JPH0712785A - Ultrasonic signal processing device - Google Patents

Ultrasonic signal processing device

Info

Publication number
JPH0712785A
JPH0712785A JP5150230A JP15023093A JPH0712785A JP H0712785 A JPH0712785 A JP H0712785A JP 5150230 A JP5150230 A JP 5150230A JP 15023093 A JP15023093 A JP 15023093A JP H0712785 A JPH0712785 A JP H0712785A
Authority
JP
Japan
Prior art keywords
signal
signals
delay
filtering
discretized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150230A
Other languages
Japanese (ja)
Inventor
Yutaka Masuzawa
裕 鱒沢
Ryuichi Shinomura
隆一 篠村
Yuichi Miwa
祐一 三和
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP5150230A priority Critical patent/JPH0712785A/en
Publication of JPH0712785A publication Critical patent/JPH0712785A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the highly precise digital phasing processing of an ultrasonic device at low cost. CONSTITUTION:A device is supplied with an input signal obtainable when a reflected wave having a central angle frequency omega reaches a receiver element having an element number (n) after the elapse of a propagation time taun. Then, when the standardized period of an input signal processing system is Ts and the time taun is quantized with Ts, the phases of the carriers are aligned with each other because of a phase difference due to the time taun among receiver elements, provided that the carriers or waves are made to travel along a time axis having a unit of Ts via delay circuits 11 to 1m. Then, for integrating the waveforms of all receiver elements, complex multipliers 21 to 2m are used to make correction for the phase terms of the carriers. Also, real and complex parts are added in adders 31 and 32, thereby enabling a filter circuit to be used in common via a plurality of input signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波により物体を非
破壊検査する超音波装置、あるいは医療診断に用いる超
音波装置等の信号処理のための装置構成に関し、特に整
相加算の時間精度の向上、濾波器の減少によるコスト低
減等、受信信号処理の数値計算化に適した超音波信号処
理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device configuration for signal processing such as an ultrasonic device for nondestructively inspecting an object by ultrasonic waves, or an ultrasonic device used for medical diagnosis, and more particularly to time accuracy of phasing addition. The present invention relates to an ultrasonic signal processing apparatus suitable for numerical calculation of received signal processing, such as improvement of cost and cost reduction by reducing filter.

【0002】[0002]

【従来の技術】従来の電子走査型超音波受信装置におい
ては、体内等の目標物へ放射された送信音波に起因して
得られる反射波を、配列した受信素子群で受けている。
各受信素子が受ける目標物からの各反射信号は音波の伝
播時間に差があるため、各素子の受信信号に与える遅延
時間を調節して同相としてから積算する必要がある。こ
れによって、各素子の受信信号は強め合い、検波されて
表示装置の輝度信号に変換されることにより、断層像が
得られる。また、目標物以外からの反射に基づく信号
は、各信号の搬送波の位相が異なるために、積算処理時
点で打ち消し合って抑圧される。この場合、従来におい
ては、複数の受信素子により受信した信号の整相を多数
のアナログ遅延回路で行い、これらを加算することによ
り分解能が形成されていたので、広帯域で遅延時間精度
の高いアナログ遅延回路が多数必要であった。しかしな
がら、送受信を行う素子数の増加(例えば、100個程度)
により、積算処理における信号ダイナミックレンジが増
大するため、アナログ素子での整相精度の確保が困難と
なっていた。その結果、複数の受信素子により受信した
信号の整相をディジタル処理で行う必要性が生じてき
た。整相をディジタル処理で行うためには、受信信号を
離散化する必要があるが、その際の標本化時間を単位に
離散受信信号の遅延と加算を行うため、標本化周波数に
対して受信信号の搬送波の周波数が高いと十分な整相精
度が実現できず、かつ動作周波数が高いために消費電力
の大きなアナログーディジタル変換器やディジタル信号
処理系が高価となっていた。これを回避するためには、
受信信号の包絡線を検波により復調した後に、上記標本
化時間を単位とした離散受信信号の遅延と加算を行え
ば、信号中に搬送波が存在する場合に比べて標本化周波
数が低くても十分な整相精度が実現できる。
2. Description of the Related Art In a conventional electronic scanning type ultrasonic wave receiving device, a reflected wave obtained due to a transmitted sound wave radiated to a target such as a body is received by an array of receiving elements.
Since each reflected signal from the target received by each receiving element has a difference in the propagation time of the sound wave, it is necessary to adjust the delay time given to the received signal of each element and integrate them after they are in phase. As a result, the received signals of the respective elements are strengthened, detected, and converted into a luminance signal of the display device, whereby a tomographic image is obtained. Further, the signals based on the reflections from other than the target object are suppressed by canceling each other at the time of the integration processing because the phases of the carrier waves of the respective signals are different. In this case, in the conventional case, since a plurality of analog delay circuits perform phasing of signals received by a plurality of receiving elements and the resolution is formed by adding them, an analog delay with a wide delay time and high accuracy is provided. Many circuits were needed. However, increase in the number of elements that transmit and receive (for example, about 100)
As a result, the signal dynamic range in the integration process increases, making it difficult to secure phasing accuracy in the analog element. As a result, it has become necessary to perform phasing of signals received by a plurality of receiving elements by digital processing. In order to perform phasing by digital processing, it is necessary to discretize the received signal, but since the delay and addition of the discrete received signal are performed with the sampling time at that time as the unit, the received signal with respect to the sampling frequency If the frequency of the carrier wave is high, sufficient phasing accuracy cannot be realized, and since the operating frequency is high, the analog-to-digital converter and the digital signal processing system with large power consumption are expensive. To avoid this,
After demodulating the envelope of the received signal by detection and then adding the delay and addition of the discrete received signal in units of the above sampling time, it is sufficient even if the sampling frequency is low compared to the case where a carrier wave exists in the signal. Achieves excellent phasing accuracy.

【0003】一方、通信分野におけるディジタル信号処
理技術として、既に直交検波として知られる復調方式が
ある。これは受信信号に局部発振による参照波を乗算器
で混合して搬送波周波数を移動し、信号の搬送波を直流
に移動するように変換する復調方法である。以下、この
方法を超音波受信装置に直接適用した場合について、各
受信信号に対する処理を図9を用いて説明する。反射源
から時刻t=0で発生し、中心角周波数がωなる反射波
が素子番号nの受信素子に伝播時間τnの後に到達した場
合に得られる受信信号をSn(t−τn)とすると、 Sn(t−τn)=A(t−τn)[exp{jω(t−τn)} +exp{−jω(t−τn)}] ・・・・・・・・・・・・・・・(1) と近似的に表わすことができる。ここでA(t)は送信
信号の包絡線形状である。この受信信号Snを、図9の
復調装置の入力信号とする。図示しない局部発振器によ
り互いに直交した中心角周波数がωなる正弦波参照信号
203、204を発生させ、これらの参照信号203,204と受信
信号Snとの乗算を乗算器201、202により行う。ここ
で、正弦波参照信号203の位相は反射源での反射波発生
時刻 t=0でδとし、これはすべての素子番号を持つ複
数の受信素子において共通であるとする。受信信号Sn
にこれらの直交した参照信号を乗じた結果、乗算器201,
202に従属接続された低域通過数濾波器71,72の入力Gn
(t)は、参照信号203を乗じた実部と参照信号204を乗
じた虚部とを併せて考えると、次式のように表わされ
る。 Gn(t)=Rn(t-τn)exp{-jω(t+δ)} =A(t-τn)[exp{-jω(τn+δ)} + exp{-jω(2t-τn+δ)}] ・・・・・・・・・・・・・・・(2)
On the other hand, as a digital signal processing technique in the communication field, there is a demodulation method already known as quadrature detection. This is a demodulation method in which a received signal is mixed with a reference wave generated by local oscillation by a multiplier, the carrier frequency is moved, and the carrier of the signal is converted to move to direct current. In the following, when this method is directly applied to the ultrasonic receiving apparatus, the processing for each received signal will be described with reference to FIG. Let Sn (t-τn) be the received signal obtained when the reflected wave generated from the reflection source at time t = 0 and having the central angular frequency ω reaches the receiving element with the element number n after the propagation time τn. Sn (t-τn) = A (t-τn) [exp {jω (t-τn)} + exp {-jω (t-τn)}] ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ( It can be expressed approximately as 1). Here, A (t) is the envelope shape of the transmission signal. This received signal Sn is used as an input signal of the demodulator of FIG. A sine wave reference signal whose central angular frequencies are ω that are orthogonal to each other by a local oscillator (not shown)
203 and 204 are generated, and the reference signals 203 and 204 and the received signal Sn are multiplied by the multipliers 201 and 202. Here, the phase of the sine wave reference signal 203 is δ at the reflected wave generation time t = 0 at the reflection source, which is common to a plurality of receiving elements having all element numbers. Received signal Sn
Is multiplied by these orthogonal reference signals, resulting in a multiplier 201,
Input Gn of low pass filter 71, 72 cascaded to 202
(T) is expressed by the following equation when the real part multiplied by the reference signal 203 and the imaginary part multiplied by the reference signal 204 are considered together. Gn (t) = Rn (t-τn) exp {-jω (t + δ)} = A (t-τn) [exp {-jω (τn + δ)} + exp {-jω (2t-τn + δ )}] ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)

【0004】この信号を低域通過濾波器71、72で濾波す
ることにより、倍周波数成分が十分減衰できたものをFn
(t)とすると、 Fn(t)=A(t−τn)exp{−jω(τn+δ)}・・・・・・・・・・(3) となる。すなわち、(2)式のうちの2項目が十分に低減
される。そして、各受信素子毎にτnは異なるのである
から、(3)式のFn(t)を時間移動する必要がある。受信
信号処理系の標本化周期がTsであり、伝播時間τnをT
sで量子化するとき、 τn = Pn Ts + Qn (Pnは整数、0≦Qn<Ts)・・・・・・・(4) であるとすると、(3)式は、 Fn(t)=A(t-(Pn Ts + Qn)) exp{−jω(Pn Ts + Qn+δ)}・・・(5) となる。例えば、伝播時間のτnをTsで割算したとき3
で、残りがQnであるときには、τnの値は3Ts+Qnであ
る。離散化された信号処理系では、標本化周期Tsを単
位とした時間軸上での移動が容易に可能であり、図9の
遅延手段1rおよび1iを用いて(5)式の時刻tをt+Pn
Tsに置き換える遅延処理を行ったものをF'n(t)とす
れば、 F'n(t)=A(t− Qn)exp{−jω(Pn Ts + Qn+δ)}・・・・(6) を得る。(6)式より明らかなように、伝播時間τnに起因
する位相項Unは次式となる。 Un =exp{−jω(Pn Ts + Qn +δ)}・・・・・・・・・・・ (7) (7)式の値は受信素子毎に異なるために、これを所定の
位相にそろえた後に全ての受信素子の波形を積算する処
理が必要である。ここで、音速を一定とすると、受信の
焦点を仮定したときのτnは既知であるから、 U'n =exp{jω(Pn Ts + Qn)}・・・・・・・・・・・・・・(7a) を(6)式に乗じる処理を行う。この結果をHn(t)とする
と、 Hn(t)=A(t- Qn) exp{-jω(Pn Ts + Qn+δ)}exp{jω(Pn Ts + Qn)} =A(t- Qn) exp{−jωδ}・・・・・・・・・・・・・・・・・(8) となるので全ての受信素子の信号の搬送波の位相差を同
相に揃えることが可能になる。
By filtering this signal with the low-pass filters 71 and 72, the signal whose double frequency component has been sufficiently attenuated is Fn.
If (t), then Fn (t) = A (t−τn) exp {−jω (τn + δ)} (3). That is, two items in the equation (2) are sufficiently reduced. Since τn is different for each receiving element, it is necessary to move Fn (t) in equation (3) with time. The sampling period of the received signal processing system is Ts, and the propagation time τn is T
When quantized by s, τn = Pn Ts + Qn (where Pn is an integer, 0 ≤ Qn <Ts) (4), the equation (3) becomes Fn (t) = A (t- (Pn Ts + Qn)) exp {-jω (Pn Ts + Qn + δ)} (5) For example, when the propagation time τn is divided by Ts, 3
Then, when the rest is Qn, the value of τn is 3Ts + Qn. In the discretized signal processing system, it is possible to easily move on the time axis with the sampling period Ts as a unit, and the time t in equation (5) is t + Pn using the delay means 1r and 1i in FIG.
Letting F'n (t) be the delayed one replaced with Ts, F'n (t) = A (t-Qn) exp {-jω (PnTs + Qn + δ)} ... Get (6). As is clear from the equation (6), the phase term Un caused by the propagation time τn is given by the following equation. Un = exp {-jω (Pn Ts + Qn + δ)} ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (7) Since the value of Eq. (7) is different for each receiving element, set it to a predetermined phase. It is necessary to perform a process of integrating the waveforms of all the receiving elements after the alignment. Here, assuming that the sound velocity is constant, τn when the focus of reception is assumed is known, so U'n = exp {jω (PnTs + Qn)} ...・ ・ The processing of multiplying (7a) by equation (6) is performed. If this result is Hn (t), Hn (t) = A (t-Qn) exp {-jω (Pn Ts + Qn + δ)} exp {jω (Pn Ts + Qn)} = A (t-Qn ) exp {-jωδ} (8), it becomes possible to make the phase difference of the carrier waves of the signals of all receiving elements in-phase.

【0005】このUn'を乗ずる操作は、図9に示す複素
乗算器Cにより実現される。複素乗算器Cでは、実部と
虚部を有する信号に複素数の定数を乗ずる操作を実現す
るので、位相値θは、次のようになる。 θ=ω(Pn Ts + Qn)=ωτn ・・・・・・・・・・・・・・・(9) この位相θの正弦値と余弦値を保持する回路41〜44,乗
算器51〜54,および加算器61,62が必要である。加算器6
1,62の実部出力Rnと虚部出力Inは、同時に実時間処理
するように並設された同じ構成の実部出力(R1,R2,・・・
Rn-1,Rn+1, ・・・)と虚部出力(I1,I2,・・・In-1,In+
1, ・・・)が共に同時加算されて、一対の実部出力と虚部
出力になる。この一対の出力の二乗和の平方根を求める
回路を、図9に示す装置部分の後に接続することによっ
て(例えば、図2の81参照)、整相加算された包絡線
A(t)が求められる。加算器61,62の実部出力Rnと虚
部出力Inの出力として、検波された包絡線A(t-Qn)に
は時間誤差Qnが残留するが、一般に包絡線A(t)の時間
長は時間量子化誤差Qnに比べて十分に長いので、信号に
搬送波を持たせたまま標本化時間を単位に時間移動して
整相加算する場合に比べて著しい改善効果が得られる。
なお、この種の装置として関連する文献には、例えば、
特許第1333370号、米国特許第4140022号
の各明細書がある。
This operation of multiplying by Un 'is realized by the complex multiplier C shown in FIG. Since the complex multiplier C realizes an operation of multiplying a signal having a real part and an imaginary part by a complex constant, the phase value θ is as follows. θ = ω (Pn Ts + Qn) = ωτn (9) Circuits 41 to 44 for holding the sine value and cosine value of this phase θ, multiplier 51 to 54, and adders 61, 62 are required. Adder 6
The real part output Rn and the imaginary part output In of 1,62 are real part outputs (R1, R2, ...
Rn-1, Rn + 1, ...) And imaginary part output (I1, I2, ... In-1, In +
1, ...) are added together to form a pair of real part output and imaginary part output. By connecting the circuit for obtaining the square root of the sum of squares of the pair of outputs after the device portion shown in FIG. 9 (for example, see 81 in FIG. 2), the envelope A (t) obtained by phasing is obtained. . As outputs of the real part output Rn and the imaginary part output In of the adders 61 and 62, a time error Qn remains in the detected envelope A (t-Qn), but generally the time length of the envelope A (t) is Is sufficiently longer than the time quantization error Qn, so that a significant improvement effect can be obtained as compared with the case where the signal has a carrier and is time-shifted in units of sampling time to perform phasing addition.
Note that documents related to this type of device include, for example,
There are specifications of Japanese Patent No. 1333370 and US Patent No. 4140022.

【0006】[0006]

【発明が解決しようとする課題】上述のような検波方法
では、実部、虚部を受け持つ各乗算器51〜54の直後に、
乗算により発生する倍周波信号帯の濾波を目的とした低
域通過濾波器が必要になる。通常はこの濾波器に厳しい
遮断特性と阻止域での減衰特性が要求されるため、同時
に100個程度の受信信号を実時間並列処理する超音波受
信信号処理装置においては大きな回路規模増大を招くこ
とになり、結局は実現困難であった。また、反射源が受
信素子に近接していたり、あるいは受信素子の配列の空
間的幅が大きな条件となっている場合には、上記時間軸
上での移動の際に、非常に長い時間幅の信号を保持する
手段が必要になるという問題があった。本発明の目的
は、このような従来の課題を解決し、整相加算の時間精
度を大幅に向上できるとともに、低周波濾波器の数を減
少させて、コストの低減を図ることが可能な超音波信号
処理装置を提供することにある。
In the detection method as described above, immediately after each of the multipliers 51 to 54 which are in charge of the real part and the imaginary part,
A low pass filter for filtering the double frequency signal band generated by multiplication is required. Normally, this filter is required to have strict cutoff characteristics and attenuation characteristics in the stopband, which may cause a large increase in circuit scale in an ultrasonic reception signal processing apparatus that processes about 100 reception signals in parallel in real time. It was difficult to realize in the end. In addition, when the reflection source is close to the receiving element or the spatial width of the array of receiving elements is a large condition, when moving on the time axis, a very long time width There is a problem that a means for holding the signal is needed. An object of the present invention is to solve the conventional problems as described above, to significantly improve the time accuracy of phasing addition, and to reduce the number of low-frequency filters to reduce the cost. An object is to provide a sound wave signal processing device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の超音波信号処理装置は、(イ)複数の反射
超音波を各々電気的受信信号に変換して、整相加算する
信号処理装置において、連続時間信号である受信信号の
振幅を量子化して所定の標本化時間での離散化受信信号
とする手段と、離散化受信信号を標本化時間を単位に遅
延させる手段(図1の11〜1m)と、遅延手段(11〜
1m)により遅延された離散化受信信号と標本化時間で離
散化され互いに直交する二つの参照信号とを乗算する手
段(21〜2m)と、乗算手段(21〜2m)によって得られる複数
の二系統の信号を加算する手段(31,32)と,加算手段(3
1,32)により得られた信号の高周波数成分を濾波する手
段(71,72)と、濾波手段(71,72)の出力をもとに信号の振
幅を求める手段(81)とを、少なくとも備えるものであ
る。また、本発明の超音波信号処理装置は、(ロ)遅延手
段(図2の11〜1m)により遅延された離散化受信信号
と、標本化時間で離散化されかつ各々の受信信号に対応
して異なる位相を有し、互いに位相が直交する二つの正
弦波参照信号との乗算を並列して行う手段(21a〜2ma)
と、各々の受信信号の乗算手段(21a〜2ma)が出力する二
つの直交信号各成分それぞれを全て加算する手段(31a,3
2a)と、加算手段(31a,32a)に従属接続し、信号の高周
波数成分を濾波により除去する手段(71,72)と、濾波手
段(71,72)の出力をもとに信号の振幅を求める手段(81)
とを、少なくとも備えるものである。
In order to achieve the above object, an ultrasonic signal processing apparatus according to the present invention comprises: (a) a signal for converting a plurality of reflected ultrasonic waves into electric reception signals and performing phasing addition. In the processing device, means for quantizing the amplitude of the received signal which is a continuous time signal to obtain a discretized received signal at a predetermined sampling time, and means for delaying the discretized received signal in units of sampling time (FIG. 1). 11 to 1 m) and delay means (11 to 1 m)
1m) means for multiplying the discretized received signal delayed by (1m) and two reference signals discretized at the sampling time and orthogonal to each other, and a plurality of two means obtained by the multiplying means (21-2m). Means (31, 32) for adding signals of the system and addition means (3
1,32) means (71, 72) for filtering the high frequency component of the signal obtained, and means (81) for obtaining the amplitude of the signal based on the output of the filtering means (71, 72), at least Be prepared. Further, the ultrasonic signal processing apparatus of the present invention corresponds to (b) the discretized received signal delayed by the delay means (11 to 1 m in FIG. 2) and the discretized received signal at each sampling time. Means for performing parallel multiplication with two sinusoidal reference signals having different phases and mutually orthogonal phases (21a to 2ma)
And a means (31a, 3a) for adding all the components of each of the two orthogonal signals output by the multiplication means (21a to 2ma) of each received signal.
2a) and means (31a, 32a) connected subordinately to remove high frequency components of the signal by filtering (71, 72) and the amplitude of the signal based on the output of the filtering means (71, 72). Means for seeking (81)
And at least.

【0008】また、本発明の超音波信号処理装置は、
(ハ)各受信信号の乗算手段が出力する二つの直交信号各
成分それぞれを入力として、標本化時間を単位に遅延さ
せる1つ以上の遅延手段群(図3の1p+1〜1p+q)と、遅
延手段(1p+1〜1p+q)の出力を加算して受信信号数を減少
させる手段(91p,92p)とを対とした手段(図4のP1,P2)
を少なくとも一対従属接続することにより、順次遅延と
加算を繰り返して一組の直交信号各成分とする手段(DL
1,2,ADR1,2)と、加算手段(ADR2)に従属接続し、直交信
号の高周波数成分を濾波により除去する手段(71,72)
と、濾波手段(71,72)の出力をもとに信号の振幅を求め
る手段(81)とを、少なくとも備えるものである。また、
本発明の超音波信号処理装置は、(ニ)遅延手段(図5
の11〜1m)により遅延された離散化受信信号と、各々の
離散化受信信号に対応して異なる二つの定数値との乗算
を並列して行う手段(21〜2n)と、乗算手段(21〜2n)が
出力する二つの信号それぞれを各々の受信信号につき全
て加算する手段(31,32)と、加算手段(31,32)により得ら
れた二つの信号それぞれに、標本化時間で離散化されか
つ互いに位相が直交する二つの正弦波参照信号との乗算
を並列して信号の周波数移動を行う手段(Cm)と、加
算手段(31,32)に従属接続し、周波数移動手段(Cm)が
出力する二つの直交信号各成分の高周波数成分を濾波に
より除去する手段(71,72)と、濾波手段(71,72)の出力を
もとに信号の振幅を求める手段(81)とを、少なくとも備
えるものである。また、本発明の超音波信号処理装置
は、(ホ)離散化受信信号に対応して異なる二つの定数
値との乗算を並列して行う手段が出力する二つの信号そ
れぞれを入力として、上記標本化時間を単位に遅延させ
る1つ以上の遅延手段群(図6の1p+1〜1p+q)と遅延手
段の出力を加算して受信信号数を減少させる手段(2p+1
〜2p+q)とを対とした手段(図7のP1,P2)を少なくとも一
対従属接続することにより順次遅延と加算を繰り返して
一組の信号各成分とする手段(DL1,ADR1)と、一組の信号
のそれぞれに、上記標本化時間で離散化されかつ互いに
位相が直交する二つの正弦波参照信号との乗算を並列し
て信号の周波数移動を行う手段(41〜44,51〜54)と、加
算手段(61,62)に従属接続し、周波数移動手段が出力す
る二つの直交信号各成分の高周波数成分を濾波により除
去する手段(71,72)と、濾波手段の出力をもとに信号の
振幅を求める手段(81)とを少なくとも備えるものであ
る。
Further, the ultrasonic signal processing device of the present invention is
(C) One or more delay means groups (1p + 1 to 1p + q in FIG. 3) for delaying the sampling time as a unit by inputting each of the two orthogonal signal components output from the multiplication means of each received signal And a means (91p, 92p) for adding the outputs of the delay means (1p + 1 to 1p + q) to reduce the number of received signals (P1, P2 in FIG. 4).
By connecting at least one pair of two and connecting them sequentially, the means for repeating the sequential delay and addition to form each set of orthogonal signal components (DL
(1,2, ADR1,2) and means for subordinate connection to the adding means (ADR2) to remove high frequency components of the quadrature signal by filtering (71,72)
And a means (81) for obtaining the amplitude of the signal based on the outputs of the filtering means (71, 72). Also,
The ultrasonic signal processing device according to the present invention includes (d) delay means (see FIG. 5).
11-1 m) of the discretized received signal, and a means (21-2n) for parallel multiplication of two different constant values corresponding to each discretized received signal, and a multiplication means (21 To 2n) output means for adding each of the two signals for each received signal (31, 32) and the two signals obtained by the adding means (31, 32) are discretized at the sampling time. Means (Cm) for parallelly multiplying two sinusoidal reference signals which are orthogonal to each other in phase with each other and frequency-moving the signal (Cm), and the adder means (31, 32) in a cascade connection. The means (71, 72) for removing the high-frequency component of each of the two orthogonal signal components output by the filter and the means (81) for obtaining the amplitude of the signal based on the output of the filtering means (71, 72). , At least equipped. Further, the ultrasonic signal processing device of the present invention uses (e) each of the two signals output by the means for performing parallel multiplication with two different constant values corresponding to the discretized received signal as input, Means (2p + 1) for reducing the number of received signals by adding the output of one or more delay means groups (1p + 1 to 1p + q in FIG. 6) for delaying the conversion time as a unit
~ 2p + q) pair means (P1, P2 in FIG. 7) are connected in cascade to form a pair of signal components by sequentially repeating delay and addition (DL1, ADR1), Means (41 to 44, 51 to 54) for performing a frequency shift of the signals in parallel by multiplying each of the pair of signals by two sinusoidal reference signals which are discretized at the sampling time and whose phases are orthogonal to each other. ), And means for removing high frequency components of each of the two orthogonal signal components output by the frequency shifting means by filtering (71, 72) in a cascade connection to the adding means (61, 62), and the output of the filtering means. And at least a means (81) for obtaining the amplitude of the signal.

【0009】[0009]

【作用】本発明においては、(イ)標本化された各受信素
子の受信信号は、時間軸上で移動したのちに直交検波さ
れる。これにより、受信信号の搬送波周波数と参照波信
号の周波数が厳密に一致した場合には、受信信号は包絡
線信号と二倍周波数の搬送波を有した信号になるため、
二倍周波数の搬送波を有した信号成分を減衰させる濾波
器(71,72)により包絡線信号が取り出される(図1参
照)。包絡線信号の時間長は時間量子化誤差Qnに比べて
十分長いので、信号に搬送波を持たせたまま整相加算す
る場合に比べて著しい改善効果が得られる。また、(ロ)
遅延された離散化受信信号と、標本化時間で離散化され
かつ各々の受信信号に対応して異なる遅延時間に対応し
た位相を有し、互いに位相が直交する二つの正弦波参照
信号との乗算を並列して行う手段(21a〜2ma)により周
波数混合が行われる。乗算手段が出力する二つの直交信
号各成分それぞれを全て加算する手段(31a,32a)によ
り、信号の高周波数成分を濾波により除去する手段(71,
72)への入力は、一対の直交信号だけに減少し、複数の
受信信号それぞれに二倍周波数の搬送波を有した信号成
分を減衰させる濾波器を備える必要が無くなる(図2参
照)。
In the present invention, (a) the sampled received signals of the respective receiving elements are subjected to quadrature detection after moving on the time axis. As a result, when the carrier frequency of the received signal and the frequency of the reference wave signal are exactly the same, the received signal becomes a signal having an envelope signal and a carrier of double frequency.
An envelope signal is taken out by a filter (71, 72) that attenuates a signal component having a carrier of double frequency (see FIG. 1). Since the time length of the envelope signal is sufficiently longer than the time quantization error Qn, a significant improvement effect can be obtained as compared with the case where phasing addition is performed with the carrier having the signal. Also, (b)
Multiplying the delayed discretized received signal with two sinusoidal reference signals that are discretized at the sampling time and have phases corresponding to different delay times corresponding to the respective received signals and whose phases are orthogonal to each other Frequency mixing is performed by means (21a to 2ma) for performing the above in parallel. Means for removing all high frequency components of the signal by means of adding (31a, 32a) all of the two orthogonal signal components respectively output by the multiplying means (71,
The input to 72) is reduced to only a pair of quadrature signals, eliminating the need for a filter to attenuate the signal components having a carrier of doubled frequency in each of the plurality of received signals (see FIG. 2).

【0010】また、(ハ)複数の受信信号それぞれに二
倍周波数の搬送波を有した信号成分を減衰させる濾波器
を備える必要が無くなるのみならず、複数の受信信号を
群に分割して各群内での遅延時間の差を小さくするため
に、遅延を実現する手段(71,72)において、保持すべ
き受信信号の全長が短くできる。このことにより、各受
信信号の遅延手段を同一仕様の手段で実現する場合に、
その規模を低減できる(図3,図4参照)。また、
(ニ)遅延された離散化受信信号と、標本化時間で離散
化されかつ各々の受信信号に対応して異なる遅延時間に
対応した位相を有し、互いに位相が直交する二つの直流
参照信号、即ち一対の定数との乗算を並列して行う手段
(21〜2n)により周波数混合の際の参照波と受信信号の搬
送波との位相差の補正が前以て行われる。乗算手段(21
〜2n)が出力する二つの直交した補正信号の各成分それ
ぞれを全て加算する手段(31,32)によって、受信信号と
参照波信号の周波数混合演算とそれに引き続く高周波数
成分を濾波により除去する手段(71,72)への入力は、一
対の直交信号だけに減少し、複数の受信信号それぞれに
二倍周波数の搬送波を有した信号成分を減衰させる濾波
器を備える必要が無くなる。搬送波との位相差の補正が
あらかじめ行われることにより、前記(ロ)(ハ)に比べて
複数の受信信号それぞれに対応して異なる位相の正弦波
参照信号を形成する必要が無いので、実現手段の規模減
少が図れる(図5参照)。さらに、(ホ)前記の(ニ)
と同じように、複数の受信信号それぞれに二倍周波数の
搬送波を有した信号成分を減衰させる濾波器と異なる位
相の正弦波参照信号を備える必要が無くなるのみなら
ず、複数の受信信号を群に分割して各群内での遅延時間
の差を小さくするために、遅延を実現する手段(DL1,2)
において、保持すべき受信信号の全長が短くできる(図
6、図7参照)。このことにより、各受信信号の遅延手
段(DL1,2)を同一仕様の手段で実現する場合に、その規
模を低減できる。
Further, (c) not only is it unnecessary to provide a filter for attenuating a signal component having a carrier having a doubled frequency for each of the plurality of received signals, but also the plurality of received signals are divided into groups and each group is divided into groups. In order to reduce the difference in the delay time within, the means (71, 72) for realizing the delay can shorten the total length of the received signal to be held. As a result, when the delay means for each received signal is realized by means of the same specifications,
The scale can be reduced (see FIGS. 3 and 4). Also,
(D) a delayed discretized reception signal, and two DC reference signals that are discretized in sampling time and have phases corresponding to different delay times corresponding to the respective reception signals, and the phases are orthogonal to each other, That is, means for performing multiplication with a pair of constants in parallel
By (21 to 2n), the phase difference between the reference wave and the carrier wave of the received signal at the time of frequency mixing is corrected in advance. Multiplication means (21
~ 2n) means for adding all the respective components of the two orthogonal correction signals output by (31, 32), means for frequency mixing operation of the received signal and the reference wave signal, and means for removing subsequent high frequency components by filtering The input to (71, 72) is reduced to only a pair of quadrature signals, eliminating the need for a filter to attenuate the signal component having a carrier of double frequency in each of the plurality of received signals. Since the phase difference with the carrier wave is corrected in advance, it is not necessary to form sinusoidal reference signals having different phases corresponding to each of a plurality of received signals as compared with the above (b) and (c). Can be reduced (see Fig. 5). Furthermore, (e) above (d)
In the same way as the above, it is not only necessary to provide a sinusoidal reference signal having a different phase from a filter that attenuates a signal component having a carrier of a double frequency in each of a plurality of received signals, A means to realize delay in order to reduce the difference in delay time within each group by dividing (DL1, 2)
In, the total length of the received signal to be held can be shortened (see FIGS. 6 and 7). As a result, when the delay means (DL1, 2) for each received signal are realized by means having the same specifications, the scale can be reduced.

【0011】[0011]

【実施例】以下、本発明の実施例を、図面により詳細に
説明する。図1は、本発明の第1の実施例(請求項1に
相当)を示す超音波信号処理装置の要部ブロック図であ
る。超音波放射素子から被検体に向って放射することに
より、反射源から時刻 t=0で発生し、中心角周波数が
ωなる反射波が素子番号nの受信素子に対して伝播時間
τnの後に到達した場合、受信素子で得られる受信信号
Sn(t-τn)は下式(10)で近似的に表される。 Sn(t-τn)=A(t-τn)[exp{jω(t-τn)}+exp{-jω(t-τn)}] ・・・・・・・・・・・・・・・・・・・(10) ここでA(t)は、送信信号の包絡線である。この受信信
号Snを、図1の処理装置の各入力とする。ただし1≦n
≦mである。受信信号処理系の標本化周期がTsであり、
伝播時間τnをTsで量子化すると、 τn = Pn Ts + Qn (Pnは整数、0≦Qn<Ts) (11) であるとする。これにより前式(10)は、 Sn(t)=A(t-(Pn Ts + Qn))[exp{jω(t-Pn Ts- Qn)} +exp{-jω(t-Pn Ts- Qn)}]・・・・・・・(12) となる。標本化周期Tsを単位とした時間軸上での移動
を遅延手段11〜1mで行うと、式(12)の時刻tをt+Pn
Tsに置き換えることに相当し、これをdn(t)とする
と、次式(13)が得られる。 dn(t)=A(t-Qn)[exp{jω(t−Qn)}+exp{-jω(t-Qn)}] =A(t-Qn)[exp{jωt}exp{-jωQn}+exp{-jωt}exp{jωQn}] ・・・・・・・・・・・・・・・・・・(13) 前式(13)より明らかなように、伝播時間τnに起因する
位相項exp{±jωQn}が受信素子毎に異なるために、少
なくともこれら搬送波の位相をそろえた後に、全ての受
信素子の波形を積算する処理が必要である。そこで、複
素乗算器21〜2mを用いることにより、搬送波位相項の補
正を行う処理が必要になる。これは、図9における複素
乗算器Cの処理と同じである。複素乗算器21〜2mで参照
する信号は、各受信信号毎に異なる位相差−ωQnと共通
となる位相項α(t)からなる値、すなわち下式(14)の
項を含んでいる。 φn = α(t) −ωQn ・・・・・・・・・・・・・・・(14) 上式(14)の項を含み、かつ位相が互いに直交する一対
の正弦波信号を参照波として混合するものである。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram of essential parts of an ultrasonic signal processing apparatus showing a first embodiment (corresponding to claim 1) of the present invention. By radiating from the ultrasonic radiating element toward the subject, the reflected wave generated from the reflection source at time t = 0 and having the central angular frequency ω reaches the receiving element with the element number n after the propagation time τn. In that case, the received signal Sn (t-τn) obtained by the receiving element is approximately represented by the following equation (10). Sn (t-τn) = A (t-τn) [exp {jω (t-τn)} + exp {-jω (t-τn)}] (10) where A (t) is the envelope of the transmission signal. The received signal Sn is used as each input of the processing device of FIG. However, 1 ≦ n
≦ m. The sampling period of the received signal processing system is Ts,
When the propagation time τn is quantized by Ts, τn = PnTs + Qn (Pn is an integer, 0 ≦ Qn <Ts) (11). As a result, the previous equation (10) becomes Sn (t) = A (t- (Pn Ts + Qn)) [exp {jω (t-Pn Ts-Qn)} + exp {-jω (t-Pn Ts-Qn) }] ... ・ (12). If the delay means 11 to 1m move on the time axis in units of the sampling period Ts, the time t in the equation (12) is t + Pn.
Corresponding to the replacement with Ts, and letting this be dn (t), the following equation (13) is obtained. dn (t) = A (t-Qn) [exp {jω (t-Qn)} + exp {-jω (t-Qn)}] = A (t-Qn) [exp {jωt} exp {-jωQn} + exp {-jωt} exp {jωQn}] ·········· (13) As is clear from the previous equation (13), the phase term exp due to the propagation time τn Since {± jωQn} is different for each receiving element, it is necessary to perform processing to integrate the waveforms of all the receiving elements at least after aligning the phases of these carrier waves. Therefore, by using the complex multipliers 21 to 2m, it is necessary to perform a process of correcting the carrier wave phase term. This is the same as the processing of the complex multiplier C in FIG. The signals referred to by the complex multipliers 21 to 2m include a value consisting of a phase term α (t) that is common to the phase difference −ωQn that differs for each received signal, that is, a term of the following expression (14). φn = α (t) − ωQn ······················· (14) A pair of sinusoidal signals that include the term of the above equation (14) and whose phases are orthogonal to each other Are mixed as.

【0012】以下、参照波信号を下式(15)とし、複号
の負号をとる。 ref(t)= exp{±jφn} = exp{±j(α(t) −ωQn)}・・・・・・ (15) 遅延された受信信号dn(t)を乗算器21〜2mで混合した
結果の信号Mn(t)は、次のようになる。 Mn(t)=dn(t) ref(t) =A(t-Qn)[exp{jωt}exp{-jωQn}+exp{-jωt}exp{jωQn}] × exp{-j(α(t)−ωQn)} =A(t-Qn)[exp{j(ωt-α(t))} + exp{-j(ωt+α(t))}exp{2jω Qn}] =A(t-Qn)β(t) + A(t-Qn)γn(t)・・・・・・・・ (16) ただし、β(t)、γ(t)は、それぞれ下式で表わされ
る。 β(t)=exp{j(ωt−α(t))} ・・・・・・・・・・・・・・ (17) γn (t)=exp{-j(ωt+α(t))}exp{2jω Qn}・・・・・・・・・(18) 前式(16)において、二つの信号成分がその搬送波に時間
量子化誤差Qnを含む項A(t− Qn)γn(t)と、含まな
い項A(t− Qn)β(t)に分離される。各受信信号に
対応したMn(t)を加算器31,32により加算すれば、異な
る2種の信号帯のそれぞれで加算されることになる。そ
して、加算器31,32以降に従属して接続され、時間量子
化誤差Qnを搬送波に含む項A(t−Qn)γn(t)の信号
帯を減衰させる図示しない濾波器によれば、時間精度の
高い整相加算が実現される。すなわち、後述の図2に示
すように、加算器31,32の後に濾波器71,72および二乗和
平方根演算器81を接続すればよい。
Hereinafter, the reference wave signal is represented by the following expression (15), and the negative sign of the compound sign is taken. ref (t) = exp {± jφn} = exp {± j (α (t) −ωQn)} ··· (15) The delayed received signal dn (t) is mixed by the multipliers 21 to 2m. The resulting signal Mn (t) is as follows. Mn (t) = dn (t) ref (t) = A (t-Qn) [exp {jωt} exp {-jωQn} + exp {-jωt} exp {jωQn}] × exp {-j (α (t) −ωQn)} = A (t-Qn) [exp {j (ωt-α (t))} + exp {-j (ωt + α (t))} exp {2jωQn}] = A (t-Qn) β (t) + A (t-Qn) γn (t) (16) However, β (t) and γ (t) are represented by the following equations, respectively. β (t) = exp {j (ωt−α (t))} ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (17) γn (t) = exp {-j (ωt + α (t))} exp {2jω Qn} ... (18) In the above equation (16), the term A (t−Qn) γn (t) in which the two signal components include the time quantization error Qn in the carrier. And the term A (t−Qn) β (t) that does not include is separated. If Mn (t) corresponding to each received signal is added by the adders 31 and 32, it is added in each of two different types of signal bands. Then, according to a filter (not shown) connected subordinately after the adders 31 and 32 and attenuating the signal band of the term A (t−Qn) γn (t) including the time quantization error Qn in the carrier wave, Accurate phasing addition is realized. That is, as shown in FIG. 2, which will be described later, the adders 31 and 32 may be followed by the filters 71 and 72 and the square sum square root calculator 81.

【0013】図2は、本発明の第2の実施例(請求項2
に相当)を示す超音波信号処理装置のブロック図であ
る。図1の構成では、複素乗算器21〜2mが受信信号毎に
異なる位相の補正のみを行っていたが、図2の構成で
は、複素乗算器21a〜2maを用いて受信信号毎に異なる
位相の補正と周波数移動を兼ねる処理を同時に行う。反
射源から時刻 t=0で発生し、中心角周波数がωなる反
射波が素子番号nの受信素子に伝播時間τnの後に到達し
た場合に得られる受信信号は、前述のように、標本化周
期Tsを単位とした時間軸上での移動を遅延手段11〜1m
で行うと、前式(13)のdnで表される。複素乗算器21a
〜2maで参照する信号の位相を決定するとき、前式(14)
において、 α(t) = ωt+δ (δは定数項)・・・・・・・・・ (19a) とすれば、下式(14a)で示すような各受信信号毎に異な
る位相が得られる。 φn=ωt+δ−ωQn ・・・・・・・・・・・・・・・・・・・(14a) この位相とこれに直交する位相の一対の正弦波信号を参
照波として周波数混合を行うものである。以下、参照波
信号を下式(15a)とし、複号の負号をとる。 ref(t)= exp{±jφn} = exp{±j(ωt +δ −ωQn)}・・・・・・・・・(15a) 遅延された受信信号dn(t)を乗算器21a〜2maで周波
数混合した結果の信号Mn(t)は、下式(16a)のようにな
る。 Mn(t)=dn(t) ref(t) =A(t− Qn)[exp{jωt} exp{−jωQn} + exp{−jωt} exp{jω Qn}]exp{−j(ωt+δ −ωQn)} =A(t-Qn)[exp{−jδ}+exp{-jω(2t+δ+2Qn)}] ・・・・・・・・・・・・・・・・(16a) 上式(16a)において、二つの信号成分が検波された包絡
線成分A(t− Qn) exp{−jδ}と、その搬送波に時間量
子化誤差Qnを含む項A(t-Qn)exp{-jω(2t+δ+2Q
n)}に分離される。各受信信号に対応したMn(t)を加
算器31,32により加算すれば、異なる2種の信号帯のそ
れぞれで加算されることになる。加算器31,32以降に従
属して構成される低周波通過濾波器71,72は、時間量子
化誤差Qnを搬送波に含む項の信号帯を減衰させるととも
に、包絡線信号帯が存在する目的の低周波成分を積分効
果により増強する。濾波器71,72の出力として得られる
複素信号B(t)は、下式(17)のように表される。 B(t) = A'(t) exp{−jδ}・・・・・・・・・・・・・・(17) ここで、A'(t)は原信号の包絡線A(t)の定数倍で精
度良く近似される。また、式(17)の位相項 exp{−jδ}
が残るので、振幅絶対値を算出する演算器81により、実
数包絡線に変換した後に、検波を完了する。
FIG. 2 shows a second embodiment of the present invention (claim 2).
Is a block diagram of an ultrasonic signal processing device. In the configuration of FIG. 1, the complex multipliers 21 to 2m perform only the correction of the different phase for each received signal, but in the configuration of FIG. 2, the complex multipliers 21a to 2m are used to correct the different phase of each received signal. A process that combines both correction and frequency shift is performed at the same time. The received signal obtained when the reflected wave generated from the reflection source at time t = 0 and having the central angular frequency ω reaches the receiving element with the element number n after the propagation time τn is, as described above, the sampling period. Movement on the time axis in units of Ts delay means 11 to 1 m
When the above is performed, it is represented by dn in the previous equation (13). Complex multiplier 21a
When determining the phase of the signal to be referenced with ~ 2 ma, use the previous equation (14)
In the above, if α (t) = ωt + δ (δ is a constant term) ... (19a), a different phase is obtained for each received signal as shown in the following equation (14a). φn = ωt + δ−ωQn ・ ・ ・ ・ ・ ・ (14a) Frequency mixing using a pair of sinusoidal signals of this phase and the phase orthogonal to this as a reference wave. Is. Hereinafter, the reference wave signal is expressed by the following equation (15a) and the negative sign of the compound sign is taken. ref (t) = exp {± jφn} = exp {± j (ωt + δ−ωQn)} ... (15a) The delayed received signal dn (t) is multiplied by the multipliers 21a to 2ma. The signal Mn (t) resulting from the frequency mixing is expressed by the following equation (16a). Mn (t) = dn (t) ref (t) = A (t−Qn) [exp {jωt} exp {−jωQn} + exp {−jωt} exp {jωQn}] exp {−j (ωt + δ−ωQn )} = A (t-Qn) [exp {-jδ} + exp {-jω (2t + δ + 2Qn)}] (16a) In the above equation (16a), An envelope component A (t-Qn) exp {-jδ} in which two signal components are detected and a term A (t-Qn) exp {-jω (2t + δ + 2Q including the time quantization error Qn in the carrier.
n)}. If Mn (t) corresponding to each received signal is added by the adders 31 and 32, it is added in each of two different types of signal bands. The low-frequency pass filters 71 and 72, which are configured as subordinates to the adders 31 and 32 and thereafter, attenuate the signal band of the term including the time quantization error Qn in the carrier wave, and have the purpose that the envelope signal band exists. The low frequency component is enhanced by the integration effect. The complex signal B (t) obtained as the outputs of the filters 71 and 72 is expressed by the following equation (17). B (t) = A '(t) exp {-jδ} ... (17) where A' (t) is the envelope A (t) of the original signal. It is approximated accurately by a constant multiple of. Also, the phase term exp {−jδ} in Eq. (17)
Therefore, the detection is completed after the arithmetic unit 81 for calculating the absolute value of the amplitude converts it into a real number envelope.

【0014】図3,図4および図10は、本発明の第3
の実施例(請求項3に相当)を示す超音波信号処理装置
のブロック図、およびその特性図である。図10では、
時間量子化された受信信号群を時間移動により整相する
概念を表している。ここで、格子の横軸は標本化時間T
Sを単位とした時間、縦軸は受信素子の空間的配列順序
に沿った受信信号の番号である。格子上に描かれた2つ
の弧F1,F2は異なる2焦点に関して整相加算すべき各
信号の時間軸上での位置を概念的に例示したものであ
る。所定の焦点に合わせて決まる曲線F2に対応した標
本化信号は、図中の黒丸で示した格子点を全て整相加算
する為に、標本化時間を単位に時間軸上の移動を行う操
作が必要である。信号S1〜Smの全てについて同一規
模、同一構成の遅延回路で時間軸上の移動を標本化点V
に揃えて行う為には、時間T1の間の標本化信号値全て
に対応して信号値を保持する回路が必要になる。一方、
この時間軸移動を複数回に分けて行うことも可能であ
る。例えば図10のように受信信号群を分割群N1〜N3
に分け、各分割群の中で整相加算を行ない、さらに加算
されたものを時間移動して最終的に一つに加算する構成
が考えられる。このようにすると、N1、N3に属する受
信信号群は、時間軸移動幅T2に、N2に属する信号群
は時間軸移動幅T3で済ますことができる。群の中で整
相加算を行うことにより、2回目以降の時間軸上移動に
必要な信号値保持回路の規模は減少する。このような遅
延操作の分割は、何段で実現してもよい。上記遅延回路
の規模低減の原理を、本発明の第2の実施例(請求項
2)の構成に適用した場合を開示したのが、第3の実施
例(請求項3)である。遅延操作の分割を3段で実現し
た場合について、図3と図4を用いてさらに詳しく説明
する。
FIGS. 3, 4 and 10 show a third embodiment of the present invention.
FIG. 4 is a block diagram of an ultrasonic signal processing apparatus showing an embodiment (corresponding to claim 3) of FIG. In FIG.
It represents the concept of phasing the time-quantized received signal group by time shift. Here, the horizontal axis of the lattice is the sampling time T
The time in units of S, the vertical axis is the number of the received signal in the spatial arrangement order of the receiving elements. The two arcs F1 and F2 drawn on the grid conceptually illustrate the position on the time axis of each signal to be phased and added with respect to two different focal points. The sampling signal corresponding to the curve F2 determined in accordance with a predetermined focus is phased and added to all the lattice points indicated by black circles in the figure, and therefore the operation of moving on the time axis in units of sampling time is performed. is necessary. For all of the signals S1 to Sm, movement on the time axis is sampled at the sampling point V by the delay circuits of the same scale and the same configuration
In order to carry out all of the sampling signal values during the time T1, a circuit for holding the signal values corresponding to all the sampled signal values is required. on the other hand,
It is also possible to divide this time axis movement into a plurality of times. For example, as shown in FIG. 10, the received signal group is divided into divided groups N1 to N3.
It is conceivable to perform a phasing addition in each divided group, further move the added ones in time, and finally add them to one. By doing so, the received signal groups belonging to N1 and N3 can be processed in the time axis movement width T2, and the signal groups belonging to N2 can be processed in the time axis movement width T3. By performing the phasing addition in the group, the scale of the signal value holding circuit necessary for the second and subsequent movements on the time axis is reduced. Such division of the delay operation may be realized in any number of stages. A third embodiment (claim 3) discloses a case where the principle of reducing the scale of the delay circuit is applied to the configuration of the second embodiment (claim 2) of the present invention. The case where the division of the delay operation is realized in three stages will be described in more detail with reference to FIGS. 3 and 4.

【0015】図3では、基本的に図2の装置における入
力から加算器31a,32aの出力までの部分と同じ原理の
構成を示している。また、図4の構成は、受信信号総数
mのうち受信素子番号p+1〜p+qに対して所望の遅延時間
分布を適用して整相するものであるために、遅延回路1
p+1〜1p+qが保持する受信信号値の時間長が減少してい
る。遅延回路1p+1〜1p+qと図示しないその制御回路に
より標本化時間単位に遅延された信号値dp+1〜dp+q
は、複素乗算器2p+1〜2p+qにより各受信信号に対応す
る遅延時間を位相に加味した参照波信号と周波数混合が
行われる。この複素乗算器の構成は、図8(a)で示され
る。複素乗算器の出力の実部Rp+1〜Rp+qと虚部Ip+1
〜Ip+qはそれぞれに加算器91p,92pにより加算され、一
対の出力Ap1, Ap2に纏められる。このように、部分的に
周波数混合と加算が行われる回路全体を複数並列したも
のが、図4のP1〜Puに相当する。P1〜Puは、それぞ
れ受信信号群をN1〜Nuづつ纏めて処理を行うものであ
る。P1〜Puの実部、虚部の加算出力は、それぞれ独立
に標本化時間を遅延時間単位とした遅延回路群DL1で
遅延され、加算器群 ADR1で加算されることにより総
信号数が減少する。これらを再び遅延回路群DL2と加
算器群ADR2で遅延、加算することにより、低域通過
濾波器71,72への一対の入力となる。低域通過濾波器71,
72は、周波数混合により生成した搬送波が倍周波数の信
号帯を減衰させると共に、目的とする低周波成分を積分
効果により増強する。この低域通過濾波器71,72の出力
は、所定の位相の包絡線信号の実部と虚部であるから、
二乗和平方根をとる演算回路81により実数の包絡線信号
を得る。このように、順次小さな時間幅での遅延操作と
部分的な加算操作を複数段に分割して行う操作は、図4
のように3段に分けて行う場合に限定されず、2段以上
の任意の段数で構成できるのは勿論である。
FIG. 3 basically shows the configuration of the same principle as the portion from the input to the outputs of the adders 31a and 32a in the apparatus of FIG. In addition, the configuration of FIG.
Since a desired delay time distribution is applied to the receiving element numbers p + 1 to p + q out of m to perform phasing, the delay circuit 1
The time length of the received signal value held by p + 1 to 1p + q decreases. Signal values dp + 1 to dp + q delayed in sampling time units by the delay circuits 1p + 1 to 1p + q and its control circuit (not shown).
Is subjected to frequency mixing with the reference wave signal in which the delay time corresponding to each received signal is added to the phase by the complex multipliers 2p + 1 to 2p + q. The structure of this complex multiplier is shown in FIG. The real part Rp + 1 to Rp + q and the imaginary part Ip + 1 of the output of the complex multiplier
~ Ip + q are added by adders 91p and 92p, respectively, and are combined into a pair of outputs Ap1 and Ap2. As described above, a plurality of circuits in which frequency mixing and addition are partially performed in parallel are equivalent to P1 to Pu in FIG. P1 to Pu collectively process the received signal groups N1 to Nu, respectively. The addition outputs of the real part and the imaginary part of P1 to Pu are independently delayed by the delay circuit group DL1 whose sampling time is a delay time unit, and added by the adder group ADR1 to reduce the total number of signals. . These are again delayed and added by the delay circuit group DL2 and the adder group ADR2, and become a pair of inputs to the low-pass filters 71 and 72. Low pass filter 71,
In No. 72, the carrier wave generated by the frequency mixing attenuates the signal band of the double frequency, and enhances the target low frequency component by the integration effect. The outputs of the low-pass filters 71 and 72 are the real part and the imaginary part of the envelope signal of a predetermined phase,
An arithmetic circuit 81 which takes the square root of the square sum obtains a real envelope signal. As described above, the operation of sequentially performing the delay operation and the partial addition operation in a small time width by dividing them into a plurality of stages is shown in FIG.
As described above, the present invention is not limited to the case of performing the operation in three steps, and it is needless to say that the operation can be performed in any number of steps of two or more.

【0016】図5は、本発明の第4の実施例(請求項4
に相当)を示す超音波信号処理装置のブロック図であ
る。図5の構成は、図1の構成において複素乗算器21〜
2mを用いて受信信号毎に異なる位相の補正を優先的に行
う構成である。すなわち、図9における乗算器201,202
の乗算を、図5では乗算器Cmで行い、図9における乗
算器Cの乗算を、図5では乗算器21〜2nで行っている。
なお、図9の遅延回路1r,1iは、図5では遅延回路
11〜1mに移動されている。反射源から時刻 t=0で
発生し、中心角周波数がωなる反射波が素子番号nの受
信素子に伝播時間τnの後に到達した場合に得られる受
信信号は、標本化周期Tsを単位とした時間軸上での移
動を遅延回路11〜1mで行うと、前式(13)のdnで表され
る。複素乗算器21〜2mで参照する信号の位相を決定する
とき、前式(14)において、 α(t) = 0 ・・・・・・・・・・・・(19b) とすれば、各受信信号毎に異なる位相 φn = −ωQn ・・・・・・・・・・・・・(14b) が得られる。この位相とこれに直交する位相の一対の正
弦波信号値を係数として位相補正を行うものである。以
下、位相補正係数を下式(15b)のように定め、複号の負
号とする。 cor(t)= exp{±jφn} = exp{±j( −ωQn)}・・・・・・(15b) 遅延された受信信号dn(t)を乗算器21〜2mで位相補正
した結果の信号Kn(t)は、下式(16b)となる。 Kn(t)=dn(t) cor(t) =A(t− Qn)[exp{jωt} exp{−jωQn} + exp{−jωt} exp{jω Qn}]exp{j ωQn} =A(t− Qn)[exp{ jωt} + exp{−jω(t−2Qn)}] ・・・・・・・・・・・・・・・・・(16b) この場合の乗算器は、図8(b)で示される構成であり、
一つの実数入力に対し実部と虚部の2出力を有するもの
である。上式(16b)において、二つの信号成分がその搬
送波に時間量子化誤差Qnを含む項と含まない項に分離さ
れる。各受信信号に対応したKn(t)を加算器31,32によ
り加算すれば、異なる2種の信号帯のそれぞれで加算さ
れる。
FIG. 5 shows a fourth embodiment of the present invention (claim 4).
Is a block diagram of an ultrasonic signal processing device. The configuration of FIG. 5 is similar to the configuration of FIG.
The configuration is such that the phase different for each received signal is preferentially corrected using 2 m. That is, the multipliers 201 and 202 in FIG.
5 is performed by the multiplier Cm in FIG. 5, and the multiplication of the multiplier C in FIG. 9 is performed by the multipliers 21 to 2n in FIG.
The delay circuits 1r and 1i in FIG. 9 have been moved to the delay circuits 11 to 1m in FIG. The reception signal obtained when the reflection wave generated from the reflection source at time t = 0 and having the central angular frequency ω reaches the reception element with the element number n after the propagation time τn has the sampling period Ts as a unit. When the movement on the time axis is performed by the delay circuits 11 to 1m, it is represented by dn in the previous equation (13). When determining the phase of the signal to be referred to by the complex multipliers 21 to 2m, in the above equation (14), if α (t) = 0 ... The phase φn = −ωQn, which is different for each received signal, is obtained (14b). Phase correction is performed using a pair of sinusoidal signal values of this phase and a phase orthogonal to this phase as coefficients. Hereinafter, the phase correction coefficient is defined as shown in the following expression (15b), and the negative sign of the compound sign is used. cor (t) = exp {± jφn} = exp {± j (-ωQn)} ... (15b) The result of phase correction of the delayed received signal dn (t) by the multipliers 21 to 2m The signal Kn (t) is given by the following expression (16b). Kn (t) = dn (t) cor (t) = A (t−Qn) [exp {jωt} exp {−jωQn} + exp {−jωt} exp {jωQn}] exp {jωQn} = A ( t−Qn) [exp {jωt} + exp {−jω (t−2Qn)}] (16b) The multiplier in this case is as shown in FIG. It is the configuration shown in (b),
It has two outputs of a real part and an imaginary part for one real number input. In the above equation (16b), the two signal components are separated into a term including the time quantization error Qn in the carrier and a term not including the time quantization error Qn. If Kn (t) corresponding to each received signal is added by the adders 31 and 32, it is added in each of two different signal bands.

【0017】加算器31,32により得られる信号L(t)
は、次のように近似できる。 L(t)=A'(t) exp{ jωt}+D(t)exp{−jω(t−ε)}・・・・・・(20) ここで、A'(t)は原信号の包絡線A(t)の定数倍で精
度良く近似される。L(t)の第2項D(t)exp{−jω
(t−ε)}は、包絡線と搬送波のいずれにも時間量子化
誤差Qnを含んだまま加算されるもので、その包絡線D
(t)が原信号の包絡線A(t)を近似する度合いはA'
(t)の場合に比べて著しく悪い。また、εは加算により
決まる定数である。加算器31,32以降に従属して構成さ
れる複素乗算器Cmは、直交正弦波信号を用いて複素信
号L(t)を周波数移動するもので、L(t)の第一項成分
の搬送波を直流へ、第二項成分の搬送波周波数を二倍す
るものである。乗算器Cmの入力となる参照信号ref
(t)は、次式(15a)で示されるものとする。 ref(t)= exp{−j(ωt +δ )}・・・・・・・・・・・・(15a) 加算器31,32の出力信号L(t) と参照信号ref(t)を乗
算器51〜54で周波数混合した結果、得られる出力M'(t)
は、下式(21)となる。 M'(t)=B(t) ref(t) =[A'(t) exp{ jωt} + D(t)exp{−jω(t−ε)}] × exp{−j(ωt +δ )} =A'(t)exp{−jδ}+D(t)exp{−jω(2t−ε+δ)}] ・・・・・・・・・・・・・・・(21) 低周波通過濾波器71,72は、M'(t)の第二項の信号帯を
減衰させ、第一項の信号帯を保存する。濾波器71,72の
出力として得られる複素信号B(t)は、下式(17b)のよ
うに表される。 B(t) = A'(t) exp{−jδ}・・・・・・・・・・・・・・・(17b) ここで(17b)の位相項 exp{−jδ}が残るので、振幅絶対
値を算出する演算回路81により、実数包絡線に変換した
後、検波を完了する。
The signal L (t) obtained by the adders 31 and 32
Can be approximated as follows. L (t) = A '(t) exp {jωt} + D (t) exp {-jω (t-ε)} (20) where A' (t) is the envelope of the original signal. The line A (t) is multiplied by a constant and is approximated with high precision. The second term of L (t) D (t) exp {−jω
(t−ε)} is added with the time quantization error Qn included in both the envelope and the carrier, and the envelope D
The degree to which (t) approximates the envelope A (t) of the original signal is A ′
Remarkably worse than the case of (t). Further, ε is a constant determined by addition. The complex multiplier Cm, which is configured as a subordinate of the adders 31 and 32 and thereafter, shifts the frequency of the complex signal L (t) by using a quadrature sine wave signal, and is a carrier wave of the first term component of L (t). To DC and double the carrier frequency of the second term component. Reference signal ref that is input to the multiplier Cm
(t) is represented by the following equation (15a). ref (t) = exp {-j (ωt + δ)} ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (15a) The output signals L (t) of the adders 31 and 32 are multiplied by the reference signal ref (t). Output M '(t) obtained as a result of frequency mixing in the devices 51 to 54
Becomes the following formula (21). M '(t) = B (t) ref (t) = [A' (t) exp {jωt} + D (t) exp {-jω (t-ε)}] × exp {-j (ωt + δ) } = A '(t) exp {-jδ} + D (t) exp {-jω (2t-ε + δ)}] ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (21) Low-frequency pass filter 71 and 72 attenuate the signal band of the second term of M '(t) and preserve the signal band of the first term. The complex signal B (t) obtained as the outputs of the filters 71 and 72 is expressed by the following equation (17b). B (t) = A '(t) exp {−jδ} ... (17b) Since the phase term exp {−jδ} of (17b) remains, The arithmetic circuit 81 for calculating the absolute value of the amplitude completes the detection after converting it into the real number envelope.

【0018】図6および図7は、本発明の第5の実施例
(請求項5に相当)を示す超音波信号処理装置のブロッ
ク図である。第3の実施例(請求項3)では、その原理
を説明するために、図10を用いて示したが、第5の実
施例(請求項5)においても、図10の原理を用いて遅
延回路による時間軸移動を複数回に分けて行うことによ
り、必要な信号値保持回路の規模を減少させることがで
きる。図6と図7を用いて、さらに詳しく説明する。図
6では、基本的に図5の入力から加算器31,32の出力ま
での部分と同原理の構成を持つ。すなわち、図6の構成
は、受信信号総数mのうち受信素子番号p+1〜p+qに対し
て所望の遅延時間分布を適用して整相するため、遅延回
路1p+1〜1p+qのが保持する受信信号値の時間長が減少
している。遅延回路1p+1〜1p+qと図示しないその制御
回路により、標本化時間単位に遅延された信号値dp+1
〜dp+qは、複素乗算器2p+1〜2p+qにより各受信信号
に対応する遅延時間に基づく位相補正が行われる。この
複素乗算器の構成は、図8(b)で示される。複素乗算器2
p+1〜2p+qの出力の実部Rp+1〜Rp+qと虚部Ip+1〜Ip+
qは、それぞれに加算器91p,92pにより加算され、一対の
出力Ap1, Ap2に纏められる。このように、部分的に位相
補正が行われる回路全体を複数並列したものが、図7の
P1〜Pmに相当する。P1〜Pmは、それぞれ受信信号群
をN1〜Nmづつ纏めて処理を行うものである。P1〜Pm
の実部、虚部の加算出力は、それぞれ独立に標本化時間
を遅延時間単位とした遅延回路群DL1で遅延され,加算
器群 ADR1で加算されることにより総信号数を減少さ
せる。これらを再び遅延回路群DL2と加算器群ADR2
で遅延、加算することにより、周波数移動のための乗算
器群51〜54の入力となる。周波数移動のための乗算は、
複素信号間の乗算処理であるので4個の乗算器を出力の
加算の和および差を取るための加算器61,62が必要であ
る。この加算器出力対は、一対の低域通過濾波器71,72
への入力となる。低域通過濾波器71,72は、周波数混合
により生成した搬送波が倍周波数の信号帯を減衰させ
る。低域通過濾波器71,72は、所定の位相の包絡線信号
の実部と虚部であるから、二乗和平方根をとる演算器81
により実数の包絡線信号を得る。
6 and 7 are block diagrams of an ultrasonic signal processing apparatus showing a fifth embodiment (corresponding to claim 5) of the present invention. In the third embodiment (Claim 3), the principle is shown in FIG. 10 for explaining the principle, but in the fifth embodiment (Claim 5), the delay using the principle of FIG. 10 is also used. The required scale of the signal value holding circuit can be reduced by dividing the time axis movement by the circuit into a plurality of times. This will be described in more detail with reference to FIGS. 6 and 7. FIG. 6 basically has a configuration of the same principle as the part from the input of FIG. 5 to the outputs of the adders 31 and 32. That is, in the configuration of FIG. 6, since a desired delay time distribution is applied to the reception element numbers p + 1 to p + q out of the total number m of reception signals to perform phasing, the delay circuits 1p + 1 to 1p + q. The time length of the received signal value held by is reduced. The signal values dp + 1 delayed by the sampling time unit by the delay circuits 1p + 1 to 1p + q and its control circuit (not shown).
.About.dp + q are phase-corrected by the complex multipliers 2p + 1 to 2p + q based on the delay time corresponding to each received signal. The structure of this complex multiplier is shown in FIG. Complex multiplier 2
Real parts Rp + 1 to Rp + q and imaginary parts Ip + 1 to Ip + of outputs of p + 1 to 2p + q
The q's are respectively added by adders 91p, 92p, and are combined into a pair of outputs Ap1, Ap2. As described above, a plurality of parallel circuits, each of which is partially phase-corrected, correspond to P1 to Pm in FIG. P1 to Pm are for grouping the received signal groups N1 to Nm, respectively, and performing the processing. P1 ~ Pm
The addition outputs of the real part and the imaginary part are delayed by the delay circuit group DL1 in which the sampling time is a delay time unit independently and added by the adder group ADR1 to reduce the total number of signals. These are again added to the delay circuit group DL2 and the adder group ADR2.
By delaying and adding at, it becomes an input of the multiplier groups 51 to 54 for frequency shifting. The multiplication for frequency shifting is
Since this is a multiplication process between complex signals, four multipliers are required to have adders 61 and 62 for obtaining the sum and difference of the addition of outputs. This adder output pair is a pair of low pass filters 71 and 72.
Will be input to. The low-pass filters 71 and 72 attenuate the signal band in which the carrier wave generated by frequency mixing has a double frequency. Since the low-pass filters 71 and 72 are the real part and the imaginary part of the envelope signal of a predetermined phase, the arithmetic unit 81 that takes the square sum of squares
To obtain a real envelope signal.

【0019】図1〜7の構成において、遅延回路11〜
1m,1p+1〜1p+qは、RAM(Random AccessMemory)やFIFO
(Fast In- Fast Out)メモリなどを用いて実現すること
ができ、複素乗算器21〜2m,2p+1〜2p+q は、図8(a),
(b)のように一つの実数入力に対し新たな実部と虚部の
信号出力を発生する一対の乗算器201,202で実現でき
る。乗算器201,202へ入力される参照信号203〜 206は、
互いに位相が直交した正弦波信号であり、たとえばRAM
やROM(Read Only Memory)などの記憶回路から標本化時
間毎に順次読み出したものを用いても良い。図8(a)の
乗算を行う構成である第2および第3の実施例(請求項
2、3)の構成においては、その参照信号生成に演算処
理を設けてもよい。すなわち、各受信素子の乗算に用い
る位相値は(14a)で示されるが、各受信信号に共通な搬
送波成分ωt+δを発生する図示しない回路と、各受信
信号に固有な位相補正成分ωQnを発生する図示しない
回路と、それらを加算する図示しない回路とを、別々に
設けて発生させることもできる。これにより、搬送波成
分の位相δがいかなる値であっても、所望の周波数移動
が達成できる利点がある。加算器31,32は、並列入力さ
れる信号を累加式あるいはトーナメント式に加算するも
のである。また、低周波通過濾波器71,72は、多くの構
成が考えられるが、濾波時の遅延特性が直線位相特性を
有する点でFIR(有限インパルス応答)フィルタが望まし
い。図11は、FIRフィルタで低周波通過濾波器71,72を
構成した例を示す構成図である。フィルタはトランスバ
−サルフィルタであり、単位遅延701で区切られた連続
した5個の信号値に係数が可変の乗算器7021〜7025を掛
け合わせたものの総和を加算器703でとるものである。
この構成により、信号値の積分が実行され、信号のS/N
が改善される。例えば係数a1〜a5が全て1の時、その
周波数特性は標本化周波数fs = 1/Tsをもって関数(sin
x)/xを折り返した特性となる。関数(sinx)/xの零点はfs
/ 5ごとに存在し、周波数が零の直流から見て、第一零
点の周波数迄に包絡線信号の大部分のパワーが含まれる
ようにする。なお、図11はタップ数5点の構成を示し
たが、点数は任意に構成することができ、また、係数値
も可変のみならず固定としてもよいことは勿論である。
In the configuration shown in FIGS. 1 to 7, the delay circuits 11 to
1m and 1p + 1 to 1p + q are RAM (Random Access Memory) and FIFO
(Fast In-Fast Out) memory or the like, and the complex multipliers 21 to 2m, 2p + 1 to 2p + q are shown in FIG.
This can be realized by a pair of multipliers 201 and 202 that generate new real part and imaginary part signal outputs for one real number input as shown in (b). The reference signals 203 to 206 input to the multipliers 201 and 202 are
A sine wave signal whose phases are orthogonal to each other, such as RAM
A memory circuit such as a ROM or a read only memory (ROM) that is sequentially read at each sampling time may be used. In the configurations of the second and third embodiments (claims 2 and 3) which are the configurations for performing the multiplication in FIG. 8A, the reference signal generation may be provided with arithmetic processing. That is, although the phase value used for multiplication of each reception element is shown by (14a), a circuit (not shown) that generates a carrier component ωt + δ common to each reception signal and a phase correction component ωQn unique to each reception signal are generated. A circuit (not shown) and a circuit (not shown) for adding them may be separately provided and generated. Thereby, there is an advantage that a desired frequency shift can be achieved regardless of the value of the phase δ of the carrier wave component. The adders 31 and 32 add signals input in parallel to a cumulative expression or a tournament expression. The low-frequency pass filters 71 and 72 may have many configurations, but a FIR (finite impulse response) filter is preferable in that the delay characteristic at the time of filtering has a linear phase characteristic. FIG. 11 is a configuration diagram showing an example in which the low frequency pass filters 71 and 72 are configured by FIR filters. The filter is a transversal filter, and the adder 703 obtains the total sum of five consecutive signal values divided by the unit delay 701 and multiplied by multipliers 7021 to 7025 having variable coefficients.
With this configuration, signal value integration is performed, and the signal S / N
Is improved. For example, when the coefficients a1 to a5 are all 1, the frequency characteristic has a sampling frequency fs = 1 / Ts and a function (sin
x) / x is a folded property. The zero of the function (sinx) / x is fs
It exists every / 5 and it sees from the direct current of zero frequency, and it is made to contain most of the power of the envelope signal by the frequency of the first zero point. Although FIG. 11 shows the configuration with five taps, the number of taps can be arbitrarily configured, and the coefficient values may be fixed instead of being variable.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
中心周波数の高い超音波信号をディジタル処理で低周波
へ移動し、整相処理することによって、整相加算の時間
精度を大幅に向上させることができる。つまり、信号に
搬送波を持たせたまま標本化時間を単位に時間移動して
整相加算する場合に比べて、著しい改善効果が得られ
る。また、周波数移動のための周波数混合演算の後に必
要になる低域通過濾波器の個数を2個に減少させること
ができるので、コストの低減が図れる。さらに、遅延回
路を実現するために必要となる信号値保持回路の規模を
低減できるので、コストの低減が図れる。
As described above, according to the present invention,
By moving an ultrasonic signal having a high center frequency to a low frequency by digital processing and performing a phasing process, it is possible to greatly improve the time accuracy of phasing addition. In other words, a significant improvement effect can be obtained as compared with the case where the signal has a carrier wave and is time-shifted in units of sampling time to perform phasing addition. Further, the number of low-pass filters required after the frequency mixing operation for frequency shifting can be reduced to two, so that the cost can be reduced. Further, the scale of the signal value holding circuit required to realize the delay circuit can be reduced, so that the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す超音波信号処理装
置の基本構成図である。
FIG. 1 is a basic configuration diagram of an ultrasonic signal processing apparatus showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す超音波信号処理装
置の構成図である。
FIG. 2 is a configuration diagram of an ultrasonic signal processing apparatus showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す部分的な周波数混
合、位相補正部の構成図である。
FIG. 3 is a configuration diagram of a partial frequency mixing / phase correction unit showing a third embodiment of the present invention.

【図4】図3の要部回路を含めて構成した本発明の第3
の実施例を示す超音波信号処理装置全体の構成図であ
る。
4 is a third embodiment of the present invention configured to include the main circuit of FIG. 3;
FIG. 3 is a configuration diagram of the entire ultrasonic signal processing apparatus showing the embodiment of FIG.

【図5】本発明の第4の実施例を示す超音波信号処理装
置の構成図である。
FIG. 5 is a configuration diagram of an ultrasonic signal processing apparatus showing a fourth embodiment of the present invention.

【図6】本発明の第5の実施例を示す部分的な位相補正
部の構成図である。
FIG. 6 is a configuration diagram of a partial phase correction unit showing a fifth embodiment of the present invention.

【図7】図6の要部回路を含めて構成した本発明の第5
の実施例を示す超音波信号処理装置全体の構成図であ
る。
7 is a fifth embodiment of the present invention configured to include the main circuit of FIG. 6;
FIG. 3 is a configuration diagram of the entire ultrasonic signal processing apparatus showing the embodiment of FIG.

【図8】本発明の超音波信号処理装置に使用される複素
乗算部の構成図である。
FIG. 8 is a configuration diagram of a complex multiplication unit used in the ultrasonic signal processing device of the present invention.

【図9】従来のディジタル復調処理構成を、超音波信号
処理に適用した場合の構成図である。
FIG. 9 is a configuration diagram when a conventional digital demodulation processing configuration is applied to ultrasonic signal processing.

【図10】本発明の実施例における遅延操作の分割化を
示す特性図である。
FIG. 10 is a characteristic diagram showing division of a delay operation according to the embodiment of the present invention.

【図11】本発明に使用される低周波通過濾波器の構成
例を示す図である。
FIG. 11 is a diagram showing a configuration example of a low-frequency pass filter used in the present invention.

【符号の説明】[Explanation of symbols]

S1〜Sm、Sp+1〜Sp+q 離散化受信信号 R1〜Rm、Rp+1〜Rp+q 複素信号実部 I1〜Im、Ip+1〜Ip+q 複素信号実部 11〜1m, 1p+1〜1p+q、1r,1i,701 遅延回路 21〜2m, 2p+1〜2p+q 複素乗算器 31,32,61,62,91,92,91p,92p,703 加算器 51〜54,7021〜7025 乗算器 41〜44 参照信号 71、72 低域通過濾波器 81 二乗和平方根演算器、あるいは発生器 DL1,DL2 遅延回路群 ADR1,ADR2 加算器群 P1〜Pu 複素乗算器および加算器 S1 to Sm, Sp + 1 to Sp + q Discretized reception signals R1 to Rm, Rp + 1 to Rp + q Complex signal real part I1 to Im, Ip + 1 to Ip + q Complex signal real part 11 to 1m, 1p +1 to 1p + q, 1r, 1i, 701 Delay circuit 21 to 2m, 2p + 1 to 2p + q Complex multiplier 31,32,61,62,91,92,91p, 92p, 703 Adder 51 to 54 , 7021 to 7025 Multiplier 41 to 44 Reference signal 71, 72 Low pass filter 81 Square sum square root calculator or generator DL1, DL2 Delay circuit group ADR1, ADR2 Adder group P1 to Pu Complex multiplier and adder

フロントページの続き (72)発明者 片倉 景義 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Kageyoshi Katayoshi 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の反射超音波を各々電気的受信信号
に変換した後、整相加算する超音波信号処理装置におい
て、連続時間信号である該受信信号の振幅を量子化して
所定の標本化時間での離散化受信信号にする離散化手段
と、該離散化受信信号を該標本化時間単位に遅延させる
遅延手段と、該遅延手段により遅延された離散化受信信
号と該標本化時間で離散化され互いに位相が直交する参
照信号とを乗算する乗算手段と,該乗算手段によって得
られる複数の二系統の信号を加算する加算手段と,該加
算手段により得られた信号の高周波数成分を濾波して減
衰させる濾波手段と,該濾波手段の出力をもとに信号の
振幅を求める演算手段とを少なくとも具備したことを特
徴とする超音波信号処理装置。
1. An ultrasonic signal processing apparatus for converting a plurality of reflected ultrasonic waves into electrical reception signals and then performing phasing addition, quantizing the amplitude of the reception signals which are continuous time signals and performing predetermined sampling. Discretizing means for making the discretized received signal in time, delay means for delaying the discretized received signal in units of the sampling time, discretized received signal delayed by the delay means, and discrete for the sampling time Means for multiplying the converted reference signals whose phases are orthogonal to each other, adding means for adding the signals of the two systems obtained by the multiplying means, and filtering the high frequency components of the signals obtained by the adding means. An ultrasonic signal processing apparatus comprising at least a filtering means for attenuating and attenuating means, and a computing means for obtaining an amplitude of a signal based on an output of the filtering means.
【請求項2】 請求項1の超音波信号処理装置におい
て、上記遅延手段により遅延された離散化受信信号と、
上記標本化時間で離散化されかつ各々の受信信号に対応
して異なる位相を有し、互いに位相が直交する二つの正
弦波参照信号との乗算を並列して行う乗算手段と、各々
の受信信号の該乗算手段が出力する二つの直交信号各成
分それぞれを全て加算する加算手段と、該加算手段によ
り得られた信号の高周波数成分を濾波により減衰させる
濾波手段と、該濾波手段の出力をもとに信号の振幅を求
める演算手段とを少なくとも具備したことを特徴とする
超音波信号処理装置。
2. The ultrasonic signal processing device according to claim 1, wherein the discretized reception signal delayed by the delay means,
Multiplying means for performing parallel multiplication with two sine wave reference signals which are discretized at the sampling time and have different phases corresponding to the respective received signals and whose phases are orthogonal to each other, and the respective received signals. The addition means for adding all of the two orthogonal signal components output from the multiplication means, the filtering means for attenuating the high frequency components of the signal obtained by the addition means by filtering, and the output of the filtering means. An ultrasonic signal processing device comprising at least an arithmetic means for obtaining a signal amplitude.
【請求項3】 請求項2の超音波信号処理装置におい
て、上記各受信信号の乗算手段が出力する二つの直交信
号各成分それぞれを入力として、上記標本化時間を単位
に遅延させる1つ以上の遅延手段群と、該遅延手段の出
力を加算して受信信号数を減少させる加算手段とを対と
した組合せ手段を少なくとも一対従属接続することによ
り、順次遅延と加算を繰り返して一組の直交信号各成分
とする手段と、該直交信号の高周波数成分を濾波により
減衰させる濾波手段と、該濾波手段の出力をもとに信号
の振幅を求める演算手段とを少なくとも具備したことを
特徴とする超音波信号処理装置。
3. The ultrasonic signal processing device according to claim 2, wherein each of the two orthogonal signal components output by the multiplication means of each received signal is input, and one or more delay units are provided to delay the sampling time as a unit. At least one pair of combination means, which is a pair of delay means group and addition means for adding the outputs of the delay means to reduce the number of received signals, are connected in cascade, thereby sequentially delaying and adding and repeating a set of orthogonal signals. At least a means for making each component, a filtering means for attenuating a high frequency component of the quadrature signal by filtering, and an arithmetic means for obtaining the amplitude of the signal based on the output of the filtering means are provided. Sound wave signal processing device.
【請求項4】 請求項1の超音波信号処理装置におい
て、上記遅延手段により遅延された離散化受信信号と、
各々の離散化受信信号に対応して異なる二つの定数値と
の乗算を並列して行う乗算手段と、該乗算手段が出力す
る二つの信号それぞれを各々の受信信号につき全て加算
する加算手段と、該加算手段により得られた二つの信号
それぞれに、上記標本化時間で離散化されかつ互いに位
相が直交する二つの正弦波参照信号との乗算を並列して
信号の周波数移動を行う周波数移動手段と、該周波数移
動手段が出力する二つの直交信号各成分の高周波数成分
を濾波により減衰させる濾波手段と、該濾波手段の出力
をもとに信号の振幅を求める演算手段とを少なくとも具
備したことを特徴とする超音波信号処理装置。
4. The ultrasonic signal processing device according to claim 1, wherein the discretized reception signal delayed by the delay means,
Multiplying means for performing parallel multiplication with two different constant values corresponding to the respective discretized received signals, and adding means for adding all of the two signals output by the multiplying means for each received signal, Frequency shifting means for shifting the frequency of the signals in parallel by multiplying each of the two signals obtained by the adding means with two sinusoidal reference signals that are discretized at the sampling time and have mutually orthogonal phases. And at least a filtering means for attenuating a high frequency component of each of the two quadrature signal components output by the frequency shifting means by filtering, and a computing means for obtaining the amplitude of the signal based on the output of the filtering means. Characteristic ultrasonic signal processing device.
【請求項5】 請求項4の超音波信号処理装置におい
て、上記離散化受信信号に対応して異なる二つの定数値
との乗算を並列して行う乗算手段が出力する二つの信号
それぞれを入力として、上記標本化時間を単位に遅延さ
せる1つ以上の遅延手段群と該遅延手段の出力を加算し
て受信信号数を減少させる加算手段とを対とした手段
を、少なくとも一対従属接続することにより順次遅延と
加算を繰り返して一組の信号各成分とする手段と、該一
組の信号のそれぞれに、上記標本化時間で離散化されか
つ互いに位相が直交する二つの正弦波参照信号との乗算
を並列して信号の周波数移動を行う周波数移動手段と、
該周波数移動手段が出力する二つの直交信号各成分の高
周波数成分を濾波により減衰させる濾波手段と、該濾波
手段の出力をもとに信号の振幅を求める演算手段とを少
なくとも具備したことを特徴とする超音波信号処理装
置。
5. The ultrasonic signal processing apparatus according to claim 4, wherein each of the two signals output by the multiplication means that performs multiplication with two different constant values corresponding to the discretized reception signal in parallel is input. , At least one pair of means for pairing one or more delay means groups for delaying the sampling time by a unit and addition means for adding the outputs of the delay means to reduce the number of received signals are connected in cascade. Means for sequentially repeating delay and addition to form a set of signal components, and multiplying each of the set of signals by two sinusoidal reference signals that are discretized at the sampling time and have mutually orthogonal phases. Frequency shifting means for shifting the frequency of the signal in parallel,
At least a filtering means for attenuating a high frequency component of each component of the two quadrature signals output by the frequency shifting means by filtering, and a computing means for obtaining the amplitude of the signal based on the output of the filtering means are provided. Ultrasonic signal processing device.
JP5150230A 1993-06-22 1993-06-22 Ultrasonic signal processing device Pending JPH0712785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150230A JPH0712785A (en) 1993-06-22 1993-06-22 Ultrasonic signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150230A JPH0712785A (en) 1993-06-22 1993-06-22 Ultrasonic signal processing device

Publications (1)

Publication Number Publication Date
JPH0712785A true JPH0712785A (en) 1995-01-17

Family

ID=15492396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150230A Pending JPH0712785A (en) 1993-06-22 1993-06-22 Ultrasonic signal processing device

Country Status (1)

Country Link
JP (1) JPH0712785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819536A (en) * 1994-07-05 1996-01-23 Hitachi Medical Corp Ultrasonic signal processing device
JPH0961409A (en) * 1995-08-21 1997-03-07 Hitachi Ltd Ultrasonic signal processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819536A (en) * 1994-07-05 1996-01-23 Hitachi Medical Corp Ultrasonic signal processing device
JPH0961409A (en) * 1995-08-21 1997-03-07 Hitachi Ltd Ultrasonic signal processing apparatus

Similar Documents

Publication Publication Date Title
WO2018188228A1 (en) High-precision frequency measuring system and method
KR100346966B1 (en) Receiver with quadrature decimation stage, method of processing digital signals
US7394415B2 (en) Time-interleaved analog-to-digital converter and high speed signal processing system using the same
US5109188A (en) Instantaneous frequency measurement receiver with bandwidth improvement through phase shifted sampling of real signals
KR20050096173A (en) Systems and methods for coherent adaptive calibration in a receiver
KR20080056068A (en) Fractional delay filter-based beamformer apparatus using post filtering
US20230172584A1 (en) Ultrasound device with elevational beamforming
JPS6141981A (en) Method and device for delaying ultrasonic signal
CN107450068A (en) Pulse radar and its transmission impulse correction method and reception impulse correction method
US4633257A (en) Acquisition system employing circular array
JPH0712785A (en) Ultrasonic signal processing device
Ariyarathna et al. Real-time 2-D FIR trapezoidal digital filters for 2.4 GHz aperture receiver applications
JP3134618B2 (en) Ultrasonic signal processor
Kumar et al. FIR linear-phase approximations of frequency response 1/(j/spl omega/) for maximal flatness at an arbitrary frequency/spl omega//sub 0/, 0</spl omega//sub 0/</spl pi
KR101646627B1 (en) Phase rotation beamformer and beamforming method for envelope error compensating
Jiang et al. Design and realization of FPGA-based DRFM with high instantaneous bandwidth
CN110933006B (en) Parallel digital synthesis method and circuit for FM modulation signal
JP3677815B2 (en) Ultrasonic device
JPH09135150A (en) Digital filter and receiving device
KR101818656B1 (en) Method and system for performing complex sampling of signals by using two or more sampling channels and for calculating time delays between these channels
RU2291463C2 (en) Processing radar impulse signals analog-discrete mode
RU165469U1 (en) MICROWAVE TRANSVERSAL ANALOGUE FILTER
Mankovskyy et al. Digital Method of SSB Modulation
RU2612297C1 (en) Transversal microwave analogue filter
JPH01257274A (en) Frequency estimating system