JPH07127444A - Secondary air lead-in control device for internal combustion engine - Google Patents

Secondary air lead-in control device for internal combustion engine

Info

Publication number
JPH07127444A
JPH07127444A JP5271957A JP27195793A JPH07127444A JP H07127444 A JPH07127444 A JP H07127444A JP 5271957 A JP5271957 A JP 5271957A JP 27195793 A JP27195793 A JP 27195793A JP H07127444 A JPH07127444 A JP H07127444A
Authority
JP
Japan
Prior art keywords
air
introduction
pipe
intake
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5271957A
Other languages
Japanese (ja)
Inventor
Toshiki Kuroda
俊樹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5271957A priority Critical patent/JPH07127444A/en
Publication of JPH07127444A publication Critical patent/JPH07127444A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/306Preheating additional air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To accelerate the atomization of injected fuel so as to heighten the combustion efficiency of an internal combustion engine and to reduce HC and CO discharged from the engine, and heighten the oxidizing reaction efficiency with exhaust gas in a catalyst so as to improve exhaust gas purifying efficiency by leading heated air into the exhaust pipe and intake pipe of the internal combustion engine. CONSTITUTION:Heated air is led into an exhaust pipe 6 and an intake pipe 2. At the low temperature time of an engine, heated air is fed to the intake pipe 2 to make an air-fuel ratio lean by 10-20%, thus accelerating the atomization of fuel. At the time of the high temperature state, the engine 1 is lean-combusted so as to be able to reduce fuel consumption. The heated air is fed into the exhaust pipe 6 until the catalyst temperature reaches the specified value or higher so as to accelerate exhaust gas purification at the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、内燃機関の排気管と
吸気管内に導入する空気を充分に加熱して触媒の活性化
を促進すると共に、供給燃料の霧化を促進させ、排気ガ
スの浄化を促進させる内燃機関の2次空気導入制御装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention sufficiently heats the air introduced into the exhaust pipe and the intake pipe of an internal combustion engine to promote the activation of the catalyst and also promotes atomization of the supplied fuel to generate exhaust gas. The present invention relates to a secondary air introduction control device for an internal combustion engine that promotes purification.

【0002】[0002]

【従来の技術】従来のこの種の制御装置は、例えば特開
昭50−100423号公報に示されており、常温の空
気を排気管内に導入し触媒の温度が高くなると、吸気管
側に空気を送る構造となった装置がある。
2. Description of the Related Art A conventional control device of this type is disclosed in, for example, Japanese Patent Application Laid-Open No. 50-100423, and when air at room temperature is introduced into the exhaust pipe and the temperature of the catalyst rises, air is introduced to the intake pipe side. There is a device that is structured to send.

【0003】排気管内に空気が導入されると、排気ガス
中の炭化水素(以下、HCと記載する),一酸化炭素
(以下、COと記載する)等を酸化させる化学反応が触
媒で促進されることとなり、反応熱によって触媒が過熱
状態となり破損するため、排気管に送る空気の大半を吸
気管側に送る。したがって、触媒を冷却させ破損を防止
すると共に、機関を希薄燃焼させることによってHC,
COの排出を抑制させる。
When air is introduced into the exhaust pipe, a catalyst promotes a chemical reaction that oxidizes hydrocarbons (hereinafter referred to as HC), carbon monoxide (hereinafter referred to as CO), etc. in the exhaust gas. As a result, the reaction heat causes the catalyst to become overheated and damaged, so most of the air sent to the exhaust pipe is sent to the intake pipe side. Therefore, the catalyst is cooled to prevent damage and the engine is burned lean so that HC,
Suppress CO emissions.

【0004】従来の2次空気導入制御装置を図10によ
って説明する。図10は従来の内燃機関の2次空気導入
制御装置を示す構成図である。図において、1は燃焼に
よって有害なHC,CO等を排出する内燃機関(以下、
エンジンと記載する)、2はエンジン1内に空気を送る
吸気管、3は吸気管2内に送られる空気に含まれた塵や
埃を除去するエアクリーナ、4はエンジン1に吸入され
る空気流量を測定するエアフローセンサ、5は吸気管2
に設けられたスロットル弁で、このスロットル弁5はエ
ンジン1に吸入される空気量を吸気管2の通路面積を可
変することにより調整する。
A conventional secondary air introduction control device will be described with reference to FIG. FIG. 10 is a block diagram showing a conventional secondary air introduction control device for an internal combustion engine. In the figure, 1 is an internal combustion engine (hereinafter,
(Indicated as engine) 2 is an intake pipe for sending air into the engine 1, 3 is an air cleaner for removing dust contained in the air sent into the intake pipe 2, and 4 is a flow rate of air taken into the engine 1. Air flow sensor for measuring
This throttle valve 5 is provided for the throttle valve 5 to adjust the amount of air taken into the engine 1 by varying the passage area of the intake pipe 2.

【0005】6はエンジン1の排気口に接続された排気
管で、この排気管6はエンジン1より排出された有害な
排気ガス中のHC,COを化学反応によって浄化する触
媒コンバータ7へ送る。8はエアクリーナ3を通して送
られた空気を加圧して空気導入管9に送るエアポンプ
で、このエアポンプ8はエンジン1によって駆動される
機械式のものや,DC電源によってモータが駆動されて
空気を送る電気式のものが使用されている。10はエア
ポンプ8により吐出された空気を排気管6側と吸気管2
側に切換えて送る切替弁である。
Reference numeral 6 denotes an exhaust pipe connected to the exhaust port of the engine 1. The exhaust pipe 6 sends HC and CO in the harmful exhaust gas discharged from the engine 1 to a catalytic converter 7 for purifying by chemical reaction. Reference numeral 8 is an air pump that pressurizes the air sent through the air cleaner 3 and sends it to the air introducing pipe 9. This air pump 8 is a mechanical type driven by the engine 1 or an electric machine that drives a motor by a DC power source to send air. Expressions are used. Reference numeral 10 denotes the air discharged by the air pump 8 from the exhaust pipe 6 side and the intake pipe 2
It is a switching valve that switches to the side and sends.

【0006】11は切換弁10から吸気導入管12を通
って吸気管2内に送る空気量を調整する流量制御弁、1
3は切換弁10によって切換えられた空気を排気管6に
送る排気導入管で、この導入管13の終端は排気管6の
空気導入口に接続され、2次空気は導入口より触媒コン
バータ7へ送られる。14は排気ガスを吸気管2に逆流
させないように設けた逆止弁、15は触媒コンバータ7
の温度を検出する温度センサ、16は温度センサ15の
出力に応じて切換弁10と流量制御弁11を制御する制
御器である。
Reference numeral 11 denotes a flow rate control valve for adjusting the amount of air sent from the switching valve 10 to the intake pipe 2 through the intake introduction pipe 12.
Reference numeral 3 is an exhaust introduction pipe for sending the air switched by the switching valve 10 to the exhaust pipe 6, the end of the introduction pipe 13 is connected to the air introduction port of the exhaust pipe 6, and the secondary air is introduced from the introduction port to the catalytic converter 7. Sent. Reference numeral 14 is a check valve provided so that exhaust gas does not flow back to the intake pipe 2, and 15 is a catalytic converter 7.
Is a temperature sensor that detects the temperature of the temperature sensor, and 16 is a controller that controls the switching valve 10 and the flow control valve 11 according to the output of the temperature sensor 15.

【0007】次に動作について説明する。エアクリーナ
3を通過した清浄な空気は、エアフローセンサ4を通過
してスロットル弁5の開度に応じた量で、吸気管2を通
してエンジン1へ、図示しない燃料噴射装置であるイン
ジェクタから噴射される燃料と共に送られる。この送ら
れた空気と燃料の混合気はエンジン1内で燃焼され、燃
焼時に発生する有害な排気ガスは排気管6に排出され
る。
Next, the operation will be described. The clean air that has passed through the air cleaner 3 passes through the air flow sensor 4, and is injected into the engine 1 through the intake pipe 2 in an amount according to the opening degree of the throttle valve 5 from a fuel injector (not shown), which is an injector. Sent with. The sent mixture of air and fuel is burned in the engine 1, and harmful exhaust gas generated at the time of burning is discharged to the exhaust pipe 6.

【0008】一方、エアポンプ8はエンジン1の回転に
応じて回転し、エアクリーナ3を通過した清浄な空気を
取り込んで加圧して、切換弁10へ送られる。次いで、
切換弁10は触媒コンバータ7の温度が低温状態にある
時には、排気導入管13とエアポンプ8の吐出口とを連
通させ、触媒コンバータ7が過熱状態となった時には、
吸気導入管12とエアポンプ8の吐出口とを連通させる
ように制御器16によって制御信号が与えられ、空気通
路を切換える。
On the other hand, the air pump 8 rotates in accordance with the rotation of the engine 1, takes in the clean air that has passed through the air cleaner 3, pressurizes it, and sends it to the switching valve 10. Then
When the temperature of the catalytic converter 7 is in a low temperature state, the switching valve 10 connects the exhaust introduction pipe 13 and the discharge port of the air pump 8 to each other, and when the catalytic converter 7 is in an overheated state,
A control signal is applied by the controller 16 so as to connect the intake introduction pipe 12 and the discharge port of the air pump 8 to switch the air passage.

【0009】排気導入管13に送られた空気は、逆止弁
14を介して排気管6と触媒コンバータ7へ導入され
る。また、吸気導入管12に送られた空気は、流量制御
弁11によって制御器16より制御信号を受けてエンジ
ン1が吸入する燃料と空気の混合気空燃比が、理論空燃
比より10%ほど希薄状態となるように空気量を調整さ
れる。この空気導入位置の切換え制御によって排気管6
に導入した空気は、触媒コンバータ7内において、エン
ジン1の排気ガスの有害成分であるHC,COと反応し
て排気ガスを浄化する。また、吸気管2に導入した空気
は、混合器を希薄状態にし燃焼によって発生するHC,
COを減少することができる。
The air sent to the exhaust introduction pipe 13 is introduced into the exhaust pipe 6 and the catalytic converter 7 via the check valve 14. Further, the air sent to the intake introduction pipe 12 receives a control signal from the controller 16 by the flow rate control valve 11, and the air-fuel mixture of fuel and air taken in by the engine 1 is 10% leaner than the theoretical air-fuel ratio. The amount of air is adjusted so that the condition is reached. By this switching control of the air introduction position, the exhaust pipe 6
In the catalytic converter 7, the air introduced into the exhaust gas reacts with HC and CO, which are harmful components of the exhaust gas of the engine 1, to purify the exhaust gas. Further, the air introduced into the intake pipe 2 makes the mixer lean and causes HC generated by combustion,
CO can be reduced.

【0010】[0010]

【発明が解決しようとする課題】従来の内燃機関の2次
空気導入制御装置は以上のように構成されているので、
常温の空気を排気管6内に導入すると、空気温度が低く
排気ガス温を低下させるために、触媒コンバータ7の昇
温を阻害して排気ガス浄化性能を悪化させる。また、空
気を吸気管2に送りエンジン1を希薄燃焼させると、吸
気管2内負圧が低下して、燃料噴射装置から噴射される
燃料の霧化状態が悪くなり、燃焼状態が悪化する。その
ために、不完全燃焼となってHC,COを多く排出する
と共に、不完全燃焼によって機関が失火した場合には、
機関の安定性が失われる等の問題点があった。
Since the conventional secondary air introduction control device for the internal combustion engine is constructed as described above,
When air at normal temperature is introduced into the exhaust pipe 6, the air temperature is low and the exhaust gas temperature is lowered, so that the temperature rise of the catalytic converter 7 is hindered and the exhaust gas purification performance is deteriorated. Further, when air is sent to the intake pipe 2 and the engine 1 is made to burn lean, the negative pressure in the intake pipe 2 decreases, and the atomization state of the fuel injected from the fuel injection device deteriorates, and the combustion state deteriorates. Therefore, incomplete combustion results in the emission of a large amount of HC and CO, and when the engine misfires due to incomplete combustion,
There were problems such as loss of stability of the engine.

【0011】この発明は上記のような問題点を解消する
ためになされたもので、エンジンの排気管内に導入する
空気を加熱し、排気ガス温度の低下を防止すると共に、
触媒コンバータの急速加熱を図り、触媒コンバータの昇
温を促進させ、排気ガスの浄化反応を促進させる。さら
には、高温の空気を吸気管に送ることによって供給燃料
の霧化を促進でき、特に始動時及び始動直後の暖機時に
は、理論空燃比より濃い混合気が供給されるため、H
C,COの排出量が増加するが、霧化の促進に伴って混
合気を希薄化でき、HC,COは排出を抑制できる。内
燃機関の2次空気導入制御装置を得ることを目的とす
る。
The present invention has been made to solve the above problems, and heats the air introduced into the exhaust pipe of an engine to prevent the exhaust gas temperature from decreasing, and
The catalytic converter is rapidly heated, the temperature rise of the catalytic converter is promoted, and the exhaust gas purification reaction is promoted. Further, by sending high temperature air to the intake pipe, atomization of the supplied fuel can be promoted, and particularly when starting and warming up immediately after starting, a mixture richer than the theoretical air-fuel ratio is supplied.
Although the emission amounts of C and CO increase, the air-fuel mixture can be diluted with the promotion of atomization, and the emission of HC and CO can be suppressed. An object is to obtain a secondary air introduction control device for an internal combustion engine.

【0012】[0012]

【課題を解決するための手段】請求項1の発明に係る内
燃機関の2次空気導入制御装置は、2次空気を導入して
導入量を制御する空気導入量制御手段と、2次空気を加
熱する加熱手段と、排気管内に空気を導入するために接
続された排気導入管と、空気導入通路への排気ガスの逆
流を防止する逆防止手段と、吸気管内に空気を導入する
ために接続された吸気導入管と、この吸気導入管の通路
面積を可変する流量制御手段と、触媒の活性化状態を判
定する触媒活性化判定手段と、機関の運転状態に応じて
前記導入空気量や加熱容量を調整して空気導入位置を制
御する制御手段とを備え、機関が始動後所定時間を経過
するまで、前記流量制御手段を制御して、吸気管と排気
管との両方に空気を導入し、触媒が活性化するまで排気
管に空気を送るようにしたものである。
A secondary air introduction control device for an internal combustion engine according to a first aspect of the present invention introduces secondary air to control an introduction amount, and an secondary air introduction amount control means. Heating means for heating, an exhaust introduction pipe connected for introducing air into the exhaust pipe, a reverse prevention means for preventing backflow of exhaust gas into the air introduction passage, and a connection for introducing air into the intake pipe Intake air intake pipe, flow control means for varying the passage area of the intake air intake pipe, catalyst activation determination means for determining the activation state of the catalyst, and the introduction air amount and heating depending on the operating state of the engine. A control means for adjusting the capacity to control the air introduction position is provided, and the flow rate control means is controlled to introduce air into both the intake pipe and the exhaust pipe until a predetermined time elapses after the engine is started. , Send air to the exhaust pipe until the catalyst is activated It is obtained by the.

【0013】請求項2の発明に係る内燃機関の2次空気
導入制御装置は、2次空気を導入して導入量を制御する
空気導入量制御手段と、2次空気を加熱する加熱手段
と、排気管内に空気を導入するために接続された排気導
入管と、空気導入通路への排気ガスの逆流を防止する逆
流防止手段と、吸気管内に空気を導入するために接続さ
れた吸気導入管と、この吸気導入管の通路面積を可変す
る流量制御手段と、触媒の活性化状態を判定する触媒活
性化判定手段と、触媒温度を検出する温度検出手段と、
機関の運転状態に応じて前記導入空気量や加熱容量を調
整して空気導入位置を制御する制御手段とを備え、触媒
が活性化した後には、触媒温度が所定温度になるまで吸
気管と排気管との両方に加熱空気の導入を行い、所定温
度を越えると吸気管側のみ加熱空気の導入を行うように
したものである。
A secondary air introduction control device for an internal combustion engine according to a second aspect of the present invention comprises air introduction amount control means for introducing secondary air to control the introduction amount, and heating means for heating the secondary air. An exhaust introduction pipe connected to introduce air into the exhaust pipe, a backflow preventing means for preventing backflow of exhaust gas into the air introduction passage, and an intake introduction pipe connected to introduce air into the intake pipe. Flow rate control means for varying the passage area of the intake introduction pipe, catalyst activation determination means for determining the activation state of the catalyst, temperature detection means for detecting the catalyst temperature,
And a control means for controlling the air introduction position by adjusting the amount of introduced air and the heating capacity according to the operating state of the engine, and after the catalyst is activated, the intake pipe and the exhaust gas until the catalyst temperature reaches a predetermined temperature. Heating air is introduced into both the pipe and the heating air is introduced only into the intake pipe side when the temperature exceeds a predetermined temperature.

【0014】請求項3の発明に係る内燃機関の2次空気
導入制御装置は、2次空気を導入して導入量を制御する
空気導入量制御手段と、2次空気を加熱する加熱手段
と、排気管内に空気を導入するために接続された排気導
入管と、空気導入通路への排気ガスの逆流を防止する逆
流防止手段と、吸気管内に空気を導入するために接続さ
れた吸気導入管と、この吸気導入管の通路面積を可変す
る流量制御手段と、触媒の活性化状態を判定する触媒活
性化判定手段と、触媒温度を検出する温度検出手段と、
機関の負荷状態を検出する負荷検出手段と、加速状態を
検出する加速検出手段と、機関の運転状態に応じて前記
導入空気量や加熱容量を調整して空気導入位置を制御す
る制御手段とを備え、前記負荷検出手段と加速検出手段
の少なくとも一方の出力に応じて、吸気管への空気の導
入を禁止するようにしたものである。
A secondary air introduction control device for an internal combustion engine according to a third aspect of the present invention comprises air introduction amount control means for introducing secondary air to control the introduction amount, and heating means for heating the secondary air. An exhaust introduction pipe connected to introduce air into the exhaust pipe, a backflow preventing means for preventing backflow of exhaust gas into the air introduction passage, and an intake introduction pipe connected to introduce air into the intake pipe. Flow rate control means for varying the passage area of the intake introduction pipe, catalyst activation determination means for determining the activation state of the catalyst, temperature detection means for detecting the catalyst temperature,
Load detecting means for detecting the load state of the engine, acceleration detecting means for detecting the acceleration state, and control means for controlling the air introduction position by adjusting the introduced air amount or heating capacity according to the operating state of the engine. According to the output of at least one of the load detecting means and the acceleration detecting means, the introduction of air into the intake pipe is prohibited.

【0015】請求項4の発明に係る内燃機関の2次空気
導入制御装置は、2次空気を導入して導入量を制御する
空気導入量制御手段と、2次空気を加熱する加熱手段
と、排気管内に空気を導入するために接続された排気導
入管と、空気導入通路への排気ガスの逆流を防止する逆
流防止手段と、吸気管内に空気を導入するために接続さ
れた吸気導入管と、この吸気導入管の通路面積を可変す
る流量制御手段と、触媒の活性化状態を判定する触媒活
性化判定手段と、触媒温度を検出する温度検出手段と、
機関の運転状態に応じて前記導入空気量や加熱容量を調
整して空気導入位置を制御する制御手段とを備え、吸気
管と排気管に空気を導入するようにして、少なくとも前
記吸気導入管を流れる空気量を、任意の時間間隔で変化
させるように前記流量制御手段を制御するようにしたも
のである。
A secondary air introduction control device for an internal combustion engine according to a fourth aspect of the invention is an air introduction amount control means for introducing secondary air to control the introduction amount, and a heating means for heating the secondary air. An exhaust introduction pipe connected to introduce air into the exhaust pipe, a backflow preventing means for preventing backflow of exhaust gas into the air introduction passage, and an intake introduction pipe connected to introduce air into the intake pipe. Flow rate control means for varying the passage area of the intake introduction pipe, catalyst activation determination means for determining the activation state of the catalyst, temperature detection means for detecting the catalyst temperature,
A control means for controlling the air introduction position by adjusting the amount of introduced air or the heating capacity according to the operating state of the engine, and introducing air into the intake pipe and the exhaust pipe, at least the intake introduction pipe The flow rate control means is controlled so that the amount of flowing air is changed at an arbitrary time interval.

【0016】[0016]

【作用】請求項1の発明においては、排気管に導入する
加熱空気を吸気管へ送る吸気導入管と流量制御手段とを
備えて、機関が始動後所定時間経過するまで、加熱空気
を吸気管内と排気管内の両方に導入することによって、
一般に燃料が多く噴射され濃く設定されている機関低温
時において噴射燃料の霧化を促進でき、機関での燃焼性
能を向上できるため、燃料消費量を低減できると共に、
有害成分であるHC,COの排出量を減少させることが
できる。さらに、排気管内に導入された加熱空気によっ
て、排気ガス中のHC,COの酸化反応を促進させ、発
生する反応熱と加熱空気によって触媒コンバータの早期
活性化を図り、触媒コンバータでの排気ガス浄化効率を
高め、大気中に排出される有害成分を低減させることが
できる。
According to the first aspect of the present invention, there is provided the intake air introducing pipe for sending the heated air introduced into the exhaust pipe to the intake pipe and the flow rate control means, and the heating air is supplied into the intake pipe until a predetermined time elapses after the engine is started. And by introducing both in the exhaust pipe,
Generally, a lot of fuel is injected and the atomization of the injected fuel can be promoted at a low engine temperature, which is set to be rich, and the combustion performance in the engine can be improved, so that the fuel consumption can be reduced,
It is possible to reduce the emission of HC and CO, which are harmful components. Further, the heated air introduced into the exhaust pipe promotes the oxidation reaction of HC and CO in the exhaust gas, and the generated heat of reaction and the heated air aim at early activation of the catalytic converter to purify the exhaust gas in the catalytic converter. Efficiency can be increased and harmful components emitted into the atmosphere can be reduced.

【0017】請求項2の発明においては、排気管に導入
する加熱空気を吸気管へ送る吸気導入管と、流量制御手
段と、触媒温度を検出する温度検出手段とを備えて、触
媒コンバータが活性化した後に所定温度まで、加熱空気
を吸気管内と排気管内との両方に導入し、触媒が所定温
度に到達すると排気管内への空気導入を禁止して、吸気
管側にのみ加熱空気の導入を行うことによって、触媒コ
ンバータの過熱による破損を防止でき、燃料噴射装置か
ら噴射された燃料が霧化されずに吸気管の壁面に付着す
ることを防止できる。さらに、吸気管内への加熱空気導
入は、燃料の霧化促進によって希薄燃焼が可能となり、
燃料消費量を低減でき、有害成分であるHC,COの排
出量も減少させることができる。また、触媒が所定温度
になるまでは、排気管内に導入された加熱空気によっ
て、触媒コンバータで排気ガス中のHC,COの酸化反
応を促進させ、大気中に排出される有害成分を低減させ
ることができる。
According to the second aspect of the present invention, the catalytic converter is provided with an intake introduction pipe for sending heated air introduced into the exhaust pipe to the intake pipe, a flow rate control means, and a temperature detection means for detecting the catalyst temperature. After heating, the heated air is introduced into both the intake pipe and the exhaust pipe up to a prescribed temperature, and when the catalyst reaches the prescribed temperature, the introduction of air into the exhaust pipe is prohibited and the heated air is introduced only into the intake pipe side. By doing so, it is possible to prevent damage due to overheating of the catalytic converter, and to prevent the fuel injected from the fuel injection device from adhering to the wall surface of the intake pipe without being atomized. Furthermore, the introduction of heated air into the intake pipe enables lean combustion by promoting fuel atomization,
The fuel consumption amount can be reduced, and the emission amounts of the harmful components HC and CO can also be reduced. Further, until the temperature of the catalyst reaches a predetermined temperature, the catalytic converter promotes the oxidation reaction of HC and CO in the exhaust gas by the heated air introduced into the exhaust pipe to reduce the harmful components discharged into the atmosphere. You can

【0018】請求項3の発明においては、請求項2の制
御装置に加え、機関の負荷検出手段と加速検出手段とを
備えて、この両手段の少なくとも一方の出力に応じて吸
気管への空気導入を禁止するようにしたことによって、
高負荷運転時に希薄燃焼によるトルク低下を防止でき
る。また、加速時に吸気管内の空気が急に燃焼室に吸入
されるため希薄化するが、2次空気の導入により希薄化
が進んだ場合の失火を防止できる。
According to a third aspect of the present invention, in addition to the control device of the second aspect, an engine load detection means and an acceleration detection means are provided, and air to the intake pipe is provided in accordance with the output of at least one of these means. By prohibiting the introduction,
It is possible to prevent torque reduction due to lean combustion during high load operation. Further, the air in the intake pipe is suddenly sucked into the combustion chamber during acceleration, so that the air is diluted, but it is possible to prevent misfire when the air is diluted by the introduction of the secondary air.

【0019】請求項4の発明においては、排気管に導入
する加熱空気を吸気管へ送る吸気導入管と、流量制御手
段と、空気導入位置を制御する制御手段とを備えて、吸
気導入管を流れる加熱空気の量を、任意の時間間隔で変
化(以下、変調と記載する)させるように前記流量制御
手段を制御するようにしたことによって、機関より排出
される排気ガス空燃比を、任意の時間間隔で濃く/薄く
( Rich / Lean )反転できる。したがって触媒コンバ
ータでの浄化性能が最大限に得られるウインド領域を交
差するようになるため、触媒コンバータの協奏吸着効果
が得られ排気ガス中のHC,COの浄化を促進させる。
また、吸気管と排気管に送る変調導入空気の変調位相
を、180deg ずらすことによって、排気空燃比が濃い
ときに排気導入空気を多く供給でき、薄いときは減少さ
せることになり、効率の良い排気管内への空気導入が行
える。よって、触媒コンバータで排気ガス中のHC,C
Oの酸化反応を促進させ、大気中に排出される有害成分
を低減させることができる。
According to another aspect of the present invention, the intake air introduction pipe is provided with an intake air introduction pipe for sending heated air introduced into the exhaust pipe to the intake air pipe, a flow rate control means, and a control means for controlling the air introduction position. By controlling the flow rate control means so as to change the amount of flowing heated air at any time interval (hereinafter referred to as modulation), the exhaust gas air-fuel ratio discharged from the engine can be adjusted to any value. You can invert rich / lean at time intervals. Therefore, since the window region where the purification performance of the catalytic converter is maximized is crossed, the concerted adsorption effect of the catalytic converter is obtained and the purification of HC and CO in the exhaust gas is promoted.
Also, by shifting the modulation phase of the modulation introduction air sent to the intake pipe and the exhaust pipe by 180deg, a large amount of exhaust introduction air can be supplied when the exhaust air-fuel ratio is high, and it can be reduced when it is thin, resulting in efficient exhaust Air can be introduced into the pipe. Therefore, HC, C in the exhaust gas by the catalytic converter
It is possible to promote the oxidation reaction of O and reduce harmful components discharged into the atmosphere.

【0020】[0020]

【実施例】【Example】

実施例1.以下、請求項1の発明の一実施例について説
明する。図1は全体構成を示す構成図、図2は制御タイ
ミングを示すタイミングチャート、図3は制御上の流れ
を説明するフローチャートであり、前記従来のものと同
一または相当部分には同一符号を付して説明を省略す
る。
Example 1. An embodiment of the invention of claim 1 will be described below. FIG. 1 is a block diagram showing the overall structure, FIG. 2 is a timing chart showing control timing, and FIG. 3 is a flow chart for explaining the flow of control. And the description is omitted.

【0021】図において、17はエアポンプ8からの空
気を適切な量に調整する2次空気調整弁で、負圧によっ
てダイヤフラムを作動させて開度を可変する機械式のも
のや,電磁式のソレノイド弁や,ステッピングモータ弁
などが使用されている。これらエアポンプ8と2次空気
調整弁17とによって空気導入量制御手段が構成されて
いる。また、エアポンプ8は電気式のものであり、外部
からの信号によってポンプ吐出空気量が可変できる場合
には、前記2次空気調整弁17は使用しなくとも空気導
入制御手段が構成できることは言うまでもない。この空
気導入量制御手段からの空気は加熱手段に送られる。
In the figure, 17 is a secondary air adjusting valve for adjusting the air from the air pump 8 to an appropriate amount, which is a mechanical type solenoid which operates a diaphragm by a negative pressure to change the opening degree, or an electromagnetic solenoid. Valves and stepping motor valves are used. The air pump 8 and the secondary air adjusting valve 17 constitute air introduction amount control means. Further, it goes without saying that the air pump 8 is an electric type, and if the pump discharge air amount can be varied by a signal from the outside, the air introduction control means can be configured without using the secondary air adjusting valve 17. . The air from the air introduction amount control means is sent to the heating means.

【0022】18は加熱器で、例えばDC電源が供給さ
れると抵抗体に電流が流れ発熱するものである。加熱器
18によって加熱された空気は、吸気導入管12と排気
導入管13とに送られる。14Aは排気ガスが吸気管2
に逆流しないように排気導入管13の途中に設けた逆流
防止手段である逆止弁、11Aは吸気管2に送られる空
気量を調整する流量制御手段である流量制御弁である。
排気導入管13に送られた加熱空気は、逆止弁14Aを
介して排気管6の空気導入口から触媒コンバータ7へ送
られる。また、吸気導入管12に送られた加熱空気は、
流量制御弁11Aによって流量制御されて吸気管2に送
られる。
Reference numeral 18 denotes a heater which, when DC power is supplied, for example, causes a current to flow through the resistor to generate heat. The air heated by the heater 18 is sent to the intake introduction pipe 12 and the exhaust introduction pipe 13. Exhaust gas of 14A is intake pipe 2
A check valve which is a backflow prevention means provided in the middle of the exhaust introduction pipe 13 so as not to backflow into the intake pipe 13 and a flow control valve 11A which is a flow control means for adjusting the amount of air sent to the intake pipe 2.
The heated air sent to the exhaust introduction pipe 13 is sent to the catalytic converter 7 from the air introduction port of the exhaust pipe 6 via the check valve 14A. In addition, the heated air sent to the intake introduction pipe 12 is
The flow rate is controlled by the flow rate control valve 11A and is sent to the intake pipe 2.

【0023】19は触媒活性化判定手段で、例えば触媒
担体の温度を検出する温度センサ20の出力が所定値以
上や,触媒コンバータ7の出入口のガス温を検出する入
口ガス温センサ21と出口ガス温センサ22との出力差
が所定値以内のとき,またはガスセンサ23の出力から
浄化効率を求めて効率が所定値以上となったとき等に触
媒が活性化したと判断する。16Aはエンジン1の運転
状態を検出する各種センサの信号S1〜S4を受けて空
気導入制御手段であるエアポンプ8と,2次空気調整弁
17と,加熱手段である加熱器18と,流量制御手段で
ある流量制御弁11Aとに制御信号S5〜S8を出力し
て制御する制御器である。
Reference numeral 19 is a catalyst activation judging means, for example, an output of a temperature sensor 20 for detecting the temperature of the catalyst carrier is a predetermined value or more, and an inlet gas temperature sensor 21 for detecting the gas temperature of the inlet and outlet of the catalytic converter 7 and an outlet gas. It is determined that the catalyst is activated when the output difference from the temperature sensor 22 is within a predetermined value or when the purification efficiency is obtained from the output of the gas sensor 23 and the efficiency is equal to or higher than the predetermined value. 16A receives signals S1 to S4 from various sensors for detecting the operating state of the engine 1, an air pump 8 as an air introduction control means, a secondary air adjusting valve 17, a heater 18 as a heating means, and a flow rate control means. Is a controller that outputs control signals S5 to S8 to the flow control valve 11A that is

【0024】24はエンジン1の回転に応じて周期の異
なる矩形波を出力するクランク角センサ、25はガスセ
ンサで、雰囲気中の酸素濃度や排気ガス成分に応じて信
号を出力するものが使用されている。これらセンサ2
4,25の出力は制御器16Aに送られてエンジン1の
運転状態を判断するためのパラメータとなる。
Reference numeral 24 is a crank angle sensor that outputs a rectangular wave having a different cycle according to the rotation of the engine 1, and 25 is a gas sensor, which is used to output a signal according to the oxygen concentration in the atmosphere and the exhaust gas component. There is. These sensors 2
The outputs of Nos. 4 and 25 are sent to the controller 16A and serve as parameters for judging the operating state of the engine 1.

【0025】次に動作について説明する。はじめに、ス
テップ301で触媒の担体温度を検出する温度センサ2
0から得られた絶対温度や、触媒入口ガス温センサ21
と触媒出口ガス温センサ22から得られた温度差や,触
媒後のガスセンサの出力から得られた浄化効率などか
ら、触媒活性化判定手段19にて触媒の活性化状態を検
出して、触媒不活性時に2次空気の導入制御を行うよう
にステップ302に移る。
Next, the operation will be described. First, in step 301, the temperature sensor 2 for detecting the catalyst carrier temperature.
Absolute temperature obtained from 0, catalyst inlet gas temperature sensor 21
The catalyst activation determination means 19 detects the activation state of the catalyst from the temperature difference obtained from the catalyst outlet gas temperature sensor 22 and the purification efficiency obtained from the output of the gas sensor after the catalyst. The process moves to step 302 so as to control the introduction of secondary air when activated.

【0026】ステップ302では、制御器16Aからエ
アポンプ8や2次空気調整弁17に信号S5,S6を送
り空気の導入を開始して、さらに加熱器18に信号S7
を送り空気加熱を開始する。この時、エアポンプ8と2
次空気調整弁17から送られる空気量と加熱器18との
加熱容量は、エンジン1の運転状態を示すエアフローセ
ンサ4の出力S1と、スロットル弁5のスロットル開度
センサ(図示せず)の出力S2と、クランク角センサ2
4の出力S3と、ガスセンサ25の出力S4などを受け
て、制御器16Aによって最適値が求められ、最適量に
制御されるようになっている。
In step 302, signals S5 and S6 are sent from the controller 16A to the air pump 8 and the secondary air regulating valve 17 to start the introduction of air, and further the signal S7 is sent to the heater 18.
To start heating the air. At this time, the air pumps 8 and 2
The amount of air sent from the next air regulating valve 17 and the heating capacity of the heater 18 are determined by the output S1 of the air flow sensor 4 indicating the operating state of the engine 1 and the output of a throttle opening sensor (not shown) of the throttle valve 5. S2 and crank angle sensor 2
The controller 16A obtains an optimum value by receiving the output S3 of No. 4 and the output S4 of the gas sensor 25, and controls the optimum value.

【0027】ステップ302で加熱2次空気の導入が開
始され、エンジン1の始動時にスタータ信号(図示せ
ず)が制御器16Aに送られ、始動時よりタイマー機能
によってカウントされた値によって始動後経過時間
(T)が求められている。次にステップ303におい
て、予め決定されメモリに記憶されている始動後の吸気
管空気導入所定時間(T1)と始動後経過時間(T)と
が比較され、所定時間(T1)経過している場合には、
ステップ305に移行して吸気管2側への加熱空気の導
入は行われずに、排気管6のみ加熱空気の導入制御が実
施される。
In step 302, the introduction of the heated secondary air is started, a starter signal (not shown) is sent to the controller 16A when the engine 1 is started, and after the start, the starter signal is passed by the value counted by the timer function. Time (T) is required. Next, at step 303, a predetermined time (T1) after the start of intake pipe air introduction, which is determined in advance and stored in the memory, is compared with the post-start elapsed time (T), and the predetermined time (T1) has elapsed. Has
In step 305, the heated air is not introduced into the intake pipe 2 side, but the heated air introduction control is performed only in the exhaust pipe 6.

【0028】ステップ303の比較結果が、始動後時間
(T)が所定時間(T1)に達していない場合には、ス
テップ304が実行されて、流量制御弁11Aを制御す
る制御信号S8が制御器16Aより送られ吸気導入管1
2が解放される。したがって、加熱空気が吸気導入管1
2を介して吸気管2に送られて、一般に燃料が多く噴射
され空燃比が濃く設定される機関低温時において噴射燃
料の霧化を促進でき、機関での燃焼性能を向上して、有
害成分であるHC,COの排出量を減少させることがで
きる。この時、吸気管2内に導入される空気量は、エン
ジン1の燃焼室内に供給される混合気の空燃比が、通常
時の10〜20%薄くなるように制御器16Aによって
決定され調整される。空気量の決定は、機関温度や始動
後時間によって予め決定された量をメモリから読み込む
場合や、エアフローセンサ4の出力やガスセンサ25の
出力などによって決定される。
If the comparison result of step 303 indicates that the time (T) after starting has not reached the predetermined time (T1), step 304 is executed and the control signal S8 for controlling the flow rate control valve 11A is sent to the controller. Intake inlet pipe 1 sent from 16A
2 is released. Therefore, the heated air is introduced into the intake pipe 1
2 is sent to the intake pipe 2 and generally, a large amount of fuel is injected and the atomization of the injected fuel can be promoted at a low engine temperature when the air-fuel ratio is set to be rich, so that the combustion performance in the engine is improved and harmful components are removed. It is possible to reduce the emissions of HC and CO. At this time, the amount of air introduced into the intake pipe 2 is determined and adjusted by the controller 16A so that the air-fuel ratio of the air-fuel mixture supplied into the combustion chamber of the engine 1 becomes 10 to 20% thinner than in the normal state. It The air amount is determined by reading an amount predetermined from the memory depending on the engine temperature and the time after starting, the output of the air flow sensor 4, the output of the gas sensor 25, and the like.

【0029】次に、ステップ305が実施されて、加熱
空気が逆止弁14Aを介して排気導入管13より排気管
6内に導入される。排気管6内に導入された加熱空気
は、排気ガス温度を低下させることなく排気ガスと混合
されて、高温の混合ガスが触媒コンバータ7に送ること
ができ、排気ガス中の有害成分であるHC,COと反応
して触媒コンバータ7の早期活性化を図り、ガス浄化効
率を高めて排気ガスを浄化できる。即ち、触媒コンバー
タ7に送られた排気ガスと空気の混合ガスにはHCやC
O等と、加熱空気中の酸素等が含まれている。そのた
め、触媒コンバータ7では高温の混合ガスが化学反応作
用によってH2O ,CO2 等に転化させて排気ガスの浄化を
促進する。
Next, step 305 is carried out, and the heated air is introduced into the exhaust pipe 6 from the exhaust introduction pipe 13 via the check valve 14A. The heated air introduced into the exhaust pipe 6 is mixed with the exhaust gas without lowering the exhaust gas temperature, and the high temperature mixed gas can be sent to the catalytic converter 7, which is a harmful component in the exhaust gas. , CO reacts with CO to promote early activation of the catalytic converter 7 and enhance gas purification efficiency to purify exhaust gas. That is, the mixed gas of exhaust gas and air sent to the catalytic converter 7 contains HC or C
O and the like, and oxygen and the like in the heated air are included. Therefore, in the catalytic converter 7, the high temperature mixed gas is converted into H 2 O, CO 2 and the like by a chemical reaction action to promote purification of the exhaust gas.

【0030】実施例2.上記実施例1では触媒の不活性
状態でのみ加熱空気の導入を制御する場合について説明
した。図4は請求項2の発明の一実施例について説明す
る構成図、図5は制御タイミングを示すタイミングチャ
ート、図6は制御上の流れを説明するフローチャートで
あり、前記実施例1と同一または相当部分には同一符号
を付して説明を省略する。図において、26は排気導入
管13の途中に設けられたカット弁で、負圧によってダ
イヤフラムを作動させて開度を可変する機械式のもの
や,電磁式のソレノイド弁や,ステッピングモータ弁な
どがある。
Example 2. In the above Example 1, the case where the introduction of the heated air is controlled only in the inactive state of the catalyst has been described. 4 is a block diagram for explaining an embodiment of the invention of claim 2, FIG. 5 is a timing chart showing control timing, and FIG. 6 is a flow chart for explaining the flow of control, which is the same as or equivalent to that of the first embodiment. The same reference numerals are given to the parts and the description thereof will be omitted. In the figure, reference numeral 26 is a cut valve provided in the middle of the exhaust introduction pipe 13, which is a mechanical type valve that operates a diaphragm by negative pressure to change the opening degree, an electromagnetic solenoid valve, a stepping motor valve, or the like. is there.

【0031】次に動作について説明する。はじめに、ス
テップ601で制御器16Aからエアポンプ8や2次空
気調整弁17に信号S5,S6を送り2次空気の導入を
開始して、さらに加熱器18に信号S7を送り空気の加
熱を開始する。次にステップ602に移行して、触媒活
性化判定手段19にて触媒の活性化状態を検出して、触
媒不活性時には実施例1で説明した制御を行うために、
ステップ603に移行して制御する。
Next, the operation will be described. First, in step 601, signals S5 and S6 are sent from the controller 16A to the air pump 8 and the secondary air adjusting valve 17 to start the introduction of the secondary air, and further a signal S7 is sent to the heater 18 to start the heating of the air. . Next, in step 602, the catalyst activation determination means 19 detects the activation state of the catalyst, and when the catalyst is inactive, the control described in the first embodiment is performed.
Control proceeds to step 603.

【0032】ステップ602で触媒活性状態と判断した
場合には、ステップ606が実行されて、触媒コンバー
タ7の担体温度を検出する温度センサ20の出力から、
制御器16Aによって触媒の担体絶対温(K)を検出す
る。そして、検出された温度が予め決定されメモリに記
憶された触媒過熱限界所定温度(K1)を越えているか
否かを判断し、担体絶対温(K)が所定温度(K1)以
上であれば、排気管6内への加熱空気の導入を停止す
る。空気導入の停止は、制御器16Aからカット弁26
に信号S9が送られ、排気導入管13と加熱器18との
連通を遮断する。そして、ステップ608にて吸気管2
内の空気導入のみ行うようになる。したがって、触媒コ
ンバータ7の過熱による破損を防止できる。
When it is judged in step 602 that the catalyst is in the active state, step 606 is executed, and from the output of the temperature sensor 20 which detects the carrier temperature of the catalytic converter 7,
The absolute carrier temperature (K) of the catalyst is detected by the controller 16A. Then, it is judged whether or not the detected temperature exceeds the catalyst overheat limit predetermined temperature (K1) which is determined in advance and stored in the memory, and if the carrier absolute temperature (K) is equal to or higher than the predetermined temperature (K1), The introduction of heated air into the exhaust pipe 6 is stopped. The air introduction is stopped by the controller 16A through the cut valve 26.
A signal S9 is sent to, and the communication between the exhaust introduction pipe 13 and the heater 18 is cut off. Then, in step 608, the intake pipe 2
Only the air inside will be introduced. Therefore, it is possible to prevent the catalytic converter 7 from being damaged by overheating.

【0033】また、担体絶対温(K)が所定温度(K
1)以上であれば、ステップ607にて排気管6内の加
熱空気の導入を行うように、カット弁26を開き加熱空
気を排気導入管13に送る。続いてステップ608へ平
行して実行され、吸気管2内の空気導入を行うように制
御器16Aより流量制御弁11Aを制御する制御信号S
8が送られ、吸気導入管12が解放される。したがっ
て、加熱空気が吸気導入管12を介して吸気管2に送ら
れて、燃料噴射装置から噴射された燃料が霧化されずに
吸気管2の壁面に付着することを防止できる。さらに、
吸気管2内への加熱空気の導入は燃料の霧化促進によっ
て希薄燃料が可能となり、燃料消費量を低減できる。さ
らに、有害成分であるHC,COの排出量を減少させる
ことができる。
The carrier absolute temperature (K) is a predetermined temperature (K
1) If above, in step 607, the cut valve 26 is opened so that the heated air in the exhaust pipe 6 is introduced, and the heated air is sent to the exhaust introduction pipe 13. Then, in parallel with step 608, the control signal S for controlling the flow rate control valve 11A from the controller 16A so as to introduce the air into the intake pipe 2.
8 is sent and the intake introduction pipe 12 is released. Therefore, it is possible to prevent the heated air from being sent to the intake pipe 2 via the intake introduction pipe 12, and the fuel injected from the fuel injection device not being atomized and adhering to the wall surface of the intake pipe 2. further,
The introduction of the heated air into the intake pipe 2 enables a lean fuel by promoting atomization of the fuel, so that the fuel consumption amount can be reduced. Further, it is possible to reduce the emissions of HC and CO, which are harmful components.

【0034】実施例3.以上の実施例では触媒活性後は
常時の吸気管2内に加熱空気を導入する場合について説
明した。しかし、図7に示すようにスロットル弁5を急
に開き加速した場合には、吸気管2にあるサージタンク
(図示せず)にたまった空気が急激に吸入されるため混
合気の空燃比が希薄化する。また、図8に示す高負荷高
回転域のエンリッチゾーンで機関が運転される場合に
は、一般的にトルクを上昇させるために濃い空燃比とな
るように燃料供給が行われるが、吸気管2内に空気の導
入を行うと希薄燃焼によりトルクが低下する。したがっ
て、この問題を解決する請求項3の実施例について説明
する。
Example 3. In the above embodiment, the case where the heated air is always introduced into the intake pipe 2 after the catalyst activation has been described. However, as shown in FIG. 7, when the throttle valve 5 is suddenly opened and accelerated, the air accumulated in the surge tank (not shown) in the intake pipe 2 is rapidly sucked, so that the air-fuel ratio of the air-fuel mixture is increased. Dilute. Further, when the engine is operated in the rich zone of the high load and high rotation range shown in FIG. 8, generally, fuel is supplied so as to have a rich air-fuel ratio in order to increase the torque, but the intake pipe 2 When air is introduced into the inside, the torque decreases due to lean combustion. Therefore, an embodiment of claim 3 which solves this problem will be described.

【0035】この実施例の構成は上記実施例2の構成を
用いて、新たに加速状態を検出する加速検出手段と、機
関の負荷状態を検出する負荷検出手段を、制御器16A
内に追加して、前記加速検出手段と負荷検出手段の少な
くともどちらか一方の出力に応じて流量制御弁11Aを
制御する。加速検出手段は、例えばスロットル弁5の開
度を検出するスロットル開度センサや,エアフローセン
サ4などがある。また、負荷検出手段には、エンジン1
の吸入空気量を測定するエアフローセンサ4などがあ
る。また、負荷検出手段には、エンジン1の吸入空気量
を測定するエアフローセンサ4や,吸気管2内の圧力を
測定するブーストセンサ(図示せず)の出力とクランク
角センサ24の出力とから検出したエンジン回転数から
負荷状態を検出する。
The configuration of this embodiment is the same as that of the second embodiment, except that the controller 16A includes an acceleration detection means for newly detecting the acceleration state and a load detection means for detecting the load state of the engine.
In addition, the flow rate control valve 11A is controlled according to the output of at least one of the acceleration detection means and the load detection means. The acceleration detecting means includes, for example, a throttle opening sensor that detects the opening of the throttle valve 5 and an air flow sensor 4. In addition, the load detection means includes the engine 1
There is an air flow sensor 4 for measuring the amount of intake air. Further, the load detecting means detects from the output of the air flow sensor 4 that measures the intake air amount of the engine 1, the boost sensor (not shown) that measures the pressure in the intake pipe 2, and the output of the crank angle sensor 24. The load condition is detected from the engine speed.

【0036】次に動作について説明する。エアポンプ8
で加圧して2次空気調整弁17によって最適導入量に調
整された空気が加熱器18で加熱され、排気管6へは逆
止弁14Aを介して排気導入管13を通して送り込まれ
る。また、吸気管2へは流量制御弁11Aによって調整
された加熱空気が送り込まれる。この時、加速検出手段
によって加速と判断した場合、もしくは負荷検出手段が
高負荷状態と判断した場合には、制御器16Aより流量
制御弁11Aの空気通路開口面積をゼロとするように制
御信号S8が送られ、吸気導入管12が封鎖される。し
たがって、加熱空気は吸気導入管12を流れず吸気管2
には導入されない。
Next, the operation will be described. Air pump 8
The air that has been pressurized by and adjusted to the optimum introduction amount by the secondary air adjustment valve 17 is heated by the heater 18, and is sent to the exhaust pipe 6 through the exhaust introduction pipe 13 via the check valve 14A. Further, the heated air adjusted by the flow rate control valve 11A is sent to the intake pipe 2. At this time, if the acceleration detecting means determines that the vehicle is accelerating, or if the load detecting means determines that the vehicle is in a high load state, the controller 16A causes the control signal S8 to set the air passage opening area of the flow control valve 11A to zero. Is sent, and the intake introduction pipe 12 is closed. Therefore, the heated air does not flow through the intake pipe 12 and the intake pipe 2
Will not be introduced to.

【0037】実施例4.以上の実施例では2次空気を排
気管6と吸気管2内に一定量導入する場合について説明
した。以下、導入空気量に変調を加えて、加熱空気の導
入を制御する請求項4の発明の一実施例について説明す
る。この実施例の構成は上記実施例2の構成を用いてお
り、制御器16Aにより流量制御弁11Aを強制的に駆
動させ、吸気導入管12を流れる空気に変調を与える。
この時、吸気管2内に導入される空気量が増加すると同
時に、2次空気の空気導入量制御手段からの吐出空気量
を増加させるようにした場合には、排気管6内の導入空
気量は減少されずに、吸気管2内の導入空気のみが変調
される。また、空気導入量制御手段からの吐出空気量を
固定させると、図9に示すように吸気管2と排気管6と
のそれぞれの導入空気に変調が与えられ、周期位相を1
80deg ずらすことができる。
Example 4. In the above embodiment, the case where a fixed amount of secondary air is introduced into the exhaust pipe 6 and the intake pipe 2 has been described. An embodiment of the invention of claim 4 in which the introduction of heated air is controlled by modulating the amount of introduced air will be described below. The configuration of this embodiment uses the configuration of the second embodiment, and the controller 16A forcibly drives the flow control valve 11A to modulate the air flowing through the intake introduction pipe 12.
At this time, if the amount of air introduced into the intake pipe 2 is increased and the amount of secondary air discharged from the air introduction amount control means is increased, the amount of introduced air in the exhaust pipe 6 is increased. Is not reduced, but only the introduced air in the intake pipe 2 is modulated. Further, when the amount of air discharged from the air introduction amount control means is fixed, the introduced air in each of the intake pipe 2 and the exhaust pipe 6 is modulated as shown in FIG.
It can be shifted by 80deg.

【0038】次に動作について説明する。エアポンプ8
で加圧して2次空気調整弁17によって最適導入量に調
整された空気が加熱器18で加熱され、排気管6へは逆
止弁14Aを介して排気導入管13を通して送り込まれ
る。また、吸気管2へは流量制御弁11Aによって調整
された加熱空気が送り込まれる。この時、吸気管2に送
られる空気量に変調を与えるため、制御器16Aより流
量制御弁11Aへ制御信号S8が送られ、流量制御弁1
1Aの空気通路を強制的にON/OFFさせ、吸気導入
管12を流れる加熱吸気が、任意の時間間隔で変化させ
るように流量制御弁11Aを制御する。
Next, the operation will be described. Air pump 8
The air that has been pressurized by and adjusted to the optimum introduction amount by the secondary air adjustment valve 17 is heated by the heater 18, and is sent to the exhaust pipe 6 through the exhaust introduction pipe 13 via the check valve 14A. Further, the heated air adjusted by the flow rate control valve 11A is sent to the intake pipe 2. At this time, in order to modulate the amount of air sent to the intake pipe 2, the control signal S8 is sent from the controller 16A to the flow control valve 11A, and the flow control valve 1
The air passage of 1A is forcibly turned ON / OFF, and the flow rate control valve 11A is controlled so that the heated intake air flowing through the intake air introduction pipe 12 changes at an arbitrary time interval.

【0039】変調の周期(T2)は、制御器16Aのメ
モリ内に予め記憶されており、ON/OFFのデューテ
ィは50%としてある。また、変調の周期やデューティ
は、機関温度やガスセンサ出力に応じて補正するように
なっている。変調空気量の増減量は、機関内空燃比(A
/F)が理論空燃比に対して、10〜20%濃く/薄く
( Rich / lean )になるようになっている。したがっ
て、機関より排出される排気ガス空燃比を、任意の時間
間隔で Rich / lean 反転である。したがって、触媒コ
ンバータ7での浄化性能が最大限に得られるウインド領
域を交差するようになるため、触媒コンバータ7の協奏
吸着効果が得られ排気ガス中のHC,COの浄化を促進
させる。
The modulation cycle (T2) is stored in advance in the memory of the controller 16A, and the ON / OFF duty is 50%. The modulation cycle and duty are corrected according to the engine temperature and the gas sensor output. The amount of increase / decrease in the modulated air amount is determined by the air-fuel ratio in the engine (A
/ F) is 10 to 20% richer / leaner than the theoretical air-fuel ratio. Therefore, the exhaust gas air-fuel ratio discharged from the engine is Rich / lean inversion at arbitrary time intervals. Therefore, since the window region where the purification performance of the catalytic converter 7 is maximized is crossed, the concerted adsorption effect of the catalytic converter 7 is obtained and the purification of HC and CO in the exhaust gas is promoted.

【0040】また、吸気管2と排気管6とに送る変調空
気量の周期位相を、180deg ずらすよう流量制御弁1
1Aを制御することによって、排気空燃比が濃いときに
2次空気を多く供給でき、薄いときは2次空気を減少さ
せることになるため、効率の良い排気管6内の空気の導
入が行え、触媒コンバータ7で排気ガス中のHC,CO
の酸化反応を促進させる。
Further, the flow rate control valve 1 is arranged so as to shift the periodic phase of the amount of modulated air sent to the intake pipe 2 and the exhaust pipe 6 by 180 deg.
By controlling 1A, a large amount of secondary air can be supplied when the exhaust air-fuel ratio is rich, and the secondary air is reduced when the exhaust air-fuel ratio is thin, so that the air in the exhaust pipe 6 can be introduced efficiently. HC and CO in the exhaust gas by the catalytic converter 7
Promotes the oxidation reaction of.

【0041】実施例5.上記実施例1では触媒コンバー
タ7の活性化判定を触媒活性化判定手段の出力から行っ
ているが、始動後タイマのカウント値が予め設定した所
定値となるまで、即ち所定時間経過した時に触媒活性化
と判断しても良い。但し、前記所定値は始動時の機関温
度や,吸気温等によるテーブル値として制御器16Aの
メモリに記憶されている。
Example 5. In the first embodiment, the activation of the catalytic converter 7 is determined based on the output of the catalyst activation determining means. However, the catalyst activation is performed until the count value of the post-start timer reaches a preset predetermined value, that is, when a predetermined time elapses. You may judge that it is becoming. However, the predetermined value is stored in the memory of the controller 16A as a table value based on the engine temperature at the time of starting, the intake air temperature, and the like.

【0042】実施例6.以上の実施例では逆止弁14A
を加熱器18の下流に設置しているが、排気管6を流れ
る排気ガスが逆流しない構成であれば、加熱手段上流ま
たは空気導入量制御手段の上流に備えても良い。
Example 6. In the above embodiment, the check valve 14A
Is installed downstream of the heater 18, but may be provided upstream of the heating means or upstream of the air introduction amount control means as long as the exhaust gas flowing through the exhaust pipe 6 does not flow backward.

【0043】実施例7.上記実施例2では制御器16A
から制御信号を受けて、カット弁26をON/OFFす
るようにしたが、加熱空気通路を排気導入管13の流出
から吸気導入管12の流出に切換える3方弁を排気導入
管13の途中に設けても、カット弁26と同様の機能が
得られる。
Example 7. In the second embodiment, the controller 16A
Although the cut valve 26 is turned on / off in response to the control signal from the control valve, a three-way valve for switching the heating air passage from the outflow of the exhaust introduction pipe 13 to the outflow of the intake introduction pipe 12 is provided in the middle of the exhaust introduction pipe 13. Even if it is provided, the same function as the cut valve 26 can be obtained.

【0044】実施例8.以上の実施例では制御器16A
はエンジン1の運転状態を示す制御信号S1,S2,S
3,S4を受けて、空気導入量制御手段や加熱手段を制
御する構成となっているが、エンジン1の各種温度やバ
ッテリ(図示せず)電圧や大気圧等により補正した制御
信号を出力するようにしても良い。また、制御器16A
はエンジン1の燃料噴射制御,点火制御,回転調整制御
等を行うエンジン制御器(図示せず)と一体構成として
も良い。
Example 8. In the above embodiment, the controller 16A
Are control signals S1, S2, S indicating the operating state of the engine 1.
3, the air introduction amount control means and the heating means are controlled in response to S3 and S4, but a control signal corrected by various temperatures of the engine 1, battery (not shown) voltage, atmospheric pressure, etc. is output. You may do it. Also, the controller 16A
May be integrated with an engine controller (not shown) that performs fuel injection control, ignition control, rotation adjustment control, etc. of the engine 1.

【0045】実施例9.以上の実施例ではエアポンプ8
の吸入側はエアクリーナ3の下流に接続されているが、
直接大気から吸入しても良く、専用のクリーナを設けて
吸気管2とは別に吸入口を設けても良い。
Example 9. In the above embodiment, the air pump 8
The suction side of is connected to the downstream of the air cleaner 3,
It may be directly sucked from the atmosphere, or a dedicated cleaner may be provided and an inlet port may be provided separately from the intake pipe 2.

【0046】[0046]

【発明の効果】請求項1の発明によれば、機関が始動後
所定時間を経過するまで流量制御手段を制御して吸気管
と排気管との両方に空気を導入して触媒が活性化するま
で排気管に空気を送るようにしたので、機関低温時にお
いて噴射燃料の霧化を促進でき、機関での燃焼性能を向
上できるために燃料消費量を低減できると共に、有害成
分であるHC,COの排出量を減少させることができ
る。さらに、排気管内に導入された加熱空気によって排
気ガス中のHC,COの酸化反応を促進させ、発生する
反応熱と加熱空気とによって触媒コンバータの早期活性
化を図り、触媒コンバータでの排気ガス浄化効率を高
め、大気中に排出される有害成分を低減させることがで
きるという効果がある。
According to the first aspect of the present invention, the catalyst is activated by controlling the flow rate control means to introduce air into both the intake pipe and the exhaust pipe until a predetermined time has elapsed after the engine is started. Since air is sent to the exhaust pipe up to the exhaust pipe, atomization of the injected fuel can be promoted when the engine temperature is low, and the combustion performance in the engine can be improved, so that the fuel consumption can be reduced and HC and CO Emissions can be reduced. Furthermore, the heated air introduced into the exhaust pipe promotes the oxidation reaction of HC and CO in the exhaust gas, and the reaction heat generated and the heated air aim at early activation of the catalytic converter to purify the exhaust gas in the catalytic converter. There is an effect that efficiency can be increased and harmful components emitted into the atmosphere can be reduced.

【0047】請求項2の発明によれば、触媒が活性化し
た後には触媒温度が所定温度になるまで吸気管と排気管
とに加熱空気の導入を行い、所定温度を越えると吸気管
側のみ加熱空気を導入するようにしたので、、触媒コン
バータの過熱による破損を防止でき、燃料噴射装置から
噴射された燃料が霧化されずに吸気管の壁面に付着する
ことを防止できる。さらに、吸気管内への加熱空気の導
入は燃料の霧化促進によって希薄燃焼が可能となり、燃
料消費量を低減でき、有害成分であるHC,COの排出
量が減少できる。さらに、触媒活性化後は排気管内に導
入された加熱空気によって、触媒コンバータで排気ガス
中のHC,COの酸化反応を促進させ、大気中に排出さ
れる有害成分を低減させることができるという効果があ
る。
According to the second aspect of the present invention, after the catalyst is activated, the heated air is introduced into the intake pipe and the exhaust pipe until the catalyst temperature reaches the predetermined temperature, and when the temperature exceeds the predetermined temperature, only the intake pipe side is introduced. Since the heated air is introduced, it is possible to prevent the catalytic converter from being damaged due to overheating, and to prevent the fuel injected from the fuel injection device from adhering to the wall surface of the intake pipe without being atomized. Further, the introduction of the heated air into the intake pipe enables lean combustion by promoting atomization of the fuel, which can reduce the fuel consumption amount and the emission amounts of harmful components HC and CO. Further, the effect that the heated air introduced into the exhaust pipe after the catalyst activation can accelerate the oxidation reaction of HC and CO in the exhaust gas by the catalytic converter and reduce the harmful components discharged into the atmosphere. There is.

【0048】請求項3の発明によれば、負荷検出手段と
加速検出手段との少なくとも一方の出力に応じて吸気管
への空気の導入を禁止するようにしたので、高負荷時に
希薄燃焼によるトルク低下を防止できる。また、加速時
に吸気管内の空気が急に燃焼室に吸入されるため希薄化
するが、2次空気の導入により希薄化が進んだ場合の失
火を防止できるという効果がある。
According to the third aspect of the present invention, the introduction of air into the intake pipe is prohibited according to the output of at least one of the load detecting means and the acceleration detecting means. It can prevent the deterioration. Further, the air in the intake pipe is abruptly sucked into the combustion chamber at the time of acceleration to be diluted, but there is an effect that misfiring can be prevented when the dilution is advanced by the introduction of the secondary air.

【0049】請求項4の発明によれば、吸気管と排気管
とに空気を導入するようにして吸気導入管を流れる空気
量を任意の時間間隔で変化させるように流量制御手段を
制御するようにしたので、任意の時間間隔で Rich / h
ean 反転できる。触媒コンバータでの浄化性能が最大限
に得られるウインド領域を交差するようになるために、
触媒コンバータの協奏吸着効果が得られ、排気ガス中の
HC,COの浄化を促進させる。また、吸気管と排気管
とに送る変調導入空気の変調位相を180degずらすこ
とによって排気空燃比が濃いときに排気管の導入空気を
多く供給でき、薄いときは減少させることになり、効率
の良い排気管内の空気の導入が行える。よって、触媒コ
ンバータで排気ガス中のHC,COの酸化反応を促進さ
せ、大気中に排出される有害成分を低減させることがで
きるという効果がある。
According to the fourth aspect of the present invention, the flow rate control means is controlled so as to introduce air into the intake pipe and the exhaust pipe and change the amount of air flowing through the intake introduction pipe at an arbitrary time interval. Since it is set to Rich / h at any time interval
ean can be flipped. In order to cross the wind region where the purification performance of the catalytic converter is maximized,
The concerted adsorption effect of the catalytic converter is obtained, and the purification of HC and CO in the exhaust gas is promoted. Further, by shifting the modulation phase of the modulated introduction air sent to the intake pipe and the exhaust pipe by 180 deg, a large amount of the introduced air can be supplied to the exhaust pipe when the exhaust air-fuel ratio is high, and it can be reduced when the air-fuel ratio is thin, resulting in good efficiency. The air in the exhaust pipe can be introduced. Therefore, there is an effect that the catalytic converter can accelerate the oxidation reaction of HC and CO in the exhaust gas and reduce the harmful components discharged into the atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による内燃機関の2次空気
導入制御装置の構成を示す構成図である。
FIG. 1 is a configuration diagram showing a configuration of a secondary air introduction control device for an internal combustion engine according to a first embodiment of the present invention.

【図2】図1の制御タイミングを説明するタイミングチ
ャートである。
FIG. 2 is a timing chart illustrating the control timing of FIG.

【図3】図1の制御動作の流れを説明するフローチャー
トである。
FIG. 3 is a flowchart illustrating a flow of control operation of FIG.

【図4】この発明の実施例2による内燃機関の2次空気
導入制御装置の構成を示す構成図である。
FIG. 4 is a configuration diagram showing a configuration of a secondary air introduction control device for an internal combustion engine according to a second embodiment of the present invention.

【図5】図4の制御タイミングを説明するタイミングチ
ャートである。
5 is a timing chart illustrating the control timing of FIG.

【図6】図4の制御動作の流れを説明するフローチャー
トである。
FIG. 6 is a flowchart illustrating a flow of control operation of FIG.

【図7】この発明の実施例3を示すものでかつ加速時の
スロットル開度と空燃比との関係からLeanスパイク現象
を示す図である。
FIG. 7 shows Embodiment 3 of the present invention and is a diagram showing a Lean spike phenomenon from the relationship between the throttle opening and the air-fuel ratio during acceleration.

【図8】この発明の実施例3を示すものでかつ高負荷高
回転域の空燃比が濃く設定されているエンリッチゾーン
を示す図である。
FIG. 8 is a diagram showing Embodiment 3 of the present invention and is a diagram showing an enrichment zone in which the air-fuel ratio in the high load / high speed region is set to be high.

【図9】この発明の実施例4による2次空気変調導入時
の空気量と変調位相と機関空燃比の関係を示す図であ
る。
FIG. 9 is a diagram showing a relationship between an air amount, a modulation phase, and an engine air-fuel ratio when introducing secondary air modulation according to Embodiment 4 of the present invention.

【図10】従来の内燃機関の2次空気導入制御装置の構
成を示す構成図である。
FIG. 10 is a configuration diagram showing a configuration of a conventional secondary air introduction control device for an internal combustion engine.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 吸気管 3 エアクリーナ 6 排気管 7 触媒コンバータ 8 エアポンプ 11A 流量制御弁 12 吸気導入管 14A 逆止弁 13 排気導入管 16A 制御器 17 2次空気調整弁 18 加熱器 19 活性化判定器 20 触媒担体温センサ 21 触媒入口ガス温センサ 22 触媒出口ガス温センサ 23 ガスセンサ 24 クランク角センサ 25 ガスセンサ 26 カット弁 1 Internal Combustion Engine 2 Intake Pipe 3 Air Cleaner 6 Exhaust Pipe 7 Catalytic Converter 8 Air Pump 11A Flow Control Valve 12 Intake Inlet Pipe 14A Check Valve 13 Exhaust Inlet Pipe 16A Controller 17 Secondary Air Conditioning Valve 18 Heater 19 Activation Determinator 20 Catalyst carrier temperature sensor 21 Catalyst inlet gas temperature sensor 22 Catalyst outlet gas temperature sensor 23 Gas sensor 24 Crank angle sensor 25 Gas sensor 26 Cut valve

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月10日[Submission date] February 10, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0039】変調の周期(T2)は、制御器16Aのメ
モリ内に予め記憶されており、ON/OFFのデューテ
ィは50%としてある。また、変調の周期やデューティ
は、機関温度やガスセンサ出力に応じて補正するように
なっている。変調空気量の増減量は、機関内空燃比(A
/F)が理論空燃比に対して、10〜20%濃く/薄く
( Rich / Lean )になるようになっている。したがっ
て、機関より排出される排気ガス空燃比を、任意の時間
間隔で Rich / Lean 反転でる。したがって、触媒コ
ンバータ7での浄化性能が最大限に得られるウインド領
域を交差するようになるため、触媒コンバータ7の協奏
吸着効果が得られ排気ガス中のHC,COの浄化を促進
させる。
The modulation cycle (T2) is stored in advance in the memory of the controller 16A, and the ON / OFF duty is 50%. The modulation cycle and duty are corrected according to the engine temperature and the gas sensor output. The amount of increase / decrease in the modulated air amount is determined by the air-fuel ratio in the engine (A
/ F) is adapted to the theoretical air-fuel ratio becomes 10-20% dense / thin (Rich / L ean). Thus, the exhaust gas air-fuel ratio is discharged from the engine, ∎ it can with Rich / L ean inverted at arbitrary time intervals. Therefore, since the window region where the purification performance of the catalytic converter 7 is maximized is crossed, the concerted adsorption effect of the catalytic converter 7 is obtained and the purification of HC and CO in the exhaust gas is promoted.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0049[Correction target item name] 0049

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0049】請求項4の発明によれば、吸気管と排気管
とに空気を導入するようにして吸気導入管を流れる空気
量を任意の時間間隔で変化させるように流量制御手段を
制御するようにしたので、任意の時間間隔で Rich / L
ean 反転できる。触媒コンバータでの浄化性能が最大限
に得られるウインド領域を交差するようになるために、
触媒コンバータの協奏吸着効果が得られ、排気ガス中の
HC,COの浄化を促進させる。また、吸気管と排気管
とに送る変調導入空気の変調位相を180degずらすこ
とによって排気空燃比が濃いときに排気管の導入空気を
多く供給でき、薄いときは減少させることになり、効率
の良い排気管内の空気の導入が行える。よって、触媒コ
ンバータで排気ガス中のHC,COの酸化反応を促進さ
せ、大気中に排出される有害成分を低減させることがで
きるという効果がある。
According to the fourth aspect of the present invention, the flow rate control means is controlled so as to introduce air into the intake pipe and the exhaust pipe and change the amount of air flowing through the intake introduction pipe at an arbitrary time interval. Since it was set to Rich / L at any time interval
ean can be flipped. In order to cross the wind region where the purification performance of the catalytic converter is maximized,
The concerted adsorption effect of the catalytic converter is obtained, and the purification of HC and CO in the exhaust gas is promoted. Further, by shifting the modulation phase of the modulated introduction air sent to the intake pipe and the exhaust pipe by 180 deg, a large amount of the introduced air can be supplied to the exhaust pipe when the exhaust air-fuel ratio is high, and it can be reduced when the air-fuel ratio is thin, resulting in good efficiency. The air in the exhaust pipe can be introduced. Therefore, there is an effect that the catalytic converter can accelerate the oxidation reaction of HC and CO in the exhaust gas and reduce the harmful components discharged into the atmosphere.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02M 23/12 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area F02M 23/12 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関に2次空気を導入する内燃機関
の2次空気導入制御装置において、2次空気を導入して
導入量を制御する空気導入量制御手段と、2次空気を加
熱する加熱手段と、排気管内に空気を導入するために接
続された排気導入管と、空気導入通路への排気ガスの逆
流を防止する逆流防止手段と、吸気管内に空気を導入す
るために接続された吸気導入管と、この吸気導入管の通
路面積を可変する流量制御手段と、触媒の活性化状態を
判定する触媒活性化判定手段と、機関の運転状態に応じ
て前記導入空気量や加熱容量を調整して空気導入位置を
制御する制御手段とを備え、 機関が始動後所定時間を経過するまで、前記流量制御手
段を制御して、吸気管と排気管との両方に空気を導入
し、触媒が活性化するまで排気管に空気を送るようにし
たことを特徴とする内燃機関の2次空気導入制御装置。
1. In a secondary air introduction control device for an internal combustion engine, which introduces secondary air to the internal combustion engine, air introduction amount control means for introducing secondary air to control the introduction amount, and heating the secondary air. A heating means, an exhaust introduction pipe connected to introduce air into the exhaust pipe, a backflow preventing means to prevent reverse flow of exhaust gas into the air introduction passage, and an exhaust introduction pipe connected to introduce air into the intake pipe. The intake introduction pipe, a flow rate control means for varying the passage area of the intake introduction pipe, a catalyst activation determination means for determining the activation state of the catalyst, and the introduction air amount and heating capacity depending on the operating state of the engine. And a control means for controlling the air introduction position by adjusting the flow rate control means to introduce air into both the intake pipe and the exhaust pipe until a predetermined time elapses after the engine is started. Sends air to the exhaust pipe until is activated Secondary air introduction control apparatus for an internal combustion engine, characterized in that there was Unishi.
【請求項2】 内燃機関に2次空気を導入する内燃機関
の2次空気導入制御装置において、2次空気を導入して
導入量を制御する空気導入量制御手段と、2次空気を加
熱する加熱手段と、排気管内に空気を導入するために接
続された排気導入管と、空気導入通路への排気ガスの逆
流を防止する逆流防止手段と、吸気管内に空気を導入す
るために接続された吸気導入管と、この吸気導入管の通
路面積を可変する流量制御手段と、触媒の活性化状態を
判定する触媒活性化判定手段と、触媒温度を検出する温
度検出手段と、機関の運転状態に応じて前記導入空気量
や加熱容量を調整して空気導入位置を制御する制御手段
とを備え、 触媒が活性化した後には、触媒温度が所定温度になるま
で吸気管と排気管との両方に加熱空気の導入を行い、所
定温度を越えると吸気管側のみ加熱空気の導入を行うよ
うにしたことを特徴とする内燃機関の2次空気導入制御
装置。
2. A secondary air introduction control device for an internal combustion engine, which introduces secondary air to the internal combustion engine, and air introduction amount control means for introducing secondary air to control the introduction amount, and heating the secondary air. A heating means, an exhaust introduction pipe connected to introduce air into the exhaust pipe, a backflow preventing means to prevent reverse flow of exhaust gas into the air introduction passage, and an exhaust introduction pipe connected to introduce air into the intake pipe. The intake introduction pipe, the flow rate control means for varying the passage area of the intake introduction pipe, the catalyst activation determination means for determining the activation state of the catalyst, the temperature detection means for detecting the catalyst temperature, and the operating state of the engine. In accordance with the control means for controlling the air introduction position by adjusting the amount of introduced air and the heating capacity according to the above, after the catalyst is activated, both the intake pipe and the exhaust pipe until the catalyst temperature reaches a predetermined temperature. Introduces heated air to the specified temperature Secondary air introduction control apparatus for an internal combustion engine, characterized in that to perform the introduction of only heating the air intake pipe side exceeds.
【請求項3】 内燃機関に2次空気を導入する内燃機関
の2次空気導入制御装置において、2次空気を導入して
導入量を制御する空気導入制御手段と、2次空気を加熱
する加熱手段と、排気管内に空気を導入するために接続
された排気導入管と、空気導入通路への排気ガスの逆流
を防止する逆流防止手段と、吸気管内に空気を導入する
ために接続された吸気導入管と、この吸気導入管の通路
面積を可変する流量制御手段と、触媒の活性化状態を判
定する触媒活性化判定手段と、触媒温度を検出する温度
検出手段と、機関の負荷状態を検出する負荷検出手段
と、加速状態を検出する加速検出手段と、機関の運転状
態に応じて前記導入空気量や加熱容量を調整して空気導
入位置を制御する制御手段とを備え、 前記負荷検出手段と加速検出手段の少なくとも一方の出
力に応じて、吸気管への空気の導入を禁止するようにし
たことを特徴とする請求項2の内燃機関の2次空気導入
制御装置。
3. A secondary air introduction control device for an internal combustion engine, which introduces secondary air to the internal combustion engine, wherein air introduction control means for introducing secondary air to control the introduction amount and heating for heating the secondary air. Means, an exhaust introduction pipe connected to introduce air into the exhaust pipe, a backflow prevention unit to prevent backflow of exhaust gas into the air introduction passage, and an intake air connected to introduce air into the intake pipe An introduction pipe, a flow rate control means for varying the passage area of the intake introduction pipe, a catalyst activation judgment means for judging the activation state of the catalyst, a temperature detection means for detecting the catalyst temperature, and a load state of the engine. Load detecting means, an acceleration detecting means for detecting an acceleration state, and a control means for controlling the air introduction position by adjusting the amount of introduced air or the heating capacity according to the operating state of the engine, the load detecting means And a small number of acceleration detection means Depending on one output Kutomo, secondary air introduction control apparatus for an internal combustion engine according to claim 2, characterized in that so as to prohibit the introduction of air into the intake pipe.
【請求項4】 内燃機関に2次空気を導入する内燃機関
の2次空気導入制御装置において、2次空気を導入して
導入量を制御する空気導入量手段と、2次空気を加熱す
る加熱手段と、排気管内に空気を導入するために接続さ
れた排気導入管と、空気導入通路への排気ガスの逆流を
防止する逆流防止手段と、吸気管内に空気を導入するた
めに接続された吸気導入管と、この吸気導入管の通路面
積を可変する流量制御手段と、触媒の活性化状態を判定
する触媒活性化判定手段と、触媒温度を検出する温度検
出手段と、機関の運転状態に応じて前記導入空気量や加
熱容量を調整して空気導入位置を制御する制御手段とを
備え、 吸気管と排気管とに空気を導入するようにして、少なく
とも前記吸気導入管を流れる空気量を、任意の時間間隔
で変化させるように、前記流量制御手段を制御するよう
にしたことを特徴とする内燃機関の2次空気導入制御装
置。
4. In a secondary air introduction control device for an internal combustion engine, which introduces secondary air to the internal combustion engine, air introduction amount means for introducing secondary air to control the introduction amount, and heating for heating the secondary air. Means, an exhaust introduction pipe connected to introduce air into the exhaust pipe, a backflow prevention unit to prevent backflow of exhaust gas into the air introduction passage, and an intake air connected to introduce air into the intake pipe The introduction pipe, the flow rate control means for varying the passage area of the intake introduction pipe, the catalyst activation judgment means for judging the activation state of the catalyst, the temperature detection means for detecting the catalyst temperature, and the operation condition of the engine. And a control means for controlling the air introduction position by adjusting the introduced air amount and the heating capacity, and introducing the air into the intake pipe and the exhaust pipe, at least the air amount flowing through the intake introduction pipe, Change at any time interval As such, the secondary air introduction control apparatus for an internal combustion engine is characterized in that so as to control the flow control means.
JP5271957A 1993-10-29 1993-10-29 Secondary air lead-in control device for internal combustion engine Pending JPH07127444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5271957A JPH07127444A (en) 1993-10-29 1993-10-29 Secondary air lead-in control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5271957A JPH07127444A (en) 1993-10-29 1993-10-29 Secondary air lead-in control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07127444A true JPH07127444A (en) 1995-05-16

Family

ID=17507172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5271957A Pending JPH07127444A (en) 1993-10-29 1993-10-29 Secondary air lead-in control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07127444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980077062A (en) * 1997-04-16 1998-11-16 김영귀 Catalyst Enhancer of Exhaust Pipe
EP1046807A3 (en) * 1999-04-20 2001-03-21 TWIN-TEC Entwicklungsgesellschaft für emissionsreduzierende Technologien mbH Secondary air supply device for a combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980077062A (en) * 1997-04-16 1998-11-16 김영귀 Catalyst Enhancer of Exhaust Pipe
EP1046807A3 (en) * 1999-04-20 2001-03-21 TWIN-TEC Entwicklungsgesellschaft für emissionsreduzierende Technologien mbH Secondary air supply device for a combustion engine

Similar Documents

Publication Publication Date Title
KR960002349B1 (en) Air introduction control apparatus in exhaust pipe of internal combustion engine
JPH0674030A (en) Secondary air control device
JPH0518234A (en) Secondary air control device for internal combustion engine
JPH05240031A (en) Secondary air control device of internal combustion engine
JPH07127444A (en) Secondary air lead-in control device for internal combustion engine
CN110700955B (en) Method and device for controlling excess air coefficient of gasoline engine catalyst
JP2770662B2 (en) Engine exhaust gas purification device
JP2000130221A (en) Fuel injection control device of internal combustion engine
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JP3491409B2 (en) Exhaust gas purification device for internal combustion engine
JP2944371B2 (en) Air introduction device in exhaust pipe of internal combustion engine
JPH08144802A (en) Air-fuel ratio controller for internal combustion engine
JPH01227815A (en) Exhaust gas purifying device
JPH11247684A (en) Fuel injection control device of internal combustion engine
KR19980065555A (en) Catalyst activation determination device and engine control device of the engine
KR970001121B1 (en) Apparatus for introducing fresh air into exhaust pipe of internal combustion engine
JPH0874568A (en) Secondary air feeding method of internal combustion engine and device thereof
JPH06212959A (en) Exhaust emission control device of internal combustion engine
JPH06101458A (en) Exhaust gas purifying device
JP3667520B2 (en) Air-fuel ratio control device for internal combustion engine
JP2878057B2 (en) Air introduction control device in exhaust pipe of internal combustion engine
JPH07133717A (en) Pulse air induction reactor of engine
JPH09195865A (en) Evaporated fuel processing control device for internal combustion engine
JPS63215810A (en) Air-fuel ratio controlling device for internal combustion engine
JP2005180198A (en) Exhaust emission control device for internal combustion engine