JPH0712724A - Fire alarm device and fire detecting method - Google Patents

Fire alarm device and fire detecting method

Info

Publication number
JPH0712724A
JPH0712724A JP8281594A JP8281594A JPH0712724A JP H0712724 A JPH0712724 A JP H0712724A JP 8281594 A JP8281594 A JP 8281594A JP 8281594 A JP8281594 A JP 8281594A JP H0712724 A JPH0712724 A JP H0712724A
Authority
JP
Japan
Prior art keywords
light
light receiving
smoke
light emitting
scattering surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8281594A
Other languages
Japanese (ja)
Other versions
JP3251763B2 (en
Inventor
Tetsuya Nagashima
哲也 長島
Masato Aizawa
真人 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP08281594A priority Critical patent/JP3251763B2/en
Publication of JPH0712724A publication Critical patent/JPH0712724A/en
Application granted granted Critical
Publication of JP3251763B2 publication Critical patent/JP3251763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect an occurrence of fire and a kind thereof by monitoring scattered light from smoke. CONSTITUTION:A fire alarm device comprises a first light emitting element 11, a polarizing filter 31, a light receiving element 21, a second light emitting element 12, a polarizing filter 32 and a light receiving element 22. With the use of these elements, a quantity of received polarized light which is parallel with the light scattering surface, and a quantity of received polarized light which is perpendicular to the scattering surface can be detected. The ratio between these light quantities which relates to a kind of smoke, is obtained from outputs from the light receiving elements 21, 22 by a computing part 4. Thus obtained ratio is compared with reference values which have been previously set in accordance with kinds of smoke to be detected, so as to determine whether a fire occurs or not. Thereby it is possible to detect an occurrence of fire and a kind of fire from the scattered light from the smoke.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火災時に発生する煙の
散乱光から火災の有無を検出する散乱光式の火災報知装
置及び火災検出方法に関する。特に、煙の種類と散乱光
の散乱角及び偏光度の関係に着目して煙の種類に応じた
火災検出を行う火災報知装置及び火災検出方法に関し、
その中でもとりわけ、光源を所定偏光面を有する偏光光
源として、検出精度を向上せしめた火災報知装置及び火
災検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scattered light type fire alarm device and a fire detection method for detecting the presence or absence of a fire from the scattered light of smoke produced during a fire. In particular, the present invention relates to a fire alarm device and a fire detection method for detecting a fire according to the type of smoke by focusing on the relationship between the type of smoke and the scattering angle and degree of polarization of scattered light.
Above all, the present invention relates to a fire alarm device and a fire detection method in which the light source is a polarized light source having a predetermined polarization plane and the detection accuracy is improved.

【0002】[0002]

【従来の技術】従来、この種の火災報知装置では、図1
0に示すように、発光ダイオード等の発光素子102を
煙検出室(煙検空間)の中心部Xに向けて配置する。ま
た、フォトダイオード等の受光素子104を、その光軸
が発光素子102の光軸に対して所定の角度θで交差す
るように配置する。さらに、発光素子102により光軸
方向に指向性を有する光を常時照射する。そして、火災
により煙が煙検空間に侵入してきた時、煙検空間におけ
る煙の散乱光を受光素子104が集光レンズ(図示せ
ず)を介して受光するように構成される。
2. Description of the Related Art Conventionally, a fire alarm device of this type has been shown in FIG.
As shown in 0, the light emitting element 102 such as a light emitting diode is arranged toward the center portion X of the smoke detection chamber (smoke detection space). Further, the light receiving element 104 such as a photodiode is arranged so that its optical axis intersects the optical axis of the light emitting element 102 at a predetermined angle θ. Further, the light emitting element 102 constantly emits light having directivity in the optical axis direction. When smoke enters the smoke inspection space due to fire, the light receiving element 104 receives scattered light of the smoke in the smoke inspection space through a condenser lens (not shown).

【0003】即ち、火災が発生していない平常時には、
煙が煙検空間に侵入していないので受光素子104に到
達する散乱光の強度は弱い。他方、火災による煙106
が煙検空間に侵入すると受光素子104に到達する散乱
光の強度が強くなる。一方、受光素子104に入射する
散乱光の強度は、煙106の濃度と相関関係にある。従
って、受光素子104の出力レベルが所定の閾値レベル
を越えた場合に火災発生と判断される。
That is, in normal times when no fire has occurred,
Since the smoke does not enter the smoke detection space, the intensity of scattered light reaching the light receiving element 104 is weak. On the other hand, smoke 106 from a fire
When enters into the smoke detection space, the intensity of scattered light reaching the light receiving element 104 increases. On the other hand, the intensity of scattered light incident on the light receiving element 104 has a correlation with the density of the smoke 106. Therefore, when the output level of the light receiving element 104 exceeds a predetermined threshold level, it is determined that a fire has occurred.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の火災報知装置では、煙の種類を判断せず、単
に煙検空間における煙106の濃度により火災の有無を
判断する。従って、煙の種類に応じて火災か否かを判断
することができないという問題点がある。即ち、現実に
はプラスチックや木材など燃焼材の材質によって煙の色
や粒子に径が異なる。そのため、煙検空間における煙1
06の濃度が等しくても受光素子104に到達する散乱
光の強度が燃焼材の材質によって異なることになる。従
って、煙の種類にかかわらず一義的な閾値レベルを基準
にして火災か否かを判断すると、非火災を火災と判断し
たり、また、火災判断が遅れるという問題点が発生す
る。
However, such a conventional fire alarm device does not determine the type of smoke, but simply determines the presence or absence of a fire based on the concentration of smoke 106 in the smoke inspection space. Therefore, there is a problem that it is not possible to determine whether or not there is a fire depending on the type of smoke. That is, in reality, the color of smoke and the diameter of particles differ depending on the material of the combustion material such as plastic or wood. Therefore, smoke 1 in the smoke inspection space
Even if the concentration of 06 is the same, the intensity of scattered light reaching the light receiving element 104 varies depending on the material of the combustion material. Therefore, if a fire is judged on the basis of a unique threshold level regardless of the type of smoke, there is a problem that a non-fire is judged to be a fire or the fire judgment is delayed.

【0005】例えばタバコの煙が充満した部屋では、火
災でないにもかかわらず火災と判断する場合がある。ま
た、石油による火災の場合には、石油の燃焼により発生
する黒い煙による散乱光はその強度が弱い。そのため、
かなり火災が広がってから火災が検出されることにな
り、火災判断が遅れることになる。一方、このような弊
害に鑑みて、特開平2−213997号公報には、無偏
光光を光源とし、受光側において、直交する2つの偏光
成分に分けて散乱光を受光し、両成分の受光量の比の範
囲で煙の存在を判断する方法が提案されている。しかし
ながら、この方法では、煙粒子に大きさを単一のものと
して解析し、煙が種々の粒子径を有する多数の粒子群の
集合であることを無視している。
For example, in a room filled with cigarette smoke, it may be judged as a fire even though it is not a fire. Further, in the case of a fire caused by oil, the intensity of scattered light due to black smoke generated by the combustion of oil is weak. for that reason,
The fire will be detected after it has spread considerably, and the fire judgment will be delayed. On the other hand, in view of such an adverse effect, JP-A-2-213997 discloses that unpolarized light is used as a light source, and on the light receiving side, scattered light is divided into two orthogonal polarization components, and both components are received. Methods have been proposed to determine the presence of smoke within a volume ratio range. However, this method analyzes smoke particles as having a single size and ignores that smoke is a group of many particle groups having various particle sizes.

【0006】このため、この方法では実際の煙に対して
は誤差が発生するいう問題がある。また、この方法で
は、無偏光光を光源とし、光源の偏光面が散乱面に対し
て何ら考慮されていない。従って、受光素子での各偏光
方向における受光量のSN比が低くなってしまい、受光
素子により実際に得られる出力比が小さくなり実用的で
はない。
Therefore, this method has a problem that an error occurs with respect to actual smoke. In this method, unpolarized light is used as the light source, and the polarization plane of the light source is not considered with respect to the scattering surface. Therefore, the SN ratio of the amount of light received in each polarization direction in the light receiving element becomes low, and the output ratio actually obtained by the light receiving element becomes small, which is not practical.

【0007】さらに、煙の種類を判断することにより火
災判断の精度を向上させたものとして、特開平5−12
8381号公報の発明がある。特開平5−123381
号公報の発明は、異なった偏光方向における光の強度を
求め、この光強度から変更度を演算して煙の種類を判定
する。そして、煙の種類に応じて予め設定されている閾
値と光強度を比較することにより火災の有無を判断す
る。
Further, as a method for improving the accuracy of fire judgment by judging the type of smoke, Japanese Patent Laid-Open No. 5-12
There is an invention of 8381. JP-A-5-123381
In the invention of the publication, the intensity of light in different polarization directions is obtained, and the degree of change is calculated from this light intensity to determine the type of smoke. Then, the presence or absence of a fire is determined by comparing the light intensity with a preset threshold value according to the type of smoke.

【0008】しかしながら、この場合にあっても、上述
の例と同様に無偏光光を光源としており、受光量のSN
比が低い。即ち、出力比が火災の有無で2×10-1:4
×10-1程度と小さいという問題は解決されていない。
本発明は、このような従来の問題点に鑑み、また、煙粒
子群による散乱光の偏光特性の違いに着目し、煙の散乱
光から火災の有無を煙の種類に応じて検出することがで
きる火災報知装置を提供することを目的とする。
However, even in this case, the non-polarized light is used as the light source as in the above-mentioned example, and the received light amount SN
The ratio is low. That is, the output ratio is 2 × 10 -1 : 4 with or without fire.
The problem of being as small as × 10 -1 has not been solved.
In view of such a conventional problem, the present invention focuses on the difference in the polarization characteristics of scattered light due to smoke particle groups, and can detect the presence or absence of a fire from the scattered light of smoke according to the type of smoke. An object is to provide a fire alarm device that can be used.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、煙検空間に向けて光を照射する発光手段
と、煙による散乱光を受光する受光手段とを備え、該受
光手段における受光量を所定の基準値と比較することに
より火災の有無を判断する火災報知装置において、発光
手段は、煙検空間内において発光手段の光軸と受光手段
の光軸が交差することにより画定される散乱面に平行な
平面偏光光と垂直な偏光光を出力し、受光手段は、散乱
面に対し平行な偏光光と垂直な偏光光を受光し、さら
に、受光手段における各偏光光の受光量を検出する光電
変換手段と、光電変換手段により変換された散乱面に対
し平行な偏光光と垂直な偏光光との受光量の比を演算す
る演算手段と、演算手段により得られた比と煙の種類毎
に予め設定された前記比の基準値とを比較し、該基準値
に基づき煙の種類毎に火災の有無を判断する判断手段を
設けたことを特徴とする。
In order to achieve the above-mentioned object, the present invention comprises a light emitting means for irradiating the smoke detection space with light and a light receiving means for receiving scattered light due to smoke. In a fire alarm device that determines the presence or absence of a fire by comparing the amount of light received at a predetermined reference value, the light emitting means is defined by the optical axis of the light emitting means and the optical axis of the light receiving means intersecting in the smoke inspection space. The polarized light parallel to the scattering surface and the polarized light perpendicular to the scattering surface are output, and the light receiving means receives the polarized light parallel to the scattering surface and the polarized light perpendicular to the scattering surface, and further receives each polarized light in the light receiving means. A photoelectric conversion means for detecting the amount, a calculation means for calculating the ratio of the amount of received light of polarized light parallel to the scattering surface converted by the photoelectric conversion means and polarized light perpendicular to the scattering surface, and the ratio obtained by the calculation means. The previously set for each type of smoke Of comparing the reference value, characterized in that a determination means for determining the presence or absence of fire for each type of smoke based on the reference value.

【0010】また、本発明にあっては、好ましくは、発
光手段が、第1の発光素子及び第2の発光素子より形成
されており、受光手段が、第1の受光素子及び第2の受
光素子より形成されており、第1の発光素子は、第1の
発光素子の光軸と第1の受光素子の光軸が交差すること
により煙検空間内において画定される第1の散乱面に平
行な平面偏光光を出力し、第2の発光素子は、第2の発
光素子の光軸と第2の受光素子の光軸が交差することに
より煙検空間内において画定される第2の散乱面に垂直
な平面偏光光を出力し、第1の受光素子は、第1の散乱
面に平行な偏光光を受光し、第2の受光素子は、第2の
散乱面に垂直な偏光光を受光し、さらに、光電変換手段
は、第1及び第2の受光素子における受光量を検出し、
演算手段は、光電変換手段により変換された第1及び第
2の受光素子の受光量の比を演算するようにしても良
い。
Further, in the present invention, preferably, the light emitting means is formed of the first light emitting element and the second light emitting element, and the light receiving means is the first light receiving element and the second light receiving element. The first light emitting element is formed on the first scattering surface defined in the smoke detection space by intersecting the optical axis of the first light emitting element and the optical axis of the first light receiving element. The second light-emitting element outputs parallel plane-polarized light, and the second light-emitting element has a second scattering defined by the optical axis of the second light-emitting element and the optical axis of the second light-receiving element intersecting each other. Plane polarized light perpendicular to the plane is output, the first light receiving element receives polarized light parallel to the first scattering surface, and the second light receiving element emits polarized light perpendicular to the second scattering surface. Further, the photoelectric conversion means detects the amount of light received by the first and second light receiving elements,
The calculation means may calculate the ratio of the received light amounts of the first and second light receiving elements converted by the photoelectric conversion means.

【0011】さらに、受光手段が、第1の受光素子及び
第2の受光素子より形成されており、発光手段は、発光
手段の光軸と前記第1の受光素子の光軸が交差すること
により煙検空間内において画定される第1の散乱面に平
行な平面偏光光を出力し、第1の受光素子は、第1の散
乱面に平行な偏光光を受光し、第2の受光素子は、発光
手段の光軸と第2の受光素子の光軸が交差することによ
り煙検空間内において画定される第2の散乱面に垂直な
偏光光を受光し、前記第1の散乱面と第2の散乱面とは
互いに垂直な位置関係を有し、光電変換手段は、第1及
び第2の受光素子における受光量を検出し、演算手段
は、光電変換手段により変換された第1及び第2の受光
素子の受光量の比を演算するようにしても良い。
Further, the light receiving means is formed of a first light receiving element and a second light receiving element, and the light emitting means is constructed by intersecting the optical axis of the light emitting means with the optical axis of the first light receiving element. The plane polarized light parallel to the first scattering surface defined in the smoke detection space is output, the first light receiving element receives the polarized light parallel to the first scattering surface, and the second light receiving element is , The optical axis of the light emitting means and the optical axis of the second light receiving element intersect to receive polarized light perpendicular to the second scattering surface defined in the smoke detection space, and the first scattering surface and the first scattering surface The second scattering surface and the second scattering surface have a vertical positional relationship with each other, the photoelectric conversion unit detects the amount of light received by the first and second light receiving elements, and the calculation unit is the first and first photoelectric conversion units. It is also possible to calculate the ratio of the amount of light received by the two light receiving elements.

【0012】加えて、発光手段が、交互に点灯される第
1の発光素子及び第2の発光素子より形成されており、
第1の発光素子は、第1の発光素子の光軸と受光手段の
光軸が交差することにより煙検空間内において画定され
る第1の散乱面に平行な平面偏光光を出力し、第2の発
光素子は、該第2の発光素子の光軸と受光手段の光軸が
交差することにより煙検空間内において画定される第2
の散乱面に垂直な平面偏光光を出力し、受光手段は、第
1の散乱面に平行な偏光光を受光し、前記第1の散乱面
と第2の散乱面とは互いに垂直な位置関係を有し、光電
変換手段は、第1及び第2の発光素子点灯時における受
光手段での各々の場合の受光量を検出し、演算手段は、
光電変換手段により変換された第1の発光素子点灯時に
おける受光量と第2の発光素子点灯時における受光量と
の比を演算するようにしても良い。
In addition, the light emitting means is formed by the first light emitting element and the second light emitting element which are alternately turned on,
The first light emitting element outputs plane-polarized light parallel to the first scattering surface defined in the smoke detection space by intersecting the optical axis of the first light emitting element and the optical axis of the light receiving means, The second light-emitting element is defined in the smoke detection space by the optical axis of the second light-emitting element and the optical axis of the light-receiving means intersecting each other.
The plane-polarized light perpendicular to the scattering surface is received, the light receiving means receives the polarized light parallel to the first scattering surface, and the first scattering surface and the second scattering surface are in a positional relationship perpendicular to each other. And the photoelectric conversion means detects the amount of light received in each of the light receiving means when the first and second light emitting elements are turned on, and the calculation means:
It is also possible to calculate the ratio of the received light amount when the first light emitting element is turned on and the received light amount when the second light emitting element is turned on, which is converted by the photoelectric conversion means.

【0013】さらにまた、発光手段が、平面偏光光を出
力し、この平面偏光光が、前記散乱面と垂直または平行
となる位置に発光手段を回動させる駆動手段と、受光手
段の全面に配設され平面偏光光と同方向の偏光光のみを
透過させる位置に発光手段と同期して回動する偏光フィ
ルタを設け、光電変換手段は、発光手段から出力される
平面偏光光が散乱面と垂直及び平行となる位置における
受光手段での各々の場合の受光量を検出し、演算手段
は、光電変換手段により変換された平面偏光光が散乱面
と垂直なる位置における受光量と、平面偏光光が散乱面
と平行となる位置における受光量との比を演算するよう
にしても良い。
Furthermore, the light emitting means outputs plane polarized light, and the plane polarized light is arranged on the entire surface of the light receiving means and the driving means for rotating the light emitting means to a position perpendicular or parallel to the scattering surface. A polarization filter that rotates in synchronism with the light emitting means is provided at a position where only the polarized light in the same direction as the plane polarized light is transmitted, and the photoelectric conversion means is arranged such that the plane polarized light output from the light emitting means is perpendicular to the scattering surface. And the amount of light received by the light receiving means in each of the parallel positions, and the calculating means calculates the amount of light received at the position where the plane polarized light converted by the photoelectric conversion means is perpendicular to the scattering surface and the plane polarized light. You may make it calculate the ratio with the light-receiving amount in the position parallel to a scattering surface.

【0014】一方、本発明にあっては、上記目的を達成
するため、煙検空間に向けて光を照射する発光手段と、
煙による散乱光を受光する受光手段とを設け、該受光手
段における受光量を所定の基準値と比較することにより
火災の有無を判断する火災検出方法において、発光手段
より、煙検空間内において発光手段の光軸と受光手段の
光軸が交差することにより画定される散乱面に平行な平
面偏光光と垂直な平面偏光光を出力し、受光手段によ
り、散乱面に対し平行な偏光光と垂直な偏光光を受光
し、受光手段における各偏光光の受光量を検出すると共
に、散乱面に対し平行な偏光光と垂直な偏光光との受光
量の比を演算し、該比と煙の種類毎に予め設定された前
記比の基準値とを比較し、該基準値に基づき煙の種類毎
に火災の有無を判断するようにもしている。
On the other hand, according to the present invention, in order to achieve the above object, a light emitting means for irradiating the smoke inspection space with light,
In a fire detecting method for determining the presence or absence of a fire by providing a light receiving means for receiving scattered light due to smoke and comparing the amount of light received by the light receiving means with a predetermined reference value, the light emitting means emits light in the smoke detection space. The plane-polarized light parallel to the scattering plane defined by the intersection of the optical axis of the means and the optical axis of the light-receiving means and the plane-polarized light perpendicular to the scattering plane are output, and the plane-polarized light parallel to the scattering plane is output by the light-receiving means. The polarized light is received, the received light amount of each polarized light in the light receiving means is detected, and the ratio of the received light amount between the polarized light parallel to the scattering surface and the polarized light perpendicular to the scattering surface is calculated, and the ratio and the type of smoke. The reference value of the ratio set in advance is compared with each other, and the presence or absence of a fire is determined for each type of smoke based on the reference value.

【0015】また、好ましくは、発光手段が、第1の発
光素子及び第2の発光素子より形成されており、受光手
段が、第1の受光素子及び第2の受光素子より形成され
ており、第1の発光素子より、第1の発光素子の光軸と
前記第1の受光素子の光軸が交差することにより煙検空
間内において画定される第1の散乱面に平行な平面偏光
光を出力し、第2の発光素子より、該第2の発光素子の
光軸と第2の受光素子の光軸が交差することにより煙検
空間内において画定される第2の散乱面に垂直な平面偏
光光を出力し、第1の受光素子により、第1の散乱面に
平行な偏光光を受光し、第2の受光素子により、第2の
散乱面に垂直な偏光光を受光し、第1及び第2の受光素
子における受光量を検出すると共に、該第1及び第2の
受光素子の受光量の比を演算し、該比と煙の種類毎に予
め設定された前記比の基準値とを比較し、該基準値に基
づき煙の種類毎に火災の有無を判断するようにしても良
い。
Further, preferably, the light emitting means is formed of a first light emitting element and a second light emitting element, and the light receiving means is formed of a first light receiving element and a second light receiving element, Planar polarized light parallel to the first scattering surface defined in the smoke detection space by intersecting the optical axis of the first light emitting element and the optical axis of the first light receiving element is generated from the first light emitting element. A plane perpendicular to the second scattering surface defined by the output of the second light emitting element in the smoke detection space by intersecting the optical axis of the second light emitting element and the optical axis of the second light receiving element. Polarized light is output, the first light receiving element receives polarized light parallel to the first scattering surface, and the second light receiving element receives polarized light perpendicular to the second scattering surface. And the amount of light received by the second light receiving element, and the amount of light received by the first and second light receiving elements. Calculates the ratio is compared with the reference value preset the ratio for each type of said ratio and smoke, it may be determined whether the fire for each type of smoke based on the reference value.

【0016】さらに、受光手段が、第1の受光素子及び
第2の受光素子より形成されており、発光手段より、該
発光手段の光軸と前記第1の受光素子の光軸が交差する
ことにより煙検空間内において画定される第1の散乱面
に平行な平面偏光光を出力し、第1の受光素子により、
第1の散乱面に平行な偏光光を受光し、第2の受光素子
により、発光手段の光軸と該第2の受光素子の光軸が交
差することにより煙検空間内において画定される第2の
散乱面に垂直な偏光光を受光し、前記第1の散乱面と第
2の散乱面とは互いに垂直な位置関係を有し、第1及び
第2の受光素子における受光量を検出すると共に、該第
1及び第2の受光素子の受光量の比を演算し、該比と煙
の種類毎に予め設定された前記比と基準値とを比較し、
該基準値に基づき煙の種類毎に火災の有無を判断するよ
うにしても良い。
Further, the light receiving means is formed of a first light receiving element and a second light receiving element, and the light emitting means intersects the optical axis of the light emitting means with the optical axis of the first light receiving element. Outputs plane-polarized light parallel to the first scattering surface defined in the smoke detection space by the first light receiving element,
Polarized light parallel to the first scattering surface is received, and the second light receiving element defines the optical axis of the light emitting means and the optical axis of the second light receiving element so as to be defined in the smoke inspection space. Polarized light perpendicular to the second scattering surface is received, the first scattering surface and the second scattering surface have a positional relationship perpendicular to each other, and the amount of light received by the first and second light receiving elements is detected. At the same time, the ratio of the amount of light received by the first and second light receiving elements is calculated, and the ratio and the preset value for each type of smoke are compared with a reference value,
The presence or absence of a fire may be determined for each type of smoke based on the reference value.

【0017】加えて、発光手段が、交互に点灯される第
1の発光素子及び第2の発光素子より形成されており、
第1の発光素子より、該第1の発光素子の光軸と受光手
段の光軸が交差することにより煙検空間内において画定
される第1の散乱面に平行な平面偏光光を出力し、第2
の発光素子より、該第2の発光素子の光軸と前記受光手
段の光軸が交差することにより煙検空間内において画定
される第2の散乱面に垂直な平面偏光光を出力し、受光
手段により、第1の散乱面に平行な偏光光を受光し、前
記第1の散乱面と第2の散乱面とは互いに垂直な位置関
係を有し、第1及び第2の発光素子点灯時における受光
手段での各々の場合の受光量を検出すると共に、第1の
発光素子点灯時における受光量と第2の発光素子点灯時
における受光量との比を演算し、該比と煙の種類毎に予
め設定された前記比の基準値とを比較し、該基準値に基
づき煙の種類毎に火災の有無を判断するようにしても良
い。
In addition, the light emitting means is formed of the first light emitting element and the second light emitting element which are alternately turned on,
The first light-emitting element outputs plane-polarized light parallel to the first scattering surface defined in the smoke detection space by intersecting the optical axis of the first light-emitting element and the optical axis of the light-receiving means, Second
The light-emitting element outputs the plane-polarized light perpendicular to the second scattering surface defined in the smoke detection space by intersecting the optical axis of the second light-emitting element and the optical axis of the light-receiving means, and receives the light. The polarized light parallel to the first scattering surface is received by the means, and the first scattering surface and the second scattering surface have a positional relationship perpendicular to each other, and when the first and second light emitting elements are turned on. The amount of light received by the light receiving means in each case is detected, and the ratio between the amount of light received when the first light emitting element is turned on and the amount of light received when the second light emitting element is turned on is calculated, and the ratio and the type of smoke are calculated. The presence or absence of a fire may be determined for each type of smoke based on a comparison with a reference value of the ratio set in advance for each.

【0018】さらにまた、発光手段により、平面偏光光
を出力し、該平面偏光光が、散乱面と垂直または平行と
なる位置に発光手段を回動させる駆動手段と、受光手段
の前面に配設され、平面偏光光と同方向の偏光光のみを
透過させる位置に発光手段と同期して回動する偏光フィ
ルタを設け、発光手段から出力される平面偏光光が散乱
面と垂直及び平行となる位置における受光手段での各々
の場合の受光量を検出すると共に、平面偏光光が散乱面
と垂直となる位置における受光量と平面偏光光が散乱面
と平行となる位置における受光量との比を演算し、該比
と煙の種類毎に予め設定された前記比の基準値とを比較
し、該基準値に基づき煙の種類毎に火災の有無を判断す
るようにしても良い。
Further, the light emitting means outputs plane polarized light, and the plane polarized light is disposed on the front surface of the light receiving means and the driving means for rotating the light emitting means to a position perpendicular or parallel to the scattering surface. A polarizing filter that rotates in synchronism with the light emitting means is provided at a position that transmits only polarized light in the same direction as the plane polarized light, and the plane polarized light output from the light emitting means is vertical and parallel to the scattering surface. The amount of light received by the light receiving means in each case is detected, and the ratio between the amount of light received at the position where the plane polarized light is perpendicular to the scattering surface and the amount of light received at the position where the plane polarized light is parallel to the scattering surface is calculated. However, the ratio may be compared with a reference value of the ratio preset for each type of smoke, and the presence or absence of a fire may be determined for each type of smoke based on the reference value.

【0019】その他、散乱角を60°〜140°、好ま
しくは90°とすることもできる。これにより、前記比
を大きくとることができ、さらに確実な火災検出が可能
となる。
In addition, the scattering angle may be 60 ° to 140 °, preferably 90 °. As a result, the ratio can be increased, and more reliable fire detection can be performed.

【0020】[0020]

【作用】このような本発明の火災報知装置及び火災検出
方法によれば、次の作用が得られる。まず散乱面に対し
て平行な偏光光の受光量と垂直な偏光光の受光量との比
は煙の種類と相関関係にある。本発明では、この散乱面
に対して平行な偏光光の受光量と垂直な偏光光の受光量
との比と、検出される煙に応じて予め設定された上記比
の基準値が比較され、煙の種類に応じて火災か否かが判
断される。したがって、煙の散乱光から火災の有無を煙
の種類に応じて検出することができる。
According to the fire alarm device and the fire detection method of the present invention as described above, the following effects can be obtained. First, the ratio of the amount of polarized light received parallel to the scattering surface to the amount of polarized light received perpendicularly to the scattering surface is correlated with the type of smoke. In the present invention, the ratio of the received light amount of the polarized light parallel to the scattering surface and the received light amount of the polarized light perpendicular to the scattering surface, the reference value of the ratio preset according to the smoke to be detected is compared, Whether or not it is a fire is determined according to the type of smoke. Therefore, the presence or absence of a fire can be detected from the scattered light of smoke according to the type of smoke.

【0021】[0021]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は本発明に係る散乱光式の火災報知装置の一
実施例を示す構成図であり、煙検空間内をx,y,z軸
の3次元空間を用いて説明する。図1において、第1の
発光素子11と第2の発光素子12は、平面偏光光を出
射する例えばレーザダイオードが用いられる。第1の発
光素子11は、第1の発光素子11の光軸と第1の受光
素子21の光軸とにより煙検空間内に形成される第1の
散乱面41に対して偏光面が平行になるように配置され
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a scattered light type fire alarm device according to the present invention, and the smoke inspection space will be described using a three-dimensional space of x, y, and z axes. In FIG. 1, as the first light emitting element 11 and the second light emitting element 12, for example, laser diodes that emit plane polarized light are used. The first light emitting element 11 has a polarization plane parallel to the first scattering surface 41 formed in the smoke detection space by the optical axis of the first light emitting element 11 and the optical axis of the first light receiving element 21. Will be arranged.

【0022】第2の発光素子12は、偏光面が第2の発
光素子12の光軸と第2の受光素子22の光軸とにより
煙検空間内に形成される第2の散乱面42に対して垂直
になるように配置されている。即ち、図1に示す例で
は、第1の発光素子11は偏光面がxy平面になるよう
に配置され、第2の発光素子12は偏光面がyz平面に
なるように配置されている。
The second light emitting element 12 has a polarization plane on the second scattering surface 42 formed in the smoke detection space by the optical axis of the second light emitting element 12 and the optical axis of the second light receiving element 22. It is arranged so that it is perpendicular to it. That is, in the example shown in FIG. 1, the first light emitting element 11 is arranged so that the polarization plane is the xy plane, and the second light emitting element 12 is arranged so that the polarization plane is the yz plane.

【0023】第1の発光素子11により出射されて煙粒
子群により散乱された光は、第1の発光素子11の光軸
に対して適当な散乱角θ1 (第1の発光素子11の光軸
と第1の受光素子21の光軸の交点において形成される
角。本発明では第1の発光素子11とは反対側の角を示
す。以下同様。)で配置された第1の偏光フィルタ31
及び受光素子21により受光される。
The light emitted by the first light emitting element 11 and scattered by the smoke particle group has an appropriate scattering angle θ 1 (light of the first light emitting element 11 with respect to the optical axis of the first light emitting element 11). Angle formed at the intersection of the axis and the optical axis of the first light receiving element 21. In the present invention, the angle is the side opposite to the first light emitting element 11. The same shall apply hereinafter). 31
Also, the light is received by the light receiving element 21.

【0024】また、第2の発光素子12により出射され
て煙粒子群により散乱された光は、第2の発光素子12
の光軸に対して適当な散乱角θ2 で配置された第2の偏
光フィルタ32および第2の受光素子22により受光さ
れる。即ち、第1の偏光フィルタ31は第1の発光素子
11と第1の受光素子21により形成される第1の散乱
面41に対し、その偏光面が平行(xz平面)になるよ
うに配置される。また、第2の偏光フィルタ32は偏光
面が第2の散乱面に対して垂直(yz平面)になるよう
に配置されている。
Further, the light emitted by the second light emitting element 12 and scattered by the smoke particle group is the second light emitting element 12
The light is received by the second polarizing filter 32 and the second light receiving element 22 which are arranged at an appropriate scattering angle θ 2 with respect to the optical axis of. That is, the first polarization filter 31 is arranged so that its polarization plane is parallel (xz plane) to the first scattering surface 41 formed by the first light emitting element 11 and the first light receiving element 21. It The second polarization filter 32 is arranged such that the polarization plane is perpendicular to the second scattering plane (yz plane).

【0025】一方、第1の受光素子21、第2の受光素
子22の各出力の比が演算部4により演算される。ま
た、設定部5には予め、検出される煙に応じて第1の受
光素子21、第2の受光素子22の各出力の比の基準値
が設定されている。判断部6では第1の受光素子21、
第2の受光素子22の各出力の比と設定部5の基準値が
比較され、煙の種類に応じて火災か否かが判断される。
On the other hand, the calculation unit 4 calculates the ratio of the respective outputs of the first light receiving element 21 and the second light receiving element 22. In addition, a reference value of the ratio of the outputs of the first light receiving element 21 and the second light receiving element 22 is set in the setting unit 5 in advance according to the detected smoke. In the judgment unit 6, the first light receiving element 21,
The ratio of each output of the second light receiving element 22 and the reference value of the setting unit 5 are compared to determine whether or not there is a fire depending on the type of smoke.

【0026】ここで、第1の発光素子11と第1の受光
素子21および第2の発光素子12と第2の受光素子2
2の各光軸がそれぞれ交差する空間に煙が流入すると、
第1の受光素子21、第2の受光素子22に到達して第
1の受光素子21、第2の受光素子22に信号が発生す
る。本発明者の研究により、第1の受光素子21、第2
の受光素子22の各出力には煙の種類に応じた特有の関
係があることが明からとなった。
Here, the first light emitting element 11 and the first light receiving element 21 and the second light emitting element 12 and the second light receiving element 2
When smoke flows into the space where the optical axes of 2 intersect,
When reaching the first light receiving element 21 and the second light receiving element 22, a signal is generated in the first light receiving element 21 and the second light receiving element 22. According to the research by the present inventor, the first light receiving element 21
It became clear that each output of the light receiving element 22 has a peculiar relationship according to the type of smoke.

【0027】この関係については詳細に説明する。ま
ず、煙等の粒子による散乱光には偏光成分が含まれてい
ることが知られている。そこで、本発明者は、複数の異
なる煙粒子による散乱光の偏光度のシュミレーションを
行った。すると、煙の種類に応じて各散乱光の偏光成分
の大きさが異なることが明らかとなった。ここで、図1
に示すxz平面における平面偏光の電界(→E0 )を考
えると次式(式1)で表される(電界の理論式、H.C. V
AN DE HULST "LightScattering by Small Particle
s")。なお、以下、文中で矢印「→」を用いた(→
E)、(→a)等は都合上、複素数を表す。また、式中
のax は複素振幅を示す。
This relationship will be described in detail. First, it is known that the scattered light from particles such as smoke contains a polarization component. Therefore, the present inventor simulated the degree of polarization of scattered light by a plurality of different smoke particles. Then, it became clear that the magnitude of the polarization component of each scattered light differs depending on the type of smoke. Here, FIG.
Considering the electric field (→ E 0 ) of the plane polarized light in the xz plane shown in (1), it is expressed by the following equation (Equation 1)
AN DE HULST "LightScattering by Small Particle
s "). In the following, the arrow" → "is used in the text (→
E), (→ a) and the like represent complex numbers for convenience. In addition, a x in the formula represents a complex amplitude.

【0028】[0028]

【数1】 [Equation 1]

【0029】この入射光による粒子1個によるxz平面
と角度(偏向角)φをなす平面(1,r)上の散乱光
は、(→Er )(→El )で与えられる。散乱角θに対
する粒径aの粒子の散乱関数を(→S1 (θ),→S2
(θ))とすると、(→Er )(→El )は次式(式
2)で表される。
The scattered light on the plane (1, r) forming an angle (deflection angle) φ with the xz plane by one particle due to the incident light is given by (→ E r ) (→ E l ). Let the scattering function of a particle of particle size a with respect to the scattering angle θ be (→ S 1 (θ), → S 2
(.Theta.)), ( .Fwdarw.E.sub.r ) ( .fwdarw.E.sub.l ) is expressed by the following equation (equation 2).

【0030】[0030]

【数2】 [Equation 2]

【0031】また、この散乱光の強度Iは、kを波数と
し(k=2π/λ)、rを粒子からの距離とすると次式
(式3)で表される。
The intensity I of the scattered light is expressed by the following equation (equation 3), where k is the wave number (k = 2π / λ) and r is the distance from the particle.

【0032】[0032]

【数3】 [Equation 3]

【0033】ここで、F(θ,φ)は散乱関数であり、Where F (θ, φ) is the scattering function,

【0034】[0034]

【数4】 [Equation 4]

【0035】次に、この散乱光を偏光フィルタを介して
測定する場合について考える。図2において参照面上の
座標系(1,r)に対し、角度χの面に偏光フィルタを
配置し、散乱光(→El ,→Er )を平面χ上の座標系
(h,p)に座標変換すると散乱光(→Eh ,→Ep
は次式(式5)で表される。
Next, let us consider a case where this scattered light is measured through a polarization filter. In FIG. 2, with respect to the coordinate system (1, r) on the reference plane, a polarization filter is arranged on the plane at an angle χ, and scattered light (→ E l , → E r ) is set to the coordinate system (h, p) on the plane χ. ) And coordinate conversion to scattered light (→ E h , → E p ).
Is expressed by the following equation (Equation 5).

【0036】[0036]

【数5】 [Equation 5]

【0037】従って、偏光フィルタを介して測定される
散乱光の強度Ih ,Ip は次式(式6)で求めることが
できる。
Therefore, the intensities I h and I p of the scattered light measured through the polarization filter can be obtained by the following equation (Equation 6).

【0038】[0038]

【数6】 [Equation 6]

【0039】また、煙層全体からの散乱光量Isca h
Isca p は、次式(式7)で示すように、粒子径a毎の
散乱光の強度Ih ,Ip に粒子個数Na を乗じ、これを
全粒子径の範囲で積分した値となる。
Also, the scattered light quantity Isca h from the entire smoke layer,
Isca p, as shown in the following equation (Equation 7), multiplied by the number of particles N a intensity of scattered light for each particle size a I h, the I p, the integrated value it in range of the entire particle size .

【0040】[0040]

【数7】 [Equation 7]

【0041】以上のような理論解析により種々の煙につ
いて偏光成分を推定した結果を図3〜5に示す。図3は
濾紙が燻った場合の煙の散乱効率iである。同様に図4
はケロシンが燃えた場合、図5はタバコの煙の場合の各
散乱効率iを示している。なお、ここでは煙の種類ごと
に入射光の偏光角φを0°、90°に設定した際の偏光
フィルタの角度χによる散乱光量の変化を示している。
The results of estimating the polarization components of various smokes by the above theoretical analysis are shown in FIGS. FIG. 3 shows the smoke scattering efficiency i when the filter paper is smoked. Similarly, FIG.
Shows the scattering efficiencies i for kerosene burning and FIG. 5 for cigarette smoke. In addition, here, a change in the scattered light amount depending on the angle χ of the polarization filter when the polarization angle φ of the incident light is set to 0 ° and 90 ° for each type of smoke is shown.

【0042】図3〜図5によると、入射光の偏光面と偏
光フィルタの角度が等しい場合、各々の条件で受光され
る散乱光量が最大となる。即ち、φ=0の場合にはχ=
0において、また、φ=90の場合にはχ=90におい
て受光量が最大となる。さらに、これらの図によると、
同一の散乱角においてもこの最大受光量は偏光角φに応
じて変化することが明らかである。
According to FIGS. 3 to 5, when the polarization plane of the incident light and the angle of the polarization filter are equal, the amount of scattered light received under each condition becomes the maximum. That is, when φ = 0, χ =
0, and when φ = 90, the amount of received light becomes maximum at χ = 90. Furthermore, according to these figures,
It is clear that even at the same scattering angle, this maximum amount of received light changes depending on the polarization angle φ.

【0043】図6は、2つの入射光偏光面(φ=0°、
90°)におけるタバコ、焼肉、焼き魚と食用油の各煙
と、濾紙と綿灯心が燻った場合の煙およびケロシンの煙
の最大受光量i90,i0の比(i90/i0)を求め
てプロットした結果を示す。この図6によると何れの煙
であっても散乱角φ=90°で比(i90/i0)が最
大となる。そして、この比(i90/i0)を煙の種類
を識別するためのパラメータして用いることができる。
FIG. 6 shows two incident light polarization planes (φ = 0 °,
The ratio (i90 / i0) of the maximum received light amounts i90, i0 of cigarette, roasted meat, roasted fish and edible oil smoke at 90 °), smoke when the filter paper and cotton wick were smoked and kerosene smoke (i90 / i0) was calculated and plotted. The results are shown. According to FIG. 6, the ratio (i90 / i0) becomes maximum at any scattering angle φ = 90 ° for any smoke. Then, this ratio (i90 / i0) can be used as a parameter for identifying the type of smoke.

【0044】即ち、この煙識別パラメータ(i90/i
0)は、図1に示す第1および第2の受光素子21、2
2の出力比(i90/i0=第2の受光素子22の出力
/第1受光素子21の出力)にほかならない。従って、
この煙識別パラメータ(i90/i0)と図6に示すよ
うに各々設計された散乱角θ=120°に設計された散
乱光式煙感知器では、煙識別パラメータ(i90/i
0)が概ね「5」以上であればタバコの煙として特定す
ることができる。また、「2」〜「3」であれば石油の
燃焼、「2」以下であれば紙等の燻焼きと判断すること
ができる。
That is, the smoke discrimination parameter (i90 / i
0) is the first and second light receiving elements 21 and 2 shown in FIG.
The output ratio is 2 (i90 / i0 = output of the second light receiving element 22 / output of the first light receiving element 21). Therefore,
The smoke discrimination parameter (i90 / i0) and the scattered light type smoke sensor designed to have a scattering angle θ = 120 ° designed as shown in FIG.
If 0) is approximately "5" or more, it can be identified as cigarette smoke. Further, it can be determined that the oil is burned when "2" to "3" and smoldered of paper or the like when "2" or less.

【0045】次に、上記散乱光式煙感知器の作用を説明
する。例えば石油火災を検出するために設置される場合
には煙識別パラメータ(i90/i0)が「2」〜
「3」である基準値が予め設定部5に設定される。ま
た、紙等の燻焼を検出するために設置される場合には煙
識別パラメータ(i90/i0)が「2」以下である基
準値が予め設定部5に設定される。そして、判断部6で
は第1及び第2の受光素子21、22の出力比とこの基
準値が比較され、一致している場合に火災信号を出力す
る。
Next, the operation of the scattered light type smoke detector will be described. For example, when installed to detect an oil fire, the smoke identification parameter (i90 / i0) is "2"-
The reference value of “3” is set in the setting unit 5 in advance. Further, when the device is installed to detect smoldering of paper or the like, a reference value having a smoke identification parameter (i90 / i0) of “2” or less is set in the setting unit 5 in advance. Then, the judging unit 6 compares the output ratios of the first and second light receiving elements 21 and 22 with this reference value, and outputs a fire signal when they match.

【0046】従って、上記実施例によれば、煙粒子群の
偏光特性に応じた煙識別パラメータ(i90/i0)の
基準値を予め設定部5に設定することにより、煙濃度に
関係なく、煙の散乱光から火災の有無を煙の種類に応じ
て適切に検出することができる。また、タバコ等のよう
に火災によらない煙による誤報を防止することができる
ので、火災を正確に報知することができる。
Therefore, according to the above embodiment, the reference value of the smoke discrimination parameter (i90 / i0) corresponding to the polarization characteristic of the smoke particle group is set in the setting unit 5 in advance, so that the smoke is irrelevant regardless of the smoke density. Whether or not there is a fire can be appropriately detected from the scattered light of the smoke according to the type of smoke. Further, since it is possible to prevent a false alarm due to smoke that is not caused by a fire such as a cigarette, it is possible to accurately notify the fire.

【0047】さらに、石油等のように急激に拡大する火
災と紙等の燻焼のように緩やかに拡大する火災を識別す
ることができるので、各火災に応じて適切な消火活動や
避難誘導を行うことができる。次に、図7を参照して第
2の実施例を説明する。本実施例においても、煙の種類
と散乱角及び偏光度の関係を用いて煙の種類に応じた火
災判断を行う点には変わりないがその装置構成が異な
る。図7は、1つの発光素子1と、2つの受光素子2
1、22及び偏光フィルタ31、32を用いた場合を示
す。この発光素子1は偏光面がyz面になるように配置
されている。
Furthermore, it is possible to distinguish between a fire that rapidly expands, such as petroleum, and a fire that gently expands, such as smoldering paper, so that appropriate fire fighting activities and evacuation guidance can be performed according to each fire. It can be carried out. Next, a second embodiment will be described with reference to FIG. In the present embodiment as well, there is no difference in making a fire judgment according to the type of smoke using the relationship between the type of smoke and the scattering angle and the degree of polarization, but the device configuration is different. FIG. 7 shows one light emitting element 1 and two light receiving elements 2.
1 and 22 and the polarization filters 31 and 32 are used. The light emitting element 1 is arranged so that the polarization plane is the yz plane.

【0048】そして、第1の受光素子21及び偏光フィ
ルタ31がy軸上に配置されると共に偏光フィルタ31
は、その偏光面がyz面になるように配置される。ま
た、第2の受光素子22及び偏光フィルタ32がx軸上
に配置されると共に偏光フィルタ32は、その偏光面が
xy面になるように配置されている。この実施例におい
ても先の実施例と同様に、第1の偏光フィルタ31には
第1の散乱面41(即ちyz面)に平行な偏光光が入射
する。また、第2の偏光フィルタ32には第2の散乱面
42(即ちxy面)に垂直な偏光光が入射する。従っ
て、第1及び第2の受光素子21、22の出力比(i9
0/i0)により煙を識別することができる。
The first light receiving element 21 and the polarization filter 31 are arranged on the y-axis and the polarization filter 31
Are arranged such that their plane of polarization is the yz plane. Further, the second light receiving element 22 and the polarization filter 32 are arranged on the x-axis, and the polarization filter 32 is arranged so that the polarization plane thereof is the xy plane. In this embodiment, similarly to the previous embodiment, the polarized light parallel to the first scattering surface 41 (that is, the yz plane) is incident on the first polarization filter 31. Further, polarized light perpendicular to the second scattering surface 42 (that is, the xy plane) enters the second polarizing filter 32. Therefore, the output ratio of the first and second light receiving elements 21 and 22 (i9
The smoke can be identified by 0 / i0).

【0049】なお、本実施例にあっては、第1の偏光フ
ィルタ31のみをモータ等で回転させる構成としても良
い。即ち、第1の偏光フィルタ31を回転させることで
第2の偏光フィルタ32がある場合と同じ状態とする。
そして、第1の偏光フィルタ31の偏光面の位置と第2
の偏光フィルタ32の偏光面の位置で偏光フィルタを停
止し、それぞれの位置で交互に偏光光を受光することに
より煙の識別を行うようにしても勿論良い。この場合に
は、第2の偏光フィルタ32が不要となる。また、偏光
フィルタとしては液晶を用いたもの等適宜のフィルタが
採用し得る。
In this embodiment, only the first polarizing filter 31 may be rotated by a motor or the like. That is, by rotating the first polarization filter 31, the same state as when the second polarization filter 32 is provided is obtained.
The position of the polarization plane of the first polarization filter 31 and the second
It is of course possible to stop the polarization filter at the position of the polarization plane of the polarization filter 32 and alternately identify the smoke by receiving the polarized light at each position. In this case, the second polarization filter 32 becomes unnecessary. Further, as the polarizing filter, an appropriate filter such as one using liquid crystal can be adopted.

【0050】図8は第3の実施例を示す。本実施例で
は、2つの発光素子11、12とそれぞれ1つの受光素
子2及び偏光フィルタ3が用いられている。偏光フィル
タ3は偏光面がxz面になるようには位置される。これ
に対し、第1および第2の発光素子11、12、はそれ
ぞれz軸、y軸上に配置される。そして、第1の発光素
子11は偏光面がxz面になるように、第2の発光素子
12は偏光面がyz面になるように配置されている。
FIG. 8 shows a third embodiment. In this embodiment, two light emitting elements 11 and 12, one light receiving element 2 and one polarization filter 3 are used. The polarization filter 3 is positioned so that the polarization plane is the xz plane. On the other hand, the first and second light emitting elements 11 and 12 are arranged on the z axis and the y axis, respectively. The first light emitting element 11 is arranged so that the polarization plane becomes the xz plane, and the second light emitting element 12 is arranged so that the polarization plane becomes the yz plane.

【0051】本実施例では、受光素子は1つであるの
で、第1および第2の発光素子11、12が交互に点灯
される。そして、第1の発光素子11が点灯したとき及
び第2の発光素子12が点灯したときの各々の場合にお
ける受光素子2の出力比(i90/i0)を演算部4a
により演算することにより煙を識別することができる。
なお、本実施例にあっては、第1の受光素子11をモー
タ等で回転させることで偏光面を第2の発光素子12と
同じ状態にし、受光素子2で交互に偏光光を受光して煙
の識別を行うようにしても勿論良い。
In this embodiment, since there is only one light receiving element, the first and second light emitting elements 11 and 12 are turned on alternately. Then, the output ratio (i90 / i0) of the light receiving element 2 in each case when the first light emitting element 11 is turned on and when the second light emitting element 12 is turned on is calculated by the calculation unit 4a.
Smoke can be identified by calculating with.
In this embodiment, the first light receiving element 11 is rotated by a motor or the like so that the polarization plane is the same as that of the second light emitting element 12, and the light receiving element 2 alternately receives the polarized light. Of course, smoke may be identified.

【0052】図9は、第4の実施例を示す。本実施例
は、1つの発光素子11、1つの受光素子21及び偏光
フィルタ31、そして、発光素子11と偏光フィルタ3
1を回転させる駆動手段51、52とから構成されてい
る。本実施例にあっては、発光素子11の偏光光と偏光
フィルタ31の偏光面の方向が同じになるように両者を
同期させて回転させる。
FIG. 9 shows a fourth embodiment. In this embodiment, one light emitting element 11, one light receiving element 21 and a polarization filter 31, and the light emitting element 11 and the polarization filter 3 are provided.
It is composed of driving means 51, 52 for rotating the 1. In this embodiment, the polarized light of the light emitting element 11 and the polarized light of the polarization filter 31 are rotated in synchronization with each other so that the directions of the polarization planes thereof are the same.

【0053】即ち、図9(A)に示すように、まず、発
光素子11から散乱面41に垂直な偏光光が出射される
位置に発光素子11を停止させる。同時に偏光フィルタ
31を、その偏光面が散乱面41に垂直となる位置に停
止させる。そして、受光素子21によりそのときの散乱
光を受光する。次に、駆動手段51により、図9(B)
に示すよう、発光素子11をその偏光光が散乱面41に
平行となる位置に回転させる。また、同時に偏光フィル
タ31も、その偏光面が散乱面41と平行となる位置に
回転させ、そのときの散乱光を受光素子21により受光
する。そして、先の場合の受光量とこの場合の受光量の
比をとり煙の識別を行う。このような構成をとることに
より、発光素子と受光素子が各々1個ずつで煙の識別を
行うことができる。
That is, as shown in FIG. 9A, first, the light emitting element 11 is stopped at a position where polarized light perpendicular to the scattering surface 41 is emitted from the light emitting element 11. At the same time, the polarization filter 31 is stopped at a position where its polarization plane is perpendicular to the scattering surface 41. Then, the light receiving element 21 receives the scattered light at that time. Next, by the driving means 51, FIG.
As shown in, the light emitting element 11 is rotated to a position where the polarized light is parallel to the scattering surface 41. At the same time, the polarization filter 31 is also rotated so that its polarization plane is parallel to the scattering surface 41, and the scattered light at that time is received by the light receiving element 21. Then, the smoke is identified by taking the ratio of the amount of received light in the above case and the amount of received light in this case. With such a configuration, smoke can be identified by one light emitting element and one light receiving element.

【0054】[0054]

【発明の効果】以上説明したように本発明によれば、散
乱面に対して平行な偏光光の受光量と垂直な偏光光の受
光量との比は煙の種類と相関関係にあることに基づい
て、検出される煙に応じて予め設定された比の基準値が
比較され、煙の種類に応じて火災か否かが判断されるの
で、煙の散乱光から火災の有無を煙の種類に応じて検出
することができる。
As described above, according to the present invention, the ratio between the amount of polarized light received parallel to the scattering surface and the amount of polarized light received perpendicularly to the scattering surface is correlated with the type of smoke. Based on this, the reference value of the preset ratio is compared according to the detected smoke, and it is judged whether or not there is a fire depending on the type of smoke. Can be detected according to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る火災報知装置の一実施例の構成を
示す構成図
FIG. 1 is a configuration diagram showing a configuration of an embodiment of a fire alarm device according to the present invention.

【図2】図1において入射偏光面と偏光フィルタの偏光
面の関係を示す説明図
FIG. 2 is an explanatory diagram showing a relationship between an incident polarization plane and a polarization plane of a polarization filter in FIG.

【図3】濾紙が燻った場合の煙の散乱効率を示す説明図FIG. 3 is an explanatory diagram showing smoke scattering efficiency when the filter paper is smoked.

【図4】ケロシンが燃えた場合の煙の散乱効率を示す説
明図
FIG. 4 is an explanatory diagram showing smoke scattering efficiency when kerosene burns.

【図5】タバコの煙の散乱効率を示す説明図FIG. 5 is an explanatory diagram showing the scattering efficiency of cigarette smoke.

【図6】煙の種類ごとの煙識別パラメータを示す説明図FIG. 6 is an explanatory diagram showing smoke identification parameters for each type of smoke.

【図7】第2の実施例の火災報知装置の光学系を示す構
成図
FIG. 7 is a configuration diagram showing an optical system of a fire alarm device according to a second embodiment.

【図8】第3の実施例の火災報知装置の要部を示す構成
FIG. 8 is a configuration diagram showing a main part of a fire alarm device according to a third embodiment.

【図9】第4の実施例の火災報知装置の構成を示す構成
FIG. 9 is a configuration diagram showing a configuration of a fire alarm device according to a fourth embodiment.

【図10】従来例の散乱光式の火災報知装置の要部を示
す構成図
FIG. 10 is a configuration diagram showing a main part of a scattered light type fire alarm device of a conventional example.

【符号の説明】[Explanation of symbols]

1:発光素子 2:受光素子 3:偏光フィルタ 4:演算部 5:煙種別識別用基準値設定部 6:判断部 11:第1の発光素子 12:第2の発光素子 21:第1の受光素子 22:第2の受光素子 31:第1の偏光フィルタ 32:第2の偏光フィルタ 41:第1の散乱面 42:第2の散乱面 51,52:駆動手段 1: Light emitting element 2: Light receiving element 3: Polarization filter 4: Calculation section 5: Smoke type identification reference value setting section 6: Judgment section 11: First light emitting element 12: Second light emitting element 21: First light receiving Element 22: Second light receiving element 31: First polarization filter 32: Second polarization filter 41: First scattering surface 42: Second scattering surface 51, 52: Driving means

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】煙検空間に向けて光を照射する発光手段
と、煙による散乱光を受光する受光手段とを備え、該受
光手段における受光量を所定の基準値と比較することに
より火災の有無を判断する火災報知装置に於いて、 前記発光手段は、前記煙検空間内において前記発光手段
の光軸と前記受光手段の光軸が交差することにより画定
される散乱面に平行な平面偏光光と垂直な平面偏光光を
出力し、 前記受光手段は、前記散乱面に対し平行な偏光光と垂直
な偏光光を受光し、 さらに、前記受光手段における各偏光光の受光量を検出
する光電変換手段と、 該光電変換手段により変換された前記散乱面に対し平行
な偏光光と垂直な偏光光との受光量の比を演算する演算
手段と、 該演算手段により得られた比と煙の種類毎に予め設定さ
れた前記比の基準値とを比較し、該基準値に基づき煙の
種類毎に火災の有無を判断する判断手段を設けたことを
特徴とする火災報知装置。
1. A light emitting means for irradiating a smoke detection space with light and a light receiving means for receiving scattered light due to smoke are provided, and the amount of light received by the light receiving means is compared with a predetermined reference value to detect a fire. In the fire alarm device for determining the presence or absence, the light emitting means is a plane polarized light parallel to a scattering surface defined by the optical axis of the light emitting means and the optical axis of the light receiving means intersecting in the smoke inspection space. Outputting plane polarized light perpendicular to the light, the light receiving unit receives polarized light parallel to the scattering surface and polarized light perpendicular to the scattering surface, and further detects the amount of each polarized light received by the light receiving unit. Converting means, calculating means for calculating the ratio of the amount of received light of polarized light parallel to the scattering surface and polarized light converted by the photoelectric conversion means, and the ratio and smoke obtained by the calculating means. Based on the ratio preset for each type Fire alarm device compares the values, characterized in that a determination means for determining the presence or absence of fire for each type of smoke based on the reference value.
【請求項2】請求項1に記載の火災報知装置に於いて、 前記発光手段は、第1の発光素子及び第2の発光素子よ
り形成されており、 前記受光手段は、第1の受光素子及び第2の受光素子よ
り形成されており、 前記第1の発光素子は、該第1の発光素子の光軸と前記
第1の受光素子の光軸が交差することにより前記煙検空
間内において画定される第1の散乱面に平行な平面偏光
光を出力し、 前記第2の発光素子は、該第2の発光素子の光軸と前記
第2の受光素子の光軸が交差することにより前記煙検空
間内において画定される第2の散乱面に垂直な平面偏光
光を出力し、 前記第1の受光素子は、前記第1の散乱面に平行な偏光
光を受光し、 前記第2の受光素子は、前記第2の散乱面に垂直な偏光
光を受光し、 さらに、前記光電変換手段は、前記第1及び第2の受光
素子における受光量を検出し、 前記演算手段は、前記光電変換手段により変換された前
記第1及び第2の受光素子の受光量の比を演算すること
を特徴とする火災報知装置。
2. The fire alarm device according to claim 1, wherein the light emitting means is formed of a first light emitting element and a second light emitting element, and the light receiving means is a first light receiving element. And a second light receiving element, wherein the first light emitting element is arranged in the smoke inspection space by intersecting an optical axis of the first light emitting element and an optical axis of the first light receiving element. The plane-polarized light parallel to the defined first scattering surface is output, and the second light-emitting element is configured such that the optical axis of the second light-emitting element and the optical axis of the second light-receiving element intersect with each other. The plane polarized light perpendicular to the second scattering surface defined in the smoke detection space is output, the first light receiving element receives polarized light parallel to the first scattering surface, and the second light receiving element receives the polarized light parallel to the first scattering surface. The light-receiving element receives the polarized light perpendicular to the second scattering surface, and the photoelectric conversion means further comprises: Detecting the amount of light received by the first and second light receiving elements, and calculating the ratio of the amounts of light received by the first and second light receiving elements converted by the photoelectric conversion means. Fire alarm device.
【請求項3】請求項1に記載の火災報知装置に於いて、 前記受光手段は、第1の受光素子及び第2の受光素子よ
り形成されており、 前記発光手段は、該発光手段の光軸と前記第1の受光素
子の光軸が交差することにより前記煙検空間内において
画定される第1の散乱面に平行な平面偏光光を出力し、 前記第1の受光素子は、前記第1の散乱面に平行な偏光
光を受光し、 前記第2の受光素子は、前記発光手段の光軸と該第2の
受光素子の光軸が交差することにより前記煙検空間内に
おいて画定される第2の散乱面に垂直な偏光光を受光
し、 前記第1の散乱面と第2の散乱面とは互いに垂直な位置
関係を有し、 前記光電変換手段は、前記第1及び第2の受光素子にお
ける受光量を検出し、 前記演算手段は、前記光電変換手段により変換された前
記第1及び第2の受光素子の受光量の比を演算すること
を特徴とする火災報知装置。
3. The fire alarm device according to claim 1, wherein the light receiving means is formed of a first light receiving element and a second light receiving element, and the light emitting means emits light from the light emitting means. The plane and the optical axis of the first light receiving element intersect to output plane-polarized light parallel to the first scattering surface defined in the smoke inspection space, and the first light receiving element is the first light receiving element. The second light receiving element is defined in the smoke inspection space by intersecting the optical axis of the light emitting means with the optical axis of the second light receiving element. Polarized light perpendicular to the second scattering surface is received, the first scattering surface and the second scattering surface have a positional relationship perpendicular to each other, and the photoelectric conversion means includes the first and second scattering surfaces. Detecting the amount of light received by the light receiving element, and the calculation means is converted by the photoelectric conversion means. A fire alarm device, characterized in that a ratio of received light amounts of the first and second light receiving elements is calculated.
【請求項4】請求項1に記載の火災報知装置に於いて、 前記発光手段は、交互に点灯される第1の発光素子及び
第2の発光素子より形成されており、 前記第1の発光素子は、該第1の発光素子の光軸と前記
受光手段の光軸が交差することにより前記煙検空間内に
おいて画定される第1の散乱面に平行な平面偏光光を出
力し、 前記第2の発光素子は、該第2の発光素子の光軸と前記
受光手段の光軸が交差することにより前記煙検空間内に
おいて画定される第2の散乱面に垂直な平面偏光光を出
力し、 前記受光手段は前記第1の散乱面に平行な偏光光を受光
し、 前記光電変換手段は、前記第1及び第2の発光素子点灯
時における前記受光手段での各々の場合の受光量を検出
し、 前記演算手段は、前記光電変換手段により変換された第
1の発光素子点灯時における受光量と第2の発光素子点
灯時における受光量との比を演算することを特徴とする
火災報知装置。
4. The fire alarm device according to claim 1, wherein the light emitting means includes a first light emitting element and a second light emitting element which are alternately turned on, and the first light emitting element. The element outputs plane-polarized light parallel to a first scattering surface defined in the smoke detection space by intersecting an optical axis of the first light emitting element and an optical axis of the light receiving means, The second light emitting element outputs plane-polarized light perpendicular to the second scattering surface defined in the smoke detection space due to the optical axis of the second light emitting element and the optical axis of the light receiving means intersecting with each other. The light receiving unit receives polarized light parallel to the first scattering surface, and the photoelectric conversion unit determines the amount of light received in each of the light receiving units when the first and second light emitting elements are turned on. The first light emission detected by the calculation means is converted by the photoelectric conversion means. Fire alarm device, characterized by calculating the ratio of the amount of light received at the light receiving quantity and the second light-emitting element is lit when the child lighting.
【請求項5】請求項1に記載の火災報知装置に於いて、 前記発光手段は、平面偏光光を出力し、 さらに、該平面偏光光が、前記散乱面と垂直または平行
となる位置に前記発光手段を回動させる駆動手段と、 前記受光手段の全面に配設され、前記平面偏光光と同方
向の偏光光のみを透過させる位置に前記発光手段と同期
して回動する偏光フィルタを設け、 前記光電変換手段は、前記発光手段から出力される平面
偏光光が前記散乱面と垂直及び平行となる位置における
前記受光手段での各々の場合の受光量を検出し、 前記演算手段は、前記光電変換手段により変換された前
記平面偏光光が前記散乱面と垂直となる位置における受
光量と、前記平面偏光光が前記散乱面と平行となる位置
における受光量との比を演算することを特徴とする火災
報知装置。
5. The fire alarm device according to claim 1, wherein the light emitting means outputs plane-polarized light, and the plane-polarized light is at a position perpendicular or parallel to the scattering surface. A driving means for rotating the light emitting means, and a polarizing filter disposed on the entire surface of the light receiving means and rotating in synchronization with the light emitting means at a position for transmitting only polarized light in the same direction as the plane polarized light. The photoelectric conversion means detects the amount of received light in each case of the light receiving means at a position where the plane polarized light output from the light emitting means is vertical and parallel to the scattering surface, and the arithmetic means is It is characterized in that the ratio of the received light amount at the position where the plane polarized light converted by the photoelectric conversion means is perpendicular to the scattering surface and the received light amount at the position where the plane polarized light is parallel to the scattering surface is calculated. Fire news Apparatus.
【請求項6】煙検空間に向けて光を照射する発光手段
と、煙による散乱光を受光する受光手段とを設け、該受
光手段における受光量を所定の基準値と比較することに
より火災の有無を判断する火災検出方法に於いて、 前記発光手段より、前記煙検空間内において前記発光手
段の光軸と前記受光手段の光軸が交差することにより画
定される散乱面に平行な平面偏光光と垂直な平面偏光光
を出力し、 前記受光手段により、前記散乱面に対し平行な偏光光と
垂直な偏光光を受光し、 前記受光手段における各偏光光の受光量を検出すると共
に、前記散乱面に対し平行な偏光光と垂直な偏光光との
受光量の比を演算し、該比と煙の種類毎に予め設定され
た前記比の基準値とを比較し、該基準値に基づき煙の種
類毎に火災の有無を判断することを特徴とする火災検出
方法。
6. A light emitting means for irradiating light toward the smoke inspection space and a light receiving means for receiving scattered light due to smoke are provided, and the amount of light received by the light receiving means is compared with a predetermined reference value to detect a fire. In the fire detection method for determining the presence or absence, a plane polarized light parallel to a scattering surface defined by the light emitting means intersecting the optical axis of the light emitting means and the optical axis of the light receiving means in the smoke inspection space. Outputting plane polarized light perpendicular to the light, by the light receiving means, receives polarized light parallel to the scattering surface and polarized light perpendicular to, and detects the amount of each polarized light received by the light receiving means, The ratio of the amount of light received between the polarized light parallel to the scattering surface and the polarized light perpendicular to the scattering surface is calculated, the ratio is compared with a reference value of the ratio preset for each type of smoke, and based on the reference value Characterized by determining the presence or absence of fire for each type of smoke Fire detection method that.
【請求項7】請求項6に記載の火災検出方法に於いて、 前記発光手段は、第1の発光素子及び第2の発光素子よ
り形成されており、 前記受光手段は、第1の受光素子及び第2の受光素子よ
り形成されており、 前記第1の発光素子より、該第1の発光素子の光軸と前
記第1の受光素子の光軸が交差することにより前記煙検
空間内において画定される第1の散乱面に平行な平面偏
光光を出力し、 前記第2の発光素子より、該第2の発光素子の光軸と前
記第2の受光素子の光軸が交差することにより前記煙検
空間内において画定される第2の散乱面に垂直な平面偏
光光を出力し、 前記第1の受光素子により、前記第1の散乱面に平行な
偏光光を受光し、 前記第2の受光素子により、前記第2の散乱面に垂直な
偏光光を受光し、 前記第1及び第2の受光素子における受光量を検出する
と共に、該第1及び第2の受光素子の受光量の比を演算
し、該比と煙の種類毎に火災の有無を判断することを特
徴とする火災検出方法。
7. The fire detecting method according to claim 6, wherein the light emitting means is formed of a first light emitting element and a second light emitting element, and the light receiving means is a first light receiving element. And a second light receiving element, wherein the first light emitting element intersects an optical axis of the first light emitting element and an optical axis of the first light receiving element in the smoke inspection space. By outputting plane-polarized light parallel to the defined first scattering surface, the optical axis of the second light emitting element intersects with the optical axis of the second light receiving element from the second light emitting element. Plane polarized light perpendicular to a second scattering surface defined in the smoke detection space is output, and polarized light parallel to the first scattering surface is received by the first light receiving element; The light receiving element receives the polarized light perpendicular to the second scattering surface, and the first and second Detecting the amount of light received by the second light receiving element, calculating the ratio of the amount of light received by the first and second light receiving elements, and determining the presence or absence of a fire for each of the ratio and the type of smoke. Method.
【請求項8】請求項6に記載の火災検出方法に於いて、 前記受光手段は、第1の受光素子及び第2の受光素子よ
り形成されており、 前記発光手段より、該発光手段の光軸と前記第1の受光
素子の光軸が交差することにより前記煙検空間内におい
て画定される第1の散乱面に平行な平面偏光光を出力
し、 前記第1の受光素子により、前記第1の散乱面に平行な
偏光光を受光し、 前記第2の受光素子により、前記発光手段の光軸と該第
2の受光素子の光軸が交差することにより前記煙検空間
内において画定される第2の散乱面に垂直な偏光光を受
光し、 前記第1の散乱面と第2の散乱面とは互いに垂直な位置
関係を有し、 前記第1及び第2の受光素子における受光量を検出する
と共に、該第1及び第2の受光素子の受光量の比を演算
し、該比と煙の種類毎に予め設定された前記比の基準値
と比較し、該基準値に基づき煙の種類毎に火災の有無を
判断することを特徴とする火災検出方法。
8. The fire detecting method according to claim 6, wherein the light receiving means is formed of a first light receiving element and a second light receiving element, and the light emitting means emits light from the light emitting means. The plane and the optical axis of the first light receiving element intersect to output plane-polarized light parallel to the first scattering surface defined in the smoke inspection space, and the first light receiving element causes the first light receiving element to output the plane polarized light. Polarized light parallel to the scattering surface of No. 1 is received, and is defined in the smoke inspection space by intersecting the optical axis of the light emitting means with the optical axis of the second light receiving element by the second light receiving element. Polarized light perpendicular to the second scattering surface is received, and the first scattering surface and the second scattering surface have a positional relationship perpendicular to each other, and the amount of light received by the first and second light receiving elements. Is detected, the ratio of the amount of light received by the first and second light receiving elements is calculated, and the ratio is calculated. Fire detection method characterized by comparing a reference value preset the ratio for each type of smoke, determining the presence or absence of fire for each type of smoke based on the reference value.
【請求項9】請求項6に記載の火災検出方法に於いて、 前記発光手段は、交互に点灯される第1の発光素子及び
第2の発光素子より形成されており、 前記第1の発光素子より、該第1の発光素子の光軸と前
記受光手段の光軸が交差することにより前記煙検空間内
において画定される第1の散乱面に平行な平面偏光光を
出力し、 前記第2の発光素子より、該第2の発光素子の光軸と前
記受光手段の光軸が交差することにより前記煙検空間内
において画定される第2の散乱面に垂直な平面偏光光を
出力し、 前記受光手段により、前記第1の散乱面に平行な偏光光
を受光し、 前記第1の散乱面と第2の散乱面とは互いに垂直な位置
関係を有し、 前記第1及び第2の発光素子点灯時における受光量と第
2の発光素子点灯時における受光量との比を演算し、該
比と煙の種類毎に予め設定された前記比の基準値とを比
較し、該基準値に基づき煙の種類毎に火災の有無を判断
することを特徴とする火災検出方法。
9. The fire detection method according to claim 6, wherein the light emitting means is formed of first light emitting elements and second light emitting elements that are alternately turned on, and the first light emitting element is used. The element outputs plane-polarized light parallel to a first scattering surface defined in the smoke inspection space by intersecting an optical axis of the first light emitting element and an optical axis of the light receiving means, The second light emitting element outputs plane-polarized light perpendicular to the second scattering surface defined in the smoke inspection space by intersecting the optical axis of the second light emitting element and the optical axis of the light receiving means. , The polarized light parallel to the first scattering surface is received by the light receiving means, and the first scattering surface and the second scattering surface have a positional relationship perpendicular to each other, and the first and second The ratio of the amount of light received when the second light emitting element is lit and the amount of light received when the second light emitting element is lit Calculated and is compared with the reference value preset the ratio for each type of said ratio and smoke, fire detection method characterized by determining the presence or absence of fire for each type of smoke based on the reference value.
【請求項10】請求項6に記載の火災検出方法に於い
て、 前記発光手段により、平面偏光光を出力し、 該平面偏光光が、前記散乱面と垂直または平行となる位
置に前記発光手段を回動させる駆動手段と、 前記受光手段の全面に配設され、前記平面偏光光と同方
向の偏光光のみを透過させる位置に前記発光手段と同期
して回動する偏光フィルタを設け、 前記発光手段から出力される平面偏光光が前記散乱面と
垂直及び平行となる位置における前記受光手段での各々
の場合の受光量を検出すると共に、前記平面偏光光が前
記散乱面と垂直となる位置における受光量と前記平面偏
光光が前記散乱面と平行となる位置における受光量との
比を演算し、該比と煙の種類毎に予め設定された前記比
の基準値とを比較し、該基準値に基づき煙の種類毎に火
災の有無を判断することを特徴とする火災検出方法。
10. The fire detecting method according to claim 6, wherein the light emitting means outputs plane-polarized light, and the plane-polarized light is at a position perpendicular or parallel to the scattering surface. A driving means for rotating the light receiving means, and a polarization filter disposed on the entire surface of the light receiving means and rotating in synchronization with the light emitting means at a position for transmitting only polarized light in the same direction as the plane polarized light, A position where the plane polarized light is perpendicular to the scattering surface while detecting the amount of light received by the light receiving means in each position where the plane polarized light output from the light emitting means is perpendicular and parallel to the scattering surface. The ratio of the received light amount at and the received light amount at the position where the plane polarized light is parallel to the scattering surface is calculated, and the ratio is compared with a reference value of the ratio preset for each type of smoke, Fire for each type of smoke based on the standard value A fire detection method characterized by determining the presence or absence of a disaster.
【請求項11】請求項1から5に記載の火災報知装置に
於いて、散乱角が、60°〜140°であることを特徴
とする火災報知装置。
11. The fire alarm device according to any one of claims 1 to 5, wherein the scattering angle is 60 ° to 140 °.
【請求項12】請求項1から5に記載の火災報知装置に
於いて、散乱角が、90°であることを特徴とする請求
項1から5に記載の火災報知装置。
12. The fire alarm system according to any one of claims 1 to 5, wherein the scattering angle is 90 °.
【請求項13】請求項1から5に記載の火災検出方法に
於いて、散乱角が、60°〜140°であることを特徴
とする火災検出方法。
13. The fire detection method according to claim 1, wherein the scattering angle is 60 ° to 140 °.
【請求項14】請求項1から5に記載の火災検出方法に
於いて、散乱角が、90°であることを特徴とする火災
検出方法。
14. The fire detection method according to claim 1, wherein the scattering angle is 90 °.
JP08281594A 1993-04-30 1994-04-21 Fire alarm device and fire detection method Expired - Fee Related JP3251763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08281594A JP3251763B2 (en) 1993-04-30 1994-04-21 Fire alarm device and fire detection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10336993 1993-04-30
JP5-103369 1993-04-30
JP08281594A JP3251763B2 (en) 1993-04-30 1994-04-21 Fire alarm device and fire detection method

Publications (2)

Publication Number Publication Date
JPH0712724A true JPH0712724A (en) 1995-01-17
JP3251763B2 JP3251763B2 (en) 2002-01-28

Family

ID=26423833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08281594A Expired - Fee Related JP3251763B2 (en) 1993-04-30 1994-04-21 Fire alarm device and fire detection method

Country Status (1)

Country Link
JP (1) JP3251763B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175963A (en) * 1999-11-19 2001-06-29 Siemens Building Technol Ag Fire alarm system
JP2004325211A (en) * 2003-04-24 2004-11-18 Hochiki Corp Light scattering smoke detector
WO2005048208A1 (en) * 2003-11-17 2005-05-26 Hochiki Corporation Smoke sensor using scattering light
JP2007533966A (en) * 2003-05-14 2007-11-22 ブイエフエス・テクノロジーズ・リミテッド Particle detector
CN100463006C (en) * 2003-11-17 2009-02-18 报知机股份有限公司 Smoke sensor using scattering light
WO2011033552A1 (en) * 2009-09-15 2011-03-24 ホーチキ株式会社 Smoke sensor
JP2011203890A (en) * 2010-03-25 2011-10-13 Nohmi Bosai Ltd Smoke detector
WO2013061968A1 (en) * 2011-10-24 2013-05-02 パナソニック株式会社 Smoke detector
JP2013121663A (en) * 2011-12-09 2013-06-20 Ricoh Co Ltd Liquid discharge state detection device and image forming apparatus
US9007223B2 (en) 2004-11-12 2015-04-14 Xtralis Technologies Ltd. Particle detector, system and method
US9025144B2 (en) 2007-11-15 2015-05-05 Xtralis Technologies Ltd. Particle detection
JP2015191466A (en) * 2014-03-28 2015-11-02 能美防災株式会社 Smoke detector
CN115063943A (en) * 2022-08-15 2022-09-16 芯翼信息科技(上海)有限公司 Smoke sensor and smoke detection equipment based on low-power-consumption analog-to-digital converter

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175963A (en) * 1999-11-19 2001-06-29 Siemens Building Technol Ag Fire alarm system
JP2004325211A (en) * 2003-04-24 2004-11-18 Hochiki Corp Light scattering smoke detector
US9291555B2 (en) 2003-05-14 2016-03-22 Xtralis Technologies Ltd. Method of detecting particles by detecting a variation in scattered radiation
US9002065B2 (en) 2003-05-14 2015-04-07 Xtralis Technologies Ltd. Method of detecting particles by detecting a variation in scattered radiation
JP2013174611A (en) * 2003-05-14 2013-09-05 Vfs Technologies Ltd Particle detector
JP2011027743A (en) * 2003-05-14 2011-02-10 Vfs Technologies Ltd Particle detector
US9423344B2 (en) 2003-05-14 2016-08-23 Xtralis Technologies Ltd. Method of detecting particles by detecting a variation in scattered radiation
JP4750705B2 (en) * 2003-05-14 2011-08-17 ブイエフエス・テクノロジーズ・リミテッド Particle detector
JP2007533966A (en) * 2003-05-14 2007-11-22 ブイエフエス・テクノロジーズ・リミテッド Particle detector
JP2013145241A (en) * 2003-05-14 2013-07-25 Vfs Technologies Ltd Particle detector
CN100463006C (en) * 2003-11-17 2009-02-18 报知机股份有限公司 Smoke sensor using scattering light
WO2005048208A1 (en) * 2003-11-17 2005-05-26 Hochiki Corporation Smoke sensor using scattering light
US9594066B2 (en) 2004-11-12 2017-03-14 Garrett Thermal Systems Limited Particle detector, system and method
US10161866B2 (en) 2004-11-12 2018-12-25 Garrett Thermal Systems Limited Particle detector, system and method
US9007223B2 (en) 2004-11-12 2015-04-14 Xtralis Technologies Ltd. Particle detector, system and method
US10429289B2 (en) 2007-11-15 2019-10-01 Garrett Thermal Systems Limited Particle detection
US9025144B2 (en) 2007-11-15 2015-05-05 Xtralis Technologies Ltd. Particle detection
US9702803B2 (en) 2007-11-15 2017-07-11 Garrett Thermal Systems Limited Particle detection
JP5432271B2 (en) * 2009-09-15 2014-03-05 ホーチキ株式会社 smoke detector
WO2011033552A1 (en) * 2009-09-15 2011-03-24 ホーチキ株式会社 Smoke sensor
JP2011203890A (en) * 2010-03-25 2011-10-13 Nohmi Bosai Ltd Smoke detector
WO2013061968A1 (en) * 2011-10-24 2013-05-02 パナソニック株式会社 Smoke detector
JP2013121663A (en) * 2011-12-09 2013-06-20 Ricoh Co Ltd Liquid discharge state detection device and image forming apparatus
JP2015191466A (en) * 2014-03-28 2015-11-02 能美防災株式会社 Smoke detector
CN115063943A (en) * 2022-08-15 2022-09-16 芯翼信息科技(上海)有限公司 Smoke sensor and smoke detection equipment based on low-power-consumption analog-to-digital converter

Also Published As

Publication number Publication date
JP3251763B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
US5576697A (en) Fire alarm system
US5280272A (en) Fire alarm system which distinguishes between different types of smoke
JP3251763B2 (en) Fire alarm device and fire detection method
US6967582B2 (en) Detector with ambient photon sensor and other sensors
US6788197B1 (en) Fire alarm
JP4347296B2 (en) Scattered smoke detector
DK2706515T3 (en) Apparatus and method for detecting light scattering signals
CN108205867A (en) A kind of incipient fire smoke detection method for having interference particle identification ability
JP4010455B2 (en) Scattered smoke detector
JP6420651B2 (en) Photoelectric smoke detector
US10769921B2 (en) Smoke detector
TW201017151A (en) Detection of particle characteristics
JPH06109631A (en) Fire alarm
US11402326B2 (en) Systems and methods for multi-wavelength scattering based smoke detection using multi-dimensional metric monitoring
CN100511304C (en) Photoelectric smoke sensing fire detecting method and apparatus based on depolarization rate
WO2017218763A1 (en) Smoke detection methodology
US11506590B2 (en) Scattered light smoke detector having a two-color LED, a photosensor, and a wavelength-selective polarizer connected upstream of the photosensor or connected downstream of the two-color LED, and suitable use of such a polarizer
EP0462642A1 (en) Optical smoke, aerosol and dust detector and fire detector apparatus with optical detector
JPH04205400A (en) Smoke sensor
JP2972407B2 (en) Fire alarm
JP3071902B2 (en) Fire alarm
JP3034596B2 (en) Fire detector
JP2966541B2 (en) Photoelectric smoke detector
JPH0452550A (en) Optical smoke sensor and optical smoke detector
SU1550555A1 (en) Method and apparatus for checking presence of smoke in medium under check

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees