the detection intensity over time. Instead, a calibration curve was prepared using samples containing enzymes at different concentrations, and It may be based on the relationship with the amount of change in detection intensity over time. Since the amount of the enzyme always has a certain correlation with the amount of the substance to be measured to which the specific reaction substance labeled with the enzyme binds, the amount of the substance to be measured can be determined from the amount of the enzyme.

【0016】[0016]

【作用】本発明の特異結合反応を利用した生体物質の測
定方法によれば、発光または蛍光の検出強度の経時変化
量を求めている。この経時変化量は被測定物質の量に依
存し、既知の被測定物質の量と経時変化量との関係に基
づいて、未知量の被測定物質を決定する。これにより、
酵素基質反応による発光または蛍光の検出強度が飽和に
達するのを待つことなく被測定物質の定量を行うことが
できる。また、発光または蛍光の検出強度の経時変化量
は、検出強度が含むベースを含んでいないので、光子計
数方式の測定装置での迷光等によって発生するバックグ
ランド・ノイズによる影響が少ない。
According to the method for measuring a biological substance using the specific binding reaction of the present invention, the amount of change over time in the detection intensity of luminescence or fluorescence is obtained. The amount of change with time depends on the amount of the substance to be measured, and an unknown amount of the substance to be measured is determined based on the relationship between the amount of the known substance to be measured and the amount of change with time. This allows
The substance to be measured can be quantified without waiting for the detection intensity of luminescence or fluorescence due to the enzyme substrate reaction to reach saturation. Further, since the amount of change in the detected intensity of luminescence or fluorescence over time does not include the base included in the detected intensity, it is less affected by background noise generated by stray light or the like in the photon counting measurement device.

【0017】[0017]

【実施例】以下、本発明の生体物質の測定方法を詳細に
説明する。図1は、本実施例の生体物質の測定方法に用
いる化学発光測定装置の一例を示すブロック図である。
図中11は、内部に試料溶液が収容され、発光または蛍
光反応により生じた生物発光、化学発光または蛍光を外
部に透過し得るようになっている。反応容器11として
は、例えば、ガラスチューブ、ポリスチレン等のプラス
チック製チューブやマイクロタイタープレートを用いる
ことができる。
The method for measuring a biological substance of the present invention will be described in detail below. FIG. 1 is a block diagram showing an example of a chemiluminescence measuring apparatus used in the method for measuring a biological substance according to this embodiment.
Reference numeral 11 in the drawing accommodates a sample solution inside and allows bioluminescence, chemiluminescence, or fluorescence generated by a luminescence or fluorescence reaction to be transmitted to the outside. As the reaction vessel 11, for example, a glass tube, a plastic tube such as polystyrene, or a microtiter plate can be used.

【0018】反応容器11からの発光または蛍光は受光
素子12で受光する。受光素子12で得られた信号は増
幅器13で増幅された後、光子計数管14でフォトンカ
ウントされ、計数結果はデ−タ処理装置15で処理され
る。デ−タ処理装置15としては、コンピュ−タなどの
計算機を用いて演算処理することができる装置を用いる
ことができる。
Light or fluorescence emitted from the reaction container 11 is received by the light receiving element 12. The signal obtained by the light receiving element 12 is amplified by the amplifier 13, then photon-counted by the photon counter 14, and the counting result is processed by the data processor 15. As the data processing device 15, a device that can perform arithmetic processing using a computer such as a computer can be used.

【0019】本実施例では、発光基質としては、ジオキ
セタン誘導体(AMPPD;3−(4−メトキシスピロ
[1,2−ジオキシエタン−3,2´−トリシクロ
[3,3,1,13,7 ]デカン]−4−イル)フェニル
リン酸二ナトリウム;Tropix社製“Elisa
Light Test Kit”)を用いた。
In this example, a dioxetane derivative (AMPPD; 3- (4-methoxyspiro [1,2-dioxyethane-3,2'-tricyclo [3,3,1,1 3,7 ]] was used as a luminescent substrate. Decan] -4-yl) phenyl phosphate disodium; Tropix "Elisa
Light Test Kit ") was used.

【0020】本実施例で使用した試薬は、アッセイ・バ
ッファー (Assay Buffer) としては、0.1Mジエタノ
−ルアミン,1mM塩化マグネシウム,0.02%アジ
化ナトリウム;PH9.5を用意した。基質液として
は、10%エメラルド (Emerald),0.4mM AMP
PDを用いた。また、洗浄用緩衝液としては、0.00
5%のトウィーン20を含むトリス塩酸緩衝生理食塩水
(PH7.6)を用いた。
The reagents used in this example were prepared as assay buffers: 0.1 M diethanolamine, 1 mM magnesium chloride, 0.02% sodium azide; PH 9.5. Substrate solution is 10% Emerald, 0.4 mM AMP
PD was used. Moreover, as a washing buffer, 0.00
Tris-HCl buffered saline (PH7.6) containing 5% Tween 20 was used.

【0021】本実施例の生体物質の測定方法では、固相
法による2ステップ・サンドイッチサッセイを行った。
まず、図2(A)に示すように、反応容器11(Nun
c社製マイクロプレート)のウエルの内壁に被測定物質
であるHBs抗原22に対して特異的に反応する抗ヒト
HBs抗体21(日本特殊免疫)を2μg/ml、10
0μl用いてオーバーナイトすることで固相化した。固
相化終了後、抗原の非特異的結合を防ぐ目的で反応容器
11の固相化表面を3%牛アルブミンでブロッキングし
た。
In the method for measuring a biological substance according to this example, a two-step sandwich sassay by the solid phase method was performed.
First, as shown in FIG. 2A, the reaction container 11 (Nun
2 μg / ml of anti-human HBs antibody 21 (Nippon Special Immune), which reacts specifically with HBs antigen 22 as a substance to be measured, on the inner wall of the well of a microplate manufactured by c.
0 μl was used to solidify by overnight. After completion of the solid phase immobilization, the solid phased surface of the reaction vessel 11 was blocked with 3% bovine albumin for the purpose of preventing nonspecific binding of the antigen.

【0022】次に、反応容器11に、図2(B)に示す
ように、サンプル100μlを添加して室温で30分間
一次反応を行った。ここで、サンプルとしては、上記洗
浄用緩衝液中に所定濃度のHBs抗原(明治乳業)を溶
解させたものを用いた。これにより、図2(C)に示す
ように、サンプル中のHBs抗原22が、抗ヒトHBs
抗体21に結合した。
Next, as shown in FIG. 2 (B), 100 μl of the sample was added to the reaction vessel 11 and the primary reaction was carried out at room temperature for 30 minutes. Here, as the sample, a sample was used in which a predetermined concentration of HBs antigen (Meiji Milk Industry) was dissolved in the above-mentioned washing buffer. As a result, as shown in FIG. 2 (C), the HBs antigen 22 in the sample was treated with anti-human HBs.
It bound to antibody 21.

【0023】一次反応終了後、反応液を除去し、反応容
器11を洗浄用緩衝液を用いて洗浄した。洗浄後、反応
容器11に酵素標識抗HBs抗体液(オリンパス光学工
業社製)を添加して30分間二次反応(抗原抗体反応)
を遂行した。これにより、図2(D)に示すように、抗
ヒトHBs抗体21に結合したHBs抗原22に、酵素
23で標識された二次抗体24が結合した。酵素23
は、アルカリフォスファターゼである。
After the completion of the primary reaction, the reaction solution was removed and the reaction vessel 11 was washed with a washing buffer solution. After washing, an enzyme-labeled anti-HBs antibody solution (manufactured by Olympus Optical Co., Ltd.) was added to the reaction vessel 11 and a secondary reaction was carried out for 30 minutes (antigen-antibody reaction).
Carried out. As a result, as shown in FIG. 2D, the secondary antibody 24 labeled with the enzyme 23 bound to the HBs antigen 22 bound to the anti-human HBs antibody 21. Enzyme 23
Is alkaline phosphatase.

【0024】二次反応終了後、反応液を除去し、反応容
器11を洗浄用緩衝液を用いて再び洗浄した。図2
(E)に示すように、洗浄後、濃度が17mg/mlの
AMPPD液および濃度0.1%のエメラルド液を添加
した後、室温で酵素基質反応を行った。
After the completion of the secondary reaction, the reaction solution was removed and the reaction vessel 11 was washed again with the washing buffer. Figure 2
As shown in (E), after washing, an AMPPD solution having a concentration of 17 mg / ml and an emerald solution having a concentration of 0.1% were added, and then an enzyme substrate reaction was performed at room temperature.

【0025】酵素基質反応開始後、所定時間が経過した
後、上述の化学発光測定装置を使用して発光強度を測定
した。発光強度の計測は1秒単位で行ない、1秒間で計
数されたフォトンの数を測定値とし、所定時間連続して
計測した。
After a lapse of a predetermined time after the initiation of the enzyme substrate reaction, the luminescence intensity was measured using the above-described chemiluminescence measuring device. The emission intensity was measured in units of 1 second, and the number of photons counted in 1 second was used as a measurement value, and the measurement was continuously performed for a predetermined time.

【0026】図3に、抗原濃度10ng/mlのHBs
抗原を含有するサンプルについて、上述の通りに発光強
度を測定した場合の抗原抗体反応による発光強度と時間
との関係を示す。図3の横軸は、発光強度の測定を開始
してからの時間を示し、縦軸は、発光強度(単位;1秒
あたりのカウント数)を示す。ここで、発光強度の測定
は、酵素基質反応を開始して17分間経過してから開始
し、1秒単位で60秒間行った。
FIG. 3 shows HBs with an antigen concentration of 10 ng / ml.
The relationship between the luminescence intensity due to the antigen-antibody reaction and the time when the luminescence intensity of the sample containing the antigen is measured as described above is shown. The horizontal axis of FIG. 3 shows the time from the start of the measurement of the emission intensity, and the vertical axis shows the emission intensity (unit: the number of counts per second). Here, the measurement of the luminescence intensity was started after 17 minutes had elapsed since the start of the enzyme substrate reaction, and was performed for 60 seconds in units of 1 second.

【0027】図3から明らかなように、抗原抗体反応が
起こると、上記標識抗体に標識された酵素に対する酵素
基質反応により化学発光が生じる。この発光強度は時間
と共に増大していく。また、発光強度が増大していく傾
向は抗原濃度依存性を示し、抗原濃度の増加に伴って大
きくなる。
As is clear from FIG. 3, when an antigen-antibody reaction occurs, chemiluminescence occurs due to the enzyme substrate reaction with the enzyme labeled with the above-mentioned labeled antibody. This emission intensity increases with time. Further, the tendency that the luminescence intensity increases shows the dependence on the antigen concentration, and increases as the antigen concentration increases.

【0028】次に、異なる濃度のアルカリフォスファタ
ーゼ(東洋紡)を上記洗浄用緩衝液中に溶解させたもの
をサンプルとして用意し、上述の手順に従って、酵素基
質反応を開始して17分が経過した後から、60ポイン
トのデ−タを得る。夫々の酵素濃度における発光強度と
時間との関係(時間特性)をグラフに表した場合の特性
線の傾きを最小自乗法で求めた。
Next, different concentrations of alkaline phosphatase (TOYOBO) dissolved in the above-mentioned washing buffer were prepared as samples, and after 17 minutes had elapsed since the initiation of the enzyme-substrate reaction according to the procedure described above. Get 60 points of data. The slope of the characteristic line when the relationship between the luminescence intensity at each enzyme concentration and time (time characteristic) was represented by a graph was obtained by the method of least squares.

【0029】これらの各サンプルから得られた時間特性
の傾きを縦軸にとり、アルカリフォスファタ−ゼの濃度
(単位;単位/ml)を横軸にとって、図4に示すよう
な検量線が得られた。
A calibration curve as shown in FIG. 4 is obtained with the vertical axis representing the slope of the time characteristic obtained from each of these samples and the horizontal axis representing the concentration of alkaline phosphatase (unit: unit / ml). It was

【0030】図4に示す検量線に基づいて、サンプル中
のHBs抗原の濃度を定量できる。すなわち、検量線を
作成した場合と同じ条件で、未知量のHBs抗原を含有
するサンプルについて発光強度の測定を測定し、対応す
る検量線から測定値に対応するアルカリフォスファタ−
ゼの濃度を求め、これに対応するHBs抗原の濃度を決
定することができる。
The concentration of HBs antigen in the sample can be quantified based on the calibration curve shown in FIG. That is, the luminescence intensity of a sample containing an unknown amount of HBs antigen was measured under the same conditions as when the calibration curve was created, and the alkaline phosphatase corresponding to the measured value was measured from the corresponding calibration curve.
It is possible to determine the concentration of zase and to determine the concentration of HBs antigen corresponding thereto.

【0031】本実施例の生体物質の測定方法によれば、
アルカリフォスファターゼの濃度と発光強度の時間特性
の傾きに基づいて検量線を作成し、サンプル中のHBs
抗原の濃度を求めている。発光強度の経時変化量は、発
光強度に含まれるベースを含んでいないので、迷光等に
よるバックグランド・ノイズによりベースが上昇して
も、その影響をほとんど受けず、S/N比の低下を防ぐ
ことができる。
According to the method for measuring a biological substance of this example,
A calibration curve was prepared based on the slope of the time characteristics of alkaline phosphatase concentration and luminescence intensity, and HBs in the sample
Seeking the concentration of antigen. Since the amount of change in emission intensity over time does not include the base included in emission intensity, even if the base rises due to background noise due to stray light or the like, it is hardly affected by it and prevents the S / N ratio from decreasing. be able to.

【0032】図5に、上述と同様にして、各種濃度のH
Bs抗原を含むサンプルについて、酵素基質反応を開始
して30秒後から60秒後までの30秒間測定を連続し
て行ない、得られたデ−タに基づいて時間特性の傾きを
最小自乗法で近似して求めた結果を示す。この場合の測
定点数は1秒毎に計30点とし、抗原濃度毎に各2つの
サンプルによる結果をプロットした。なお、比較データ
として、同様に30秒後〜60秒後の間の発光強度を平
均した値を抗原濃度毎にプロットしたものを図6に示し
た。図5および図6を比較して明らかなように、発光強
度を縦軸にプロットしただけでは、抗原濃度が低いほど
定量測定が困難なため測定感度が1ng/ml程度にす
ぎない(図6参照)。これに対して、最小自乗法に基づ
く時間特性の傾きによれば、抗原濃度に応じた結果が得
られるので、酵素基質反応が始まって極めて早い時期に
も拘らず既に定量測定が可能な状態になっている(図5
参照)。
In FIG. 5, H of various concentrations is obtained in the same manner as described above.
For the sample containing the Bs antigen, measurement was continuously performed for 30 seconds from 30 seconds to 60 seconds after the start of the enzyme substrate reaction, and the slope of the time characteristic was determined by the least squares method based on the obtained data. The results obtained by approximation are shown below. In this case, the number of measurement points was set at 30 points every one second, and the results of two samples for each antigen concentration were plotted. As comparative data, similarly, values obtained by averaging the luminescence intensities after 30 seconds to 60 seconds were plotted for each antigen concentration are shown in FIG. As is clear from comparison between FIG. 5 and FIG. 6, if the luminescence intensity is plotted on the vertical axis, the measurement sensitivity becomes only about 1 ng / ml because the quantitative measurement becomes difficult as the antigen concentration becomes lower (see FIG. 6). ). On the other hand, according to the slope of the time characteristic based on the method of least squares, a result corresponding to the antigen concentration can be obtained, so that the quantitative measurement is already possible even when the enzyme-substrate reaction starts very early. (Fig. 5
reference).

【0033】図7は、上述と同様にサンドイッチアッセ
イを行ない、酵素基質反応を開始して60秒後から12
0秒後までの60秒間測定を連続して行ない、得られた
デ−タに基づいて時間特性の傾きを最小自乗法で近似し
て求めた結果であり、測定点数は60点である。また、
比較データとして、同様に1分後〜2分後の間の1秒毎
の発光強度を平均した値を抗原濃度毎にプロットして図
8を得た。図7および図8を比較して明らかなように、
発光強度を縦軸にプロットしただけでは、図6と同様に
抗原濃度が低いほど定量測定が困難になっている(図8
参照)。これに対して、最小自乗法に基づく時間特性の
傾きによれば、抗原濃度に応じた結果がより相関性良く
得られており、測定感度についても10-2〜10-1ng
/mlという超高感度な定量測定が可能であることを示
唆している(図7参照)。
In FIG. 7, the sandwich assay was performed in the same manner as described above, and 60 seconds after starting the enzyme substrate reaction, 12
This is a result obtained by continuously measuring for 60 seconds until 0 second, and approximating the slope of the time characteristic by the least square method based on the obtained data. The number of measurement points is 60 points. Also,
Similarly, as comparative data, values obtained by averaging the luminescence intensities every 1 second after 1 minute to 2 minutes were plotted for each antigen concentration to obtain FIG. As is clear from comparing FIGS. 7 and 8,
Just plotting the emission intensity on the vertical axis, the lower the antigen concentration becomes, the more difficult the quantitative measurement becomes (FIG. 8).
reference). On the other hand, according to the slope of the time characteristic based on the method of least squares, the result according to the antigen concentration is obtained with better correlation, and the measurement sensitivity is 10 -2 to 10 -1 ng.
This suggests that ultrasensitive quantitative measurement of / ml is possible (see FIG. 7).

【0034】なお、以上説明した本実施例において、発
光強度の測定は、1ポイント毎秒単位で行なっている
が、これに限ることなく、1ポイント毎0.1秒でも良
いし、1ポイント毎2秒でも良い。即ち、測定を開始し
て10秒〜2分間、好ましくは30秒〜60秒間に、1
0〜100点、好ましくは30〜60点に亘って得た測
定値を用いると良い。測定可能な範囲は発光または蛍光
反応が進行し初めてから反応が飽和するまでの間、本実
施例では反応開始後30秒〜17分間、であれば構わな
いが、実用的には最小自乗法による各プロットがより直
線に近い有効範囲を設けて、その中からなるべく迅速に
測定できる測定開始時機を選択すればよい。
In the above-described embodiment, the light emission intensity is measured at a unit of 1 point / second, but the present invention is not limited to this, and it may be 0.1 second / point or 2 points / point. Seconds are fine. That is, 1 second within 10 seconds to 2 minutes, preferably 30 seconds to 60 seconds after starting the measurement.
It is advisable to use measured values obtained at 0 to 100 points, preferably 30 to 60 points. The measurable range may be from the beginning of the progress of the luminescence or fluorescence reaction to the saturation of the reaction, in this example, 30 seconds to 17 minutes after the start of the reaction, but it is practically the least squares method. It suffices to provide an effective range in which each plot is closer to a straight line, and select a measurement start time from which measurement can be performed as quickly as possible.

【0035】また、本実施例では抗体を反応容器の内壁
に固相化したが、抗原を固相化して抗体を測定すること
もできる。また、抗原または抗体は、反応容器の内壁に
固相化するに限ることなく、磁性ビーズ、ガラスビ−ズ
若しくはポリスチレンビーズなどの微粒子に抗原または
抗体を固相化して、上述と同様にサンドイッチアッセイ
を行なうこともできる。また、反応容器として、スライ
ド、カラム、フィルター、チューブ等の種々の形態のも
のを使用しても良い。さらに、使用する発光または蛍光
用基質、酵素、洗浄用緩衝液、反応温度、pH、希釈濃
度等は、測定原理等に応じて種々の公知技術(例えば、
生物発光と化学発光、今井、1989年)の測定範囲内
で変更しても本発明と同様の作用効果を奏する。さら
に、発光基質として、ルミノールとp−ヨードフェノー
ルを用いて同様の原理により迅速かつ高感度に測定可能
であることも確認できた。
Further, in this embodiment, the antibody was immobilized on the inner wall of the reaction vessel, but it is also possible to measure the antibody by immobilizing the antigen. Further, the antigen or antibody is not limited to be immobilized on the inner wall of the reaction container, and the antigen or antibody is immobilized on the fine particles such as magnetic beads, glass beads or polystyrene beads, and the sandwich assay is performed in the same manner as described above. You can also do it. Further, as the reaction container, slides, columns, filters, tubes and the like having various forms may be used. Further, the luminescence or fluorescence substrate, enzyme, washing buffer, reaction temperature, pH, dilution concentration, etc. used are various known techniques (for example,
Bioluminescence and chemiluminescence, Imai, 1989), the same effect as the present invention can be obtained even if the change is made within the measurement range. Further, it was confirmed that luminol and p-iodophenol were used as luminescent substrates, and the measurement could be performed quickly and with high sensitivity by the same principle.

【0036】[0036]

【発明の効果】本発明の特異結合反応を利用した生体物
質の測定方法によれば、発光または蛍光の検出強度の経
時変化量に基づいて被測定物質の量を決定するので、酵
素と基質との反応による発光または蛍光の検出強度が飽
和に達するのをまつことなく、被測定物質の定量を行う
ことができる。また、発光または蛍光の検出強度の経時
変化量は、検出強度に含まれるベースが取り除かれてい
るので、バックグランド・ノイズによる影響が少ない。
この結果、高感度かつ短時間で被測定物質の定量を行う
ことができる。さらに、発光または蛍光のピークを発見
する必要がないので、測定を簡単かつ確実に実施でき
る。
According to the method for measuring a biological substance using the specific binding reaction of the present invention, the amount of the substance to be measured is determined based on the amount of change over time in the detection intensity of luminescence or fluorescence. The substance to be measured can be quantified without waiting for the detection intensity of luminescence or fluorescence due to the reaction of 1 to reach saturation. In addition, since the base included in the detected intensity is removed, the amount of change over time in the detected intensity of luminescence or fluorescence is less affected by background noise.
As a result, the substance to be measured can be quantified with high sensitivity and in a short time. Further, since it is not necessary to find the peak of luminescence or fluorescence, the measurement can be carried out easily and surely.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の生体物質の測定方法に用いる化学発
光測定装置の一例を示すブロック図。
FIG. 1 is a block diagram showing an example of a chemiluminescence measuring apparatus used in a method for measuring a biological substance according to this embodiment.

【図2】(A)〜(E)は、本実施例における生体物質
の測定方法におけるサンドイッチアッセイの各工程を夫
々示す工程図。
2 (A) to (E) are process diagrams showing respective steps of a sandwich assay in the method for measuring a biological substance in the present example.

【図3】本実施例の生体物質の測定方法におけるサンプ
ルの発光強度と時間との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the emission intensity of a sample and time in the method for measuring a biological substance according to this example.

【図4】本実施例の生体物質の測定方法におけるアルカ
リフォスファターゼの濃度と時間特性の傾きとの関係に
基づく検量線を示す特性図。
FIG. 4 is a characteristic diagram showing a calibration curve based on the relationship between the concentration of alkaline phosphatase and the slope of the time characteristic in the method for measuring a biological substance of this example.

【図5】本実施例の生体物質の測定方法に従って、各種
濃度のHBs抗原を含むサンプルについて酵素基質反応
開始後30秒ないし60秒間の間に測定した時間特性を
測定した結果を示す図。
FIG. 5 is a diagram showing the results of measuring the time characteristics of samples containing various concentrations of HBs antigens measured 30 seconds to 60 seconds after the initiation of the enzyme substrate reaction according to the method for measuring biological substances of the present example.

【図6】図5と同様の方法に従って、各種濃度のHBs
抗原を含むサンプルについて酵素基質反応開始後30秒
ないし60秒間の間に測定した発光強度を平均した値を
抗原濃度毎にプロットした図。
FIG. 6 shows various concentrations of HBs according to the same method as in FIG.
The figure which plotted the value which averaged the luminescence intensity measured for 30 to 60 seconds after starting an enzyme substrate reaction about the sample containing an antigen for every antigen concentration.

【図7】本実施例の生体物質の測定方法に従って、各種
濃度のHBs抗原を含むサンプルについて酵素基質反応
開始後60秒ないし120秒間の間に測定した時間特性
を測定した結果を示す図。
FIG. 7 is a diagram showing the results of measuring the time characteristics measured for 60 seconds to 120 seconds after the start of the enzyme substrate reaction for samples containing various concentrations of HBs antigen according to the method for measuring a biological substance of this example.

【図8】図7と同様の方法に従って、各種濃度のHBs
抗原を含むサンプルについて酵素基質反応開始後1分後
ないし2分後の間の1秒毎の発光強度を平均した値を抗
原濃度毎にプロットした図。
FIG. 8 shows HBs of various concentrations according to the same method as in FIG.
The figure which plotted the value which averaged the luminescence intensity for every 1 second after 1 to 2 minutes after starting an enzyme substrate reaction about the sample containing an antigen for every antigen concentration.

【図9】特異結合反応を利用した生体物質の測定方法に
おける発光強度と測定時間との関係を示す特性図。
FIG. 9 is a characteristic diagram showing the relationship between luminescence intensity and measurement time in a method for measuring a biological substance using a specific binding reaction.

【符号の説明】[Explanation of symbols]

11…反応容器、12…受光素子、13…増幅器、14
…光子計数管、15…デ−タ処理装置。
11 ... Reaction vessel, 12 ... Light receiving element, 13 ... Amplifier, 14
... Photon counter, 15 ... Data processing device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定物質と前記被測定物質に特異的に
結合しかつ酵素で標識された特異反応物質とを反応させ
た後、前記被測定物質および前記特異反応物質に前記酵
素と反応して発光または蛍光を示す基質を反応させて生
じた発光または蛍光を検出することにより被測定物質を
定量する生体物質の測定方法であって、発光または蛍光
の検出強度の経時変化量に基づいて前記被測定物質を定
量することを特徴とする特異結合反応を利用した生体物
質の測定方法。
1. After reacting a substance to be measured with a specific reaction substance which is specifically bound to the substance to be measured and labeled with an enzyme, the substance to be measured and the specific reaction substance are reacted with the enzyme. A method for measuring a biological substance, which comprises quantifying a substance to be measured by detecting luminescence or fluorescence produced by reacting a substrate exhibiting luminescence or fluorescence, comprising the steps of: A method for measuring a biological substance using a specific binding reaction, which comprises quantifying a substance to be measured.
JP15718693A 1993-06-28 1993-06-28 Bio-substance measuring method utilizing specific bonding reaction Pending JPH0712816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15718693A JPH0712816A (en) 1993-06-28 1993-06-28 Bio-substance measuring method utilizing specific bonding reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15718693A JPH0712816A (en) 1993-06-28 1993-06-28 Bio-substance measuring method utilizing specific bonding reaction

Publications (1)

Publication Number Publication Date
JPH0712816A true JPH0712816A (en) 1995-01-17

Family

ID=15644081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15718693A Pending JPH0712816A (en) 1993-06-28 1993-06-28 Bio-substance measuring method utilizing specific bonding reaction

Country Status (1)

Country Link
JP (1) JPH0712816A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263703A (en) * 2006-03-28 2007-10-11 Casio Comput Co Ltd Imaging apparatus, bio-polymer analyzing chip, development analyzing method of gene and antigen detection method
JP2007263701A (en) * 2006-03-28 2007-10-11 Casio Comput Co Ltd Imaging apparatus, bio-polymer analyzing chip, development analyzing method of gene and antigen detection method
JP2010216982A (en) * 2009-03-17 2010-09-30 Fujifilm Corp Detection method and detection system
JP2015068764A (en) * 2013-09-30 2015-04-13 凸版印刷株式会社 Method for measuring density of analysis object and test strip for lateral flow

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263703A (en) * 2006-03-28 2007-10-11 Casio Comput Co Ltd Imaging apparatus, bio-polymer analyzing chip, development analyzing method of gene and antigen detection method
JP2007263701A (en) * 2006-03-28 2007-10-11 Casio Comput Co Ltd Imaging apparatus, bio-polymer analyzing chip, development analyzing method of gene and antigen detection method
JP2010216982A (en) * 2009-03-17 2010-09-30 Fujifilm Corp Detection method and detection system
JP2015068764A (en) * 2013-09-30 2015-04-13 凸版印刷株式会社 Method for measuring density of analysis object and test strip for lateral flow

Similar Documents

Publication Publication Date Title
US10732111B2 (en) Automated immunoanalyzer system for performing diagnostic assays for allergies and autoimmune diseases
US6087188A (en) Two-site immunoassay for an antibody with chemiluminescent label and biotin bound ligand
JPH11503829A (en) Chemiluminescence immunoassay for antibody detection
WO2022104534A1 (en) Kit for chemiluminescence immunoassay, and preparation method therefor and application thereof
WO2018051965A1 (en) Cardiac troponin assay method and assay reagent
EP2639584A1 (en) Real time diagnostic assays using an evanescence biosensor
JPH10506184A (en) Detergent and simplified drug immunoassays
JP4068148B2 (en) Assay method
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
FI111194B (en) Dual-position immunoassay for an antibody using chemiluminescent chips and biotin-bound ligand
EP0201211A1 (en) Method and compositions for visual solid phase immunoassays based on luminescent microspheric particles
US20170030901A1 (en) Controls for implementing multiplex analysis methods
WO2018047792A1 (en) Method and reagent for measuring thyroglobulin
JPH06109734A (en) Measuring method for antigen
JP2017508993A (en) Methods and devices for analyzing biological specimens
JPH0712816A (en) Bio-substance measuring method utilizing specific bonding reaction
JPH0580052A (en) Apparatus and method for measuring substance in vivo
Ronald et al. The evolution of immunoassay technology
US9551723B2 (en) Liquid reagent of thyroid hormone-immobilized carrier and use thereof
JPH03225277A (en) Immunochemical measuring method for multiple items
RU2545792C2 (en) Method of simultaneous detection of antibodies of class g to antigens of agents of torch-infections using immunochip
JPH11311624A (en) Assay surface enabling analysis material liberation stage
WO2003012026A1 (en) Apparatus and method for determining the onset and presence of sepsis conditions
AU2001280912A1 (en) Apparatus and method for determining the onset and presence of sepsis conditions
JP2003057243A (en) New analytical method of solid phase

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030304