JPH07127053A - Horizontal resistance increasing pile - Google Patents

Horizontal resistance increasing pile

Info

Publication number
JPH07127053A
JPH07127053A JP23040094A JP23040094A JPH07127053A JP H07127053 A JPH07127053 A JP H07127053A JP 23040094 A JP23040094 A JP 23040094A JP 23040094 A JP23040094 A JP 23040094A JP H07127053 A JPH07127053 A JP H07127053A
Authority
JP
Japan
Prior art keywords
pile
ground
shear
liquefaction
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23040094A
Other languages
Japanese (ja)
Other versions
JP2715261B2 (en
Inventor
Shinichiro Mori
伸一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP6230400A priority Critical patent/JP2715261B2/en
Publication of JPH07127053A publication Critical patent/JPH07127053A/en
Application granted granted Critical
Publication of JP2715261B2 publication Critical patent/JP2715261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase the horizontal resistance of a pile by driving it, on the periphery of it a ground stirring body is installed, in a ground where liquefaction is produced to increase the shear elastic strength of the ground around the pile utilizing the deformation of the ground around the pile caused by the horizontal deformation of the pile at an earthquake. CONSTITUTION:A ground stirring body comprising a steel plate blade bodies 20, recessed faces 21, protruded faces 22, etc. is provided on the outer periphery of a pile body such as a steel tube pile 10, etc. Next the ground stirring body is installed on the periphery surface of the pile body in such an area that it penetrates through, at least, a layer section where liquefaction occurs. Also the ground stirring body i fixed to the outer periphery of a resistant body by welding, etc., or a blade body attachment is installed to an existing pile. Then, when repeated shear acts under non-water draining condition, the shearing strain of a soil element is increased actively, and hydraulic pressure in clearances between soil particles is reduced suddenly. In addition, a larger shear modulus than the conventional pile can be thus obtained, and a shear rigidity of the ground around it is recovered rapidly. Thus a ground resistance be increased, liquefaction can be prevented effectively, and the work can be made at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水平抵抗増強杭に係り、
特に地震時に液状化が生じるような砂層を貫通する杭の
周辺地盤のせん断ひずみを増加させ、杭の水平抵抗性を
増強させるようにした水平抵抗増強杭に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal resistance increasing pile,
In particular, the present invention relates to a horizontal resistance-enhancing pile that increases shear resistance of the ground surrounding a pile that penetrates a sand layer that causes liquefaction during an earthquake and enhances horizontal resistance of the pile.

【0002】[0002]

【従来の技術】従来より深い基礎としての杭基礎は、所
定の鉛直支持力を下層の支持地盤で確保できるように、
また地震時に作用する水平力によって生じる水平変位あ
るいは所定の杭頭回転変位に抵抗し、上部構造物から加
わる杭頭反力によっても本体が抵抗できるようにその寸
法や本体強度が設計されている。ところで、近年、地震
時における飽和砂地盤の液状化現象がクローズアップさ
れ、その現象の解明や予測、設計手法の研究が盛んに進
められてきている。この結果、現在の設計手法では相当
の規模を有する構造物では液状化の可能性のある砂層に
直接支持させたり、短い摩擦杭により支持させたりする
ことはない。すなわち液状化のおそれのある砂層に施工
される支持杭ではその砂層を貫通して下層の支持層まで
杭が延設され、杭先端を支持層に所定長さだけ根入れし
て鉛直荷重を確実に支持するようになっている。
2. Description of the Related Art Pile foundations, which are deeper than conventional ones, are designed so that a predetermined vertical support force can be secured in the lower support ground.
The size and strength of the main body are designed so that the main body can resist the horizontal displacement or the predetermined pile head rotational displacement caused by the horizontal force acting during an earthquake and the pile head reaction force applied from the upper structure. By the way, in recent years, the liquefaction phenomenon of saturated sand ground at the time of an earthquake has been highlighted, and researches on clarification and prediction of the phenomenon and design methods have been actively pursued. As a result, current design techniques do not allow structures of significant size to be supported directly on a liquefiable sand layer or by short friction piles. That is, in a support pile that is constructed in a sand layer that is likely to be liquefied, the pile extends through the sand layer to the lower support layer, and the tip of the pile is embedded in the support layer for a specified length to ensure vertical load. To support.

【0003】しかしながら、このように液状化の可能性
のある砂層を貫通して支持層まで施工された杭基礎で
も、地震時にはこの中間層としての砂層部分が液状化
し、この部分の杭周辺の地盤の水平抵抗性が急激に減少
してしまう。このためこのような中間層が介在する地盤
に施工される杭では部分的に地盤の水平抵抗性が急激に
減少するため、撓み性が大きい杭種が使用されている場
合にはこの中間層内で杭に過大な水平変位が生じる。そ
の結果、杭頭において剛性の大きい上部構造物から過大
な杭頭反力を受けて杭本体の破壊につながるおそれもあ
る。
However, even in a pile foundation constructed by penetrating through a sand layer having a possibility of liquefaction up to the supporting layer as described above, the sand layer portion as the intermediate layer is liquefied at the time of an earthquake, and the ground around the pile in this portion is liquefied. The horizontal resistance of is drastically reduced. For this reason, in piles constructed on the ground where such an intermediate layer intervenes, the horizontal resistance of the ground partly decreases sharply, so when pile types with large flexibility are used, Causes excessive horizontal displacement of the pile. As a result, an excessive pile head reaction force may be received from the superstructure having a high rigidity at the pile head, which may lead to the destruction of the pile body.

【0004】このように地震時に液状化した地盤では水
平抵抗性が急激に低下することを考慮し、各設計規準
(例えば道路橋示方書、建築基礎構造設計基準)の耐震
設計規定では地震時の水平支持力の計算において、該当
する地盤の支持力や水平地盤反力係数をゼロとして所定
の設計を行うべきことが明記されている。
Considering that the horizontal resistance is drastically reduced in the ground liquefied during an earthquake as described above, the seismic design rule of each design standard (for example, road bridge specifications, building foundation design standard) In the calculation of horizontal bearing capacity, it is stipulated that the bearing capacity of the applicable ground and the coefficient of horizontal ground reaction force should be set to zero for the prescribed design.

【0005】ところで、液状化の可能性のある地盤上に
構造物を構築する必要がある場合には液状化の発生メカ
ニズムに対応して種々の液状化対策工が施されている。
たとえば対象地盤の砂層内に堅固な土粒子骨格を形成さ
せることを目的とした対策工として地盤締固め、薬液に
よる固結、材料置換工法等が開発、実施されている。締
固め工法の代表的なものとしてはバイブロフローテーシ
ョン工法、サンドコンパクション工法、動圧密工法等が
ある。これらの締固め工法では締固めを実施する範囲の
地盤のN値が所定の値以上となるように締固め作業が行
われる。すなわち締固め改良されてN値が所定値以上と
なった地盤では地震が起きても土粒子間の骨格が保持さ
れるので、過剰間隙水圧が上昇せず、液状化を有効に防
止することができる。なお、この締固め工法は施工時に
衝撃、振動を伴うので、騒音や振動等による周辺へ及ぼ
す影響について注意をする必要がある。
By the way, when it is necessary to construct a structure on the ground that is likely to be liquefied, various liquefaction countermeasures have been taken according to the mechanism of liquefaction.
For example, ground compaction, consolidation with a chemical solution, and material replacement construction methods have been developed and implemented as countermeasures aimed at forming a solid soil particle skeleton in the sand layer of the target ground. Typical examples of the compaction method include a vibro flotation method, a sand compaction method, and a dynamic consolidation method. In these compaction methods, compaction work is performed so that the N value of the ground in the range in which compaction is performed becomes a predetermined value or more. In other words, the skeleton between soil particles is retained even if an earthquake occurs in the ground where the compaction is improved and the N value becomes a predetermined value or more. Therefore, excess pore water pressure does not rise and liquefaction can be effectively prevented. it can. Since this compaction method involves shock and vibration during construction, it is necessary to pay attention to the influence of noise and vibration on the surroundings.

【0006】そこで、騒音や振動を比較的小さくできる
対策工法として排水工法等も開発されている。この排水
工法は飽和砂層内の地盤内にグラベルパイル(れき柱)
を設置して水平方向への排水経路を形成し、砂層中の間
隙水の排水経路を短くして地震時に発生する過剰間隙水
圧の上昇を積極的に抑えようとするものである。この場
合、土粒子の骨格は地震の影響により崩れるため地盤の
沈下が生じても良いような設計において、使用可能であ
る。また、締固め効果を伴わないため、地盤材料として
の粘り強さ(靱性)は締固め工法に比べて劣ると言われ
ている。
Therefore, a drainage method or the like has been developed as a countermeasure method capable of relatively reducing noise and vibration. This drainage method uses gravel piles (gravel columns) in the ground in saturated sand layers.
Is installed to form a horizontal drainage path and shorten the porewater drainage path in the sand layer to actively suppress the rise of excess porewater pressure that occurs during an earthquake. In this case, the skeleton of the soil particles will collapse due to the influence of the earthquake, so it can be used in a design in which subsidence of the ground may occur. Further, since it does not have a compaction effect, it is said that the toughness as a ground material is inferior to that of the compaction method.

【0007】[0007]

【発明が解決しようとする課題】ところが、前述のよう
な液状化対策工ではいずれの対策工も構造物の規模に対
して相当広い範囲の面積と深さにわたり施工を行わなけ
ればならない。そして安定化した地盤に構造物の基礎と
しての杭等を施工するようになっている。そのため液状
化の発生が予想される地盤では対象となる基礎地盤の改
良工事に多大な工事費をとらなければならないという問
題がある。また、本体構造物の工事着工に先だって改良
工事を行わなければならないので、全体工期が長くな
り、これに伴う費用発生も考慮しなければならない。
However, in the liquefaction countermeasure works as described above, any of the countermeasure works must be constructed over a considerably wide area and depth with respect to the scale of the structure. Then, piles and the like as the foundation of the structure are constructed on the stabilized ground. Therefore, there is a problem that a large amount of construction cost must be taken for the improvement work of the target foundation ground in the ground where liquefaction is expected to occur. Further, since the improvement work must be carried out prior to the start of construction of the main body structure, the whole construction period will be long, and the costs associated therewith must be taken into consideration.

【0008】他方、前述のように道路橋示方書の耐震設
計編では、液状化地盤の液状化判定のために求められた
抵抗率FLに応じて対象地盤の土質定数(地盤変形係数
ES、水平方向地盤係数kh)を低減するという設計手法
がとられていた。たとえば液状化により水平支持力の低
下が予想されるような地盤では前記土質定数をゼロとし
て所定の耐震設計を行う安全側設計が行われてきた。こ
のため液状化のおそれのある砂層が介在する地盤では杭
寸法や杭体強度を大きく設定する必要があった。
On the other hand, as mentioned above, in the seismic design section of the Road Bridge Specification, the soil constants of the target ground (ground deformation coefficient ES, horizontal level) are calculated according to the resistivity FL calculated for the liquefaction judgment of the liquefied ground. A design method was adopted to reduce the directional ground coefficient kh). For example, on the ground where the horizontal bearing capacity is expected to decrease due to liquefaction, a safety-side design has been performed in which the soil constant is set to zero and a predetermined seismic design is performed. For this reason, it was necessary to set the pile size and pile strength large in the ground where there is a sand layer that may liquefy.

【0009】このように杭体の設計では液状化地盤を改
良しない状態では当該地盤の支持力を低減して設計を行
うのが常套であり、地震時の杭体の変位挙動を利用して
周辺地盤の抵抗強度を増強させようと言う設計思想は用
いられていない。すなわち地震時のように繰返しせん断
が地盤に作用している状態で、所定の土要素の変位に対
してせん断ひずみがある限度以上に大きくなると、以後
のせん断作用によって土要素の体積が膨張し(正のダイ
レイタンシー)、負の間隙水圧が生じ、これにより土要
素のせん断抵抗値すなわちせん断弾性係数(せん断剛
性)と強度とが急激に回復する(この現象はサイクリッ
ク・モビリティー現象と呼ばれている)。この現象に着
目して杭体による地盤の液状化対策工を試みた成果は開
示されていない。
As described above, in the design of piles, it is common practice to design the piles by reducing the bearing capacity of the ground when the liquefied ground is not improved. The design concept of increasing the resistance strength of the ground is not used. That is, when the shear strain exceeds a certain limit with respect to the displacement of a given soil element in the state where repeated shearing acts on the ground such as during an earthquake, the volume of the soil element expands due to the subsequent shearing action ( Positive dilatancy) and negative pore water pressure occur, which causes the shear resistance value of the soil element, that is, the shear elastic modulus (shear stiffness) and strength to recover rapidly (this phenomenon is called the cyclic mobility phenomenon). ing). The results of attempting the ground liquefaction countermeasure work by piles focusing on this phenomenon are not disclosed.

【0010】図9は載荷、除荷の繰返し荷重に対して非
線形挙動を示す土要素のせん断ひずみ−せん断応力(γ
−τ)関係の履歴曲線の一例を示した関係図である。通
常、土要素は載荷除荷の繰返し荷重に対して所定の減衰
を示す紡錘形の履歴曲線を描く(曲線a)。この履歴曲
線の作る履歴ループの割線弾性係数であるせん断弾性係
数Gや減衰定数h等が土の動的特性の指標として求めら
れ、種々の動的解析に使用されている。たとえば、繰返
しせん断により土要素に液状化が生じると過剰間隙水圧
が上昇して有効応力がゼロ近くまで減少し、せん断強さ
を失ってしまい、排水状態での履歴曲線の包絡線は曲線
bのようになることが知られている。したがって土要素
は強度も剛性も急激に低下する。ところが、非排水状態
でせん断ひずみがある限度に増加してサイクリック・モ
ビリティー現象が起こると、曲線cのようにせん断応力
が急激に上昇し、強度の上昇とともにせん断弾性係数G
も回復することが知られている。
FIG. 9 shows shear strain-shear stress (γ) of a soil element that exhibits non-linear behavior with respect to repeated loading and unloading.
FIG. 6 is a relationship diagram showing an example of a history curve of −τ) relationship. Usually, the soil element draws a spindle-shaped history curve showing a predetermined damping with respect to repeated loading and unloading (curve a). The shear elastic modulus G, which is the secant elastic modulus of the hysteresis loop formed by this hysteresis curve, and the damping constant h are obtained as indicators of the dynamic characteristics of the soil, and are used in various dynamic analyses. For example, when liquefaction occurs in soil elements due to repeated shearing, excess pore water pressure rises, effective stress decreases to near zero, shear strength is lost, and the envelope curve of the hysteresis curve in the drained state is that of curve b. It is known that Therefore, the strength and rigidity of the soil element drop sharply. However, when the shear strain increases to a certain limit in the undrained state and the cyclic mobility phenomenon occurs, the shear stress sharply increases as shown by the curve c, and the shear elastic modulus G increases as the strength increases.
Is also known to recover.

【0011】図10(a)は従来の円形断面杭50の変
位状態を、図10(c)はそのときの周辺地盤の土要素
51のせん断変形状態を示した模式図である。このよう
に杭50が地震荷重のような水平力を受けてδだけ水平
変位した場合、その周辺地盤の応力分布に応じて土要素
51は符号52で示したようにせん断変形する。したが
ってこの状態でせん断変形が急激に上昇してある限度を
越えれば通常の杭でも周辺地盤の剛性と強度を図9に示
した曲線cのように向上させることができるわけであ
る。
FIG. 10 (a) is a schematic diagram showing the displacement state of the conventional circular cross-section pile 50, and FIG. 10 (c) is a schematic diagram showing the shear deformation state of the soil element 51 of the surrounding ground at that time. In this way, when the pile 50 receives a horizontal force such as an earthquake load and is horizontally displaced by δ, the soil element 51 undergoes shear deformation as indicated by reference numeral 52 according to the stress distribution of the surrounding ground. Therefore, if the shear deformation rises sharply in this state and exceeds a certain limit, the rigidity and strength of the surrounding ground can be improved as shown by the curve c shown in FIG.

【0012】そこで、本発明の目的は上述した従来の技
術が有する問題点を解消するとともに、前述の液状化し
た地盤の土の動的挙動に着目し、杭の周辺地盤の水平抵
抗強度を早いタイミングで増強させるようにした水平抵
抗増強杭を提供することにある。
Therefore, an object of the present invention is to solve the problems of the above-mentioned conventional techniques, and pay attention to the dynamic behavior of the soil of the liquefied ground described above, thereby increasing the horizontal resistance strength of the ground around the pile. It is to provide a horizontal resistance-enhancing pile that is designed to be enhanced at a timing.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は少なくとも液状化が生じる地層部分を貫通
する範囲の杭体周面に地盤攪乱体を形成したことを特徴
とするものである。このとき前記地盤攪乱体は杭周面に
固着された翼体であることを特徴とすることが好まし
い。また、前記地盤攪乱体を既製杭の周面に固着させた
翼体アタッチメントからなるようにすることが好まし
い。
In order to achieve the above object, the present invention is characterized in that a ground disturbing body is formed at least on a peripheral surface of a pile body which penetrates a stratum portion where liquefaction occurs. is there. At this time, it is preferable that the ground disturbing body is a wing body fixed to the peripheral surface of the pile. Further, it is preferable that the ground disturbing body is composed of a wing attachment attached to the peripheral surface of the ready-made pile.

【0014】[0014]

【作用】本発明によれば、少なくとも液状化が生じる地
層部分を貫通する範囲の杭体周面に地盤攪乱体を形成し
たことにより、この地盤攪乱体を有する杭は非排水状態
で繰返しせん断が作用する際に土要素のせん断ひずみを
積極的に増加させ、土粒子間の間隙水圧を急激に減少さ
せることができる。これにより図5の曲線cで示した挙
動より早いタイミングで、曲線dに示したようにせん断
応力τを上昇させることができる。この結果、従来の杭
に比べてより大きいせん断弾性係数Gを得ることがで
き、周辺地盤のせん断剛性を急速に回復させることがで
きる。
According to the present invention, since the ground disturbing body is formed on the pile body peripheral surface at least in the range penetrating the stratum portion where liquefaction occurs, the pile having the ground disturbing body is repeatedly sheared in an undrained state. When acting, the shear strain of soil elements can be positively increased and the pore water pressure between soil particles can be sharply reduced. As a result, the shear stress τ can be increased as shown by the curve d at a timing earlier than the behavior shown by the curve c in FIG. As a result, a larger shear elastic modulus G can be obtained as compared with the conventional pile, and the shear rigidity of the surrounding ground can be rapidly recovered.

【0015】すなわち、図10(b)及び(d)に示し
たように杭体10がδだけ水平変位した場合、杭周面に
地盤攪乱体20が形成された杭体10では通常の円形断
面杭50(同図(c)参照)より周辺地盤の土要素60
に大きなせん断ひずみγを生じさせることができる。こ
れにより杭周辺地盤のせん断弾性係数Gを図9の曲線d
で示したような早いタイミングで積極的に増強すること
ができ、この周辺地盤は見かけ上、杭の水平変位に対し
て変位を抑止するストッパとしての効果を果たすことが
できる。また、前記地盤攪乱体を既製杭の周面に固着さ
せるようにした翼体アタッチメントで構成させることに
より、既製杭を利用して安価かつ容易に水平抵抗増強効
果を発揮させることができる。
That is, when the pile body 10 is horizontally displaced by δ as shown in FIGS. 10 (b) and 10 (d), the pile body 10 having the ground disturbing body 20 formed on the pile peripheral surface has a normal circular cross section. From the pile 50 (see Fig. 1 (c)), the soil element 60 on the surrounding ground
A large shear strain γ can be generated. As a result, the shear elastic modulus G of the ground around the pile is calculated by the curve d in FIG.
It can be positively strengthened at an early timing as shown in, and the surrounding ground can apparently serve as a stopper that suppresses the displacement of the pile against horizontal displacement. In addition, by constructing the ground disturbing body with a wing attachment that is fixed to the peripheral surface of the prefabricated pile, the prefabricated pile can be utilized to inexpensively and easily exhibit the horizontal resistance increasing effect.

【0016】[0016]

【実施例】以下、本発明による水平抵抗増強杭の実施例
と種々の変形例を添付図面を参照して説明する。図1に
示した各図は鋼管杭10を例にその周面に種々のタイプ
の板状翼体を溶接した実施例を示した部分斜視図であ
る。同図(a)は鋼管杭10の全長にわたり地盤攪乱体
たる4枚の鋼板製翼体20が平面形状が十字形をなすよ
うにほぼ等間隔の角度をなして溶接されている。この鋼
板製翼体20は杭直径Dに対して所定の比率で翼幅Bが
設定されており、通常は杭直径Dに対してB=(0.5
〜1.0)×D程度に設定されている。図2(a)は図
1に示した鋼管杭10の平面形状を示したものである。
図中、鋼板製翼体20の枚数は4枚示されているが、そ
の設置枚数は等間隔の角度をなして鋼管杭の中心から放
射状となるように3〜12枚程度の枚数を溶接すること
が可能である。このとき重要なことは液状化の生じるお
それのある地盤において、この杭が水平変位したときに
周辺地盤のせん断ひずみをいかに効果的に増加させるか
である。鋼板製翼体20の枚数により地盤の攪乱の度合
いが異なるので、あらかじめ所定の地盤試験等を行って
翼体の枚数や設置位置を固有に設定して杭を作っても良
いし、N値等から判断してあらかじめ鋼板製翼体が所定
枚数だけ溶接されている既製品としての地盤攪乱体を有
する鋼管杭を購入して施工しても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the horizontal resistance increasing pile according to the present invention and various modifications will be described below with reference to the accompanying drawings. Each drawing shown in FIG. 1 is a partial perspective view showing an embodiment in which various types of plate-shaped blades are welded to the peripheral surface of a steel pipe pile 10 as an example. In FIG. 1 (a), four steel plate blades 20, which are ground disturbing bodies, are welded over the entire length of the steel pipe pile 10 at substantially equal intervals so that the planar shape is a cross shape. The blade width B of this steel plate blade body 20 is set at a predetermined ratio to the pile diameter D, and normally B = (0.5
.About.1.0) × D. FIG. 2A shows a planar shape of the steel pipe pile 10 shown in FIG.
In the figure, the number of steel plate blades 20 is shown as four, but the number of installed steel plates is set at an angle of equal intervals and about 3 to 12 are welded so as to be radial from the center of the steel pipe pile. It is possible. At this time, what is important is how to effectively increase the shear strain of the surrounding ground when the pile is horizontally displaced in the ground where liquefaction may occur. Since the degree of ground disturbance varies depending on the number of steel plate blade bodies 20, a predetermined ground test or the like may be performed in advance to set the number of blade bodies and the installation position uniquely to make a pile, and the N value, etc. Judging from the above, a steel pipe pile having a ground disturbing body as an off-the-shelf product in which a predetermined number of steel plate wings are welded in advance may be purchased and constructed.

【0017】同図(b)、(c)は鋼管杭10の施工さ
れる地盤の深さ方向において、液状化の生じるおそれの
ある飽和砂層の存在している深さにのみ鋼板製翼体20
を溶接した例を示したものである。これらの形状からな
る杭は飽和砂層がレンズ層をなしたり、薄く数条にわた
って介在するような場合に、同図(a)に比べて安価な
杭で対処することができるという利点を有する。また、
他の液状化のおそれのない地層を乱さないので、地盤強
度を不必要に低下させることを防止できる。さらに同図
(d)に示した鋼管杭10によれば、鋼板製翼体20が
杭の深さ方向に対して角度を変えて溶接されているの
で、地盤攪乱作用は一層効果的に行われる。同図(c)
の変形例として上下方向にある鋼板製翼体20を交互に
45°の角度をつけていわゆる千鳥状になるように溶接
させて地盤攪乱効果を高めるようにするのが加工も容易
であり好ましい。
FIGS. 1B and 1C show the steel plate blade body 20 only in the depth direction of the ground where the steel pipe pile 10 is installed, to a depth where a saturated sand layer that may cause liquefaction exists.
It shows an example of welding. The piles having these shapes have an advantage that, when the saturated sand layer forms a lens layer or thinly intervenes over several rows, it can be handled with a cheaper pile than that shown in FIG. Also,
Since it does not disturb the other strata that are not liable to be liquefied, it is possible to prevent the ground strength from being unnecessarily reduced. Further, according to the steel pipe pile 10 shown in FIG. 3D, since the steel plate blade body 20 is welded while changing the angle with respect to the depth direction of the pile, the ground disturbance action is more effectively performed. . The same figure (c)
As a modified example, it is preferable that the steel plate blade bodies 20 in the vertical direction are alternately welded at an angle of 45 ° so as to form a so-called zigzag pattern so as to enhance the ground disturbance effect, because the processing is easy and preferable.

【0018】なお、対象となる地盤、地形あるいは構造
物等の固有の理由で液状化発生による崩壊現象に指向性
が予想される場合には図2(b)に示したように鋼板製
翼体20A、20Bの一方向の翼体の翼幅Bを変えるこ
とも好ましい。これにより対象地盤が斜面等の場合に
は、斜面崩壊や側方流動を効果的に防止できる。
When the directivity is expected in the collapse phenomenon due to liquefaction due to the peculiar reason of the target ground, topography, structure, etc., as shown in FIG. It is also preferable to change the wing width B of the wing body in one direction of 20A and 20B. As a result, when the target ground is a slope or the like, slope collapse and lateral flow can be effectively prevented.

【0019】同図(a)〜(d)は鋼板製翼体20を鋼
管杭10の外周面に溶接接合した例を示したが、図1
(e)及び図2(c)に示したようにプレス加工により
鋼管の表面に凹面(窪み面)21と凸面22とを交互に
形成し、地盤攪乱体を形成するようにしても良い。この
場合には杭の断面積が変化するが、最小断面位置でも杭
体設計の値をクリアするように設定することが必要であ
る。凹面21の形成された部分には杭体施工時に地盤が
充填されるので、杭が水平変位するとこの部分の土塊が
積極的に変形するので、周辺地盤へ変形が派生し、周辺
地盤のせん断ひずみも上昇することが期待される。
FIGS. 1A to 1D show an example in which the steel plate blade body 20 is welded to the outer peripheral surface of the steel pipe pile 10.
As shown in (e) and FIG. 2 (c), a concave surface (concave surface) 21 and a convex surface 22 may be alternately formed on the surface of the steel pipe by pressing to form a ground disturbing body. In this case, the cross-sectional area of the pile changes, but it is necessary to set so as to clear the pile design value even at the minimum cross-sectional position. Since the ground where the concave surface 21 is formed is filled during pile construction, the horizontal displacement of the pile causes the soil mass in this area to be positively deformed, resulting in deformation of the surrounding ground and shear strain of the surrounding ground. Is also expected to rise.

【0020】図1(f)は前述の鋼板製翼体20の表面
に複数個の円形開孔20aを穿設し、杭施工時の杭体と
周辺地盤との一体性を図ったものである。この場合には
常時の引き抜き耐力も向上する上、水平変位時には円形
開孔20a近傍の地盤が乱されて急激にせん断ひずみを
生じるので、間隙水圧の減少を一層促進することができ
る。なお、鋼板製翼体20に形成される開孔20aは円
形に限られず、種々の形状とすることができるのは言う
までもない。
FIG. 1 (f) shows a plurality of circular apertures 20a formed in the surface of the above-mentioned steel plate blade body 20 in order to ensure the integrity of the pile body and the surrounding ground during pile construction. . In this case, the pulling-out proof strength at all times is improved, and at the time of horizontal displacement, the ground in the vicinity of the circular opening 20a is disturbed and a sudden shear strain is generated, so that the reduction of the pore water pressure can be further promoted. Needless to say, the opening 20a formed in the steel plate blade body 20 is not limited to a circular shape and can have various shapes.

【0021】次に、鋼管杭10の周面に固着する鋼板製
翼体20の構造の詳細について図3を参照して説明す
る。図1に示した各鋼板製翼体20は所定翼長Bを有す
る平鋼を管周面の長手方向に溶接したものであるが、翼
体は杭が水平変位した時に地盤抵抗により変形、破損し
ない程度の剛性と強度を有することが必要である。また
溶接作業等の施工容易性の観点から形鋼をウェブ部分が
翼体となるように配置し、溶接することも好ましい。図
3(a)は翼体23として細幅系CT形鋼を使用し、フ
ランジ23aの両端部分を鋼管杭10の表面にすみ肉溶
接して翼体とした例を示している。この他、辺長の異な
る山形鋼(アングル材)や溝形鋼を溶接しても良い。た
とえば翼体に十分な剛性と強度が要求される場合には同
図(b)に示したようなH形鋼24のフランジ24aの
一端を溶接して翼体としても良い。同図(c)は鋼板を
組み立てて断面形状が台形状をなす翼体25とし、その
内部にコンクリート30を充填した変形例を示したもの
である。この場合には比較的薄い鋼板25aを形枠とし
て利用して内部にリブ25b等を配置し、翼体25を鋼
コンクリート(SC)複合構造としている。当然、コン
クリートを充填しないで鋼板のみで同様の形状の翼体を
構成しても良い。
Next, the details of the structure of the steel plate blade body 20 fixed to the peripheral surface of the steel pipe pile 10 will be described with reference to FIG. Each steel plate wing body 20 shown in FIG. 1 is made by welding flat steel having a predetermined blade length B in the longitudinal direction of the pipe circumferential surface, but the wing body is deformed and damaged by ground resistance when the pile is horizontally displaced. It is necessary to have rigidity and strength that do not occur. Further, from the viewpoint of ease of construction such as welding work, it is also preferable to arrange and weld the shaped steel so that the web portion serves as a blade. FIG. 3A shows an example in which a narrow CT type steel is used as the blade body 23, and both ends of the flange 23a are fillet-welded to the surface of the steel pipe pile 10 to form the blade body. In addition, angle steel or angle steel having different side lengths may be welded. For example, when the blade body is required to have sufficient rigidity and strength, one end of the flange 24a of the H-shaped steel 24 as shown in FIG. FIG. 3C shows a modified example in which steel plates are assembled into a wing body 25 having a trapezoidal cross section, and concrete 30 is filled in the wing body 25. In this case, the relatively thin steel plate 25a is used as a frame, ribs 25b, etc. are arranged inside, and the blade body 25 has a steel-concrete (SC) composite structure. Naturally, a wing body having a similar shape may be formed only by the steel plate without being filled with concrete.

【0022】このように鋼管杭10は表面に鋼板製翼体
を直接溶接できる上、前述のように液状化の可能性のあ
る砂層部分のみに翼体を設けることが容易に行え、コス
ト的にも有効な杭種である。ところで、杭基礎に使用さ
れている杭の種類は場所打ち杭、中掘り杭、打ち込み杭
等施工方法によっても多数があり、また杭材料から見て
も鋼製杭、鉄筋コンクリート(RC)杭、プレストレス
トコンクリート(PC)杭、高強度プレストレストコン
クリート(PHC)杭、鋼板コンクリート(SC)杭等
の合成杭など多岐にわたる。しかし、本発明による地盤
攪乱体は、前記のいずれの杭種においても地盤のせん断
ひずみの増加と、せん断弾性係数の向上に寄与する。し
たがって地盤攪乱体を杭周面に形成する際に杭本体の材
料や構造に着目して翼体と杭本体とが一体的な構造とな
るように翼体の設計を行うことが好ましい。
As described above, the steel pipe pile 10 can directly weld the steel plate blade body to the surface thereof, and as described above, the blade body can be easily provided only in the sand layer portion where liquefaction is likely to occur, which is cost effective. Is also an effective pile species. By the way, there are many types of piles used for pile foundations, depending on the construction method such as cast-in-place piles, hollow-digging piles and driven-in piles. Also, from the viewpoint of pile materials, steel piles, reinforced concrete (RC) piles, and prestressed piles. There are a wide variety of composite (PC) piles, high-strength prestressed concrete (PHC) piles, and composite piles such as steel plate concrete (SC) piles. However, the ground disturbing body according to the present invention contributes to an increase in the shear strain of the ground and an improvement in the shear elastic modulus in any of the pile types described above. Therefore, when forming the ground disturbing body on the peripheral surface of the pile, it is preferable to design the wing body so that the wing body and the pile body have an integrated structure, paying attention to the material and structure of the pile body.

【0023】図4は各種の杭において翼体を形成した例
を示した部分断面図である。同図(a)はPC杭11に
形成された翼体26と本体の一部の断面を示したもの
で、翼体26には杭の曲げに抵抗できるように所定鉄筋
量の補強筋31が配置されており、これらの補強筋31
は帯鉄筋32を介して本体のPC鋼線33や補強帯鉄筋
34と一体的に連結されている。したがって本体と一体
化されたコンクリート製の翼体26により杭体の断面係
数が大きくなるので、杭体の曲げ耐力も向上するという
利点を有する。
FIG. 4 is a partial sectional view showing an example in which a wing body is formed in various piles. FIG. 1A shows a cross section of a wing body 26 formed on the PC pile 11 and a part of the main body. The wing body 26 is provided with a reinforcing bar 31 having a predetermined reinforcing bar amount so as to resist bending of the pile. Are placed and these reinforcements 31
Is integrally connected to the PC steel wire 33 of the main body and the reinforcing strip reinforcing bar 34 via the strip reinforcing bar 32. Therefore, since the concrete wing body 26 integrated with the main body increases the section modulus of the pile body, there is an advantage that the bending resistance of the pile body is also improved.

【0024】同図(b)はSC杭の表面に前述の鋼板製
翼体27を溶接した例を示したものである。この変形例
では杭が水平変位した際に鋼板製翼体27が変形し、鋼
板ライニング12とコンクリート13とが剥離しないよ
うに補剛プレート37がコンクリート側に配置され、埋
設されている。同図(c)は埋込み支持部29を備えた
鋼板製翼体28をPC杭14の外周面に配置し、コンク
リート杭体の成形時に一体的に鋼板製翼体28を形成す
るようにした変形例を示したものである。この埋込み支
持部29は支持プレート29aとコンクリート内に埋設
されるアンカーボルト29bあるいはアンカープレート
とから構成され、あらかじめ杭体位置に組み立てられた
鉄筋(図示せず)をガイドとして所定位置に配置され、
コンクリート杭体と一体的に施工される。これにより水
平変位時に鋼板製翼体20に作用する地盤抵抗力は一体
化されたコンクリートに伝達され、杭全体として挙動す
るようになっている。
FIG. 2B shows an example in which the above-mentioned steel plate blade 27 is welded to the surface of the SC pile. In this modification, the steel plate wing body 27 is deformed when the pile is horizontally displaced, and the stiffening plate 37 is arranged and buried on the concrete side so that the steel plate lining 12 and the concrete 13 are not separated. The same figure (c) is a modification in which a steel plate wing body 28 having an embedded support portion 29 is arranged on the outer peripheral surface of the PC pile 14 so that the steel plate wing body 28 is integrally formed when forming a concrete pile body. This is an example. This embedded support portion 29 is composed of a support plate 29a and an anchor bolt 29b or an anchor plate embedded in concrete, and is arranged at a predetermined position using a reinforcing bar (not shown) preassembled at the pile position as a guide.
It is constructed integrally with the concrete pile body. As a result, the ground resistance acting on the steel plate blade body 20 during horizontal displacement is transmitted to the integrated concrete, and the pile as a whole behaves.

【0025】以上では、各種の既製杭に翼体を形成した
変形例を示したが、場所打ち杭においても、アースドリ
ル等の掘削機で杭を掘削する際に所定直径の円形断面に
加え、放射状に配置された溝状部を掘削可能な掘削用ア
タッチメントを用いることでたとえば図4(a)に示し
たような断面形に近い形状の杭断面を掘削できる。さら
にこの掘削部分に建て込む鉄筋かごにも翼体部分の配筋
を連結しておき、従来と同様の方法でコンクリートを打
設すれば、地盤攪乱体を有する場所打ち杭を施工するこ
ともできる。
In the above, the modified example in which the blade body is formed on various ready-made piles is shown. However, in the case of cast-in-place piles, in addition to the circular cross section of a predetermined diameter when excavating the pile with an excavator such as an earth drill By using the excavation attachment capable of excavating the radially arranged groove portions, it is possible to excavate a pile cross section having a shape close to the cross section shown in FIG. 4A, for example. Furthermore, if the reinforcing bar cage to be built in this excavation part is also connected to the wing body part and concrete is placed in the same manner as in the past, it is possible to construct cast-in-place piles with ground disturbing bodies. .

【0026】次に、他の実施例として、PC杭、PHC
杭または鋼管杭のような従来の既製杭の周囲の所定位置
に前述の翼体をアタッチメントとして取り付けるように
した水平抵抗増強杭について図5〜図8を参照して説明
する。図5は既製PC杭の外周の所定位置に固着された
翼体アタッチメント40を示した側面図である。この翼
体アタッチメント40は同図(b)に示したように、杭
体11の外径より僅かに大きな内径を有する胴部41
と、この胴部41の両端に形成された接合フランジ42
と、胴部41のほぼ中央位置に溶接接合により固着され
た翼部43とからなり、本実施例では図6に示したよう
に対向位置にある2個の翼体アタッチメント40が、胴
部41の両端の接合フランジ42をボルト止め45する
ことにより一体的に接合されている。このとき接合フラ
ンジ42は、中央位置に固着された翼部43とほぼ同寸
法に設定されているため、2個の翼体アタッチメント4
0が接合された状態では、翼体アタッチメント40が固
定された位置において、杭体11の周囲に図5(b)に
示したような平面形状が略十字形をなす翼体を形成する
ことができる。なお、翼体アタッチメント40の翼体長
は既製杭の外径Dに対して1/2程度に設定することが
好ましい。また、以上のように翼体を翼体アタッチメン
ト40のように構成することで、翼体アタッチメント4
0を既製杭に固着する際に、図1(d)に示したように
千鳥状に配置された翼体形状も現場において容易に製作
することができるという利点がある。
Next, as another embodiment, a PC pile and a PHC
A horizontal resistance-enhancing pile in which the above-mentioned blade body is attached as an attachment to a predetermined position around a conventional ready-made pile such as a pile or a steel pipe pile will be described with reference to FIGS. 5 to 8. FIG. 5 is a side view showing the wing attachment 40 fixed to a predetermined position on the outer periphery of the ready-made PC pile. This wing body attachment 40 has a body portion 41 having an inner diameter slightly larger than the outer diameter of the pile body 11, as shown in FIG.
And joint flanges 42 formed on both ends of the body 41
And a wing portion 43 fixed by welding to the body portion 41 at a substantially central position. In this embodiment, the two wing body attachments 40 at the opposing positions as shown in FIG. The joint flanges 42 at both ends are bolted together to be integrally joined. At this time, the joint flange 42 is set to have substantially the same size as the blade portion 43 fixed to the central position, so that the two blade body attachments 4 are attached.
When 0 is joined, a wing body having a substantially cross-shaped plane as shown in FIG. 5B may be formed around the pile body 11 at a position where the wing body attachment 40 is fixed. it can. The blade length of the blade attachment 40 is preferably set to about 1/2 of the outer diameter D of the ready-made pile. Further, by configuring the wing body as the wing body attachment 40 as described above, the wing body attachment 4
When 0 is fixed to the ready-made pile, there is an advantage that the wing body shapes arranged in a staggered manner as shown in FIG. 1D can be easily manufactured on site.

【0027】ところで、翼体アタッチメント40は取り
付ける杭体11の外径に合わせた内径を有するように仕
上げられた鋼製加工品であるが、杭体11に固着する際
に、樹脂製緩衝バンド44を杭体11の翼体アタッチメ
ント40の取付位置に巻回しておくことが好ましい。こ
れにより翼体アタッチメント40の接合フランジ42部
分での締め付け力が、万一杭体11の外周に均等に伝わ
らないような場合でも、杭体11を局部的に傷めたりす
るのを防止することができる。緩衝バンド44として
は、合成ゴム、樹脂含浸した布地等を使用することもで
きる。この図7はこの翼体アタッチメント40を杭体1
1の深さ方向に所定の離隔をとって固着した状態を示し
たものである。この翼体アタッチメント40が固着され
た杭体11は図1(c)に示した水平抵抗増強杭と同等
の効果を奏することができる。たとえばPC杭で杭体製
作時に翼体を備えるようにするには、図4に示したよう
な補強構造を施さなければならないため、杭体11の製
作コストが相当高くなることが予想されるが、図7に示
した実施例では、既製PC杭の外周に鋼製の翼体アタッ
チメント40をボルト接合するだけで良いため、大幅な
コストダウンを図ることができる。
By the way, the wing body attachment 40 is a steel processed product finished so as to have an inner diameter corresponding to the outer diameter of the pile body 11 to be attached. When the wing body attachment 40 is fixed to the pile body 11, a resin buffer band 44 is used. Is preferably wound around the mounting position of the blade attachment 40 of the pile 11. Thereby, even if the tightening force at the joint flange 42 portion of the blade attachment 40 is not evenly transmitted to the outer periphery of the pile body 11, it is possible to prevent the pile body 11 from being locally damaged. it can. As the buffer band 44, synthetic rubber, resin-impregnated cloth, or the like may be used. This wing attachment 40 is shown in FIG.
1 shows a state of being fixed with a predetermined distance in the depth direction of No. 1. The pile body 11 to which the wing body attachment 40 is fixed can have the same effect as the horizontal resistance enhancement pile shown in FIG. 1 (c). For example, in order to equip a PC pile with a wing body at the time of manufacturing a pile body, a reinforcement structure as shown in FIG. 4 must be applied, so that the manufacturing cost of the pile body 11 is expected to be considerably high. In the embodiment shown in FIG. 7, since it is only necessary to bolt the steel blade attachment 40 to the outer circumference of the ready-made PC pile, it is possible to significantly reduce the cost.

【0028】図8の各図は翼体アタッチメント50の変
形例を示したものである。本変形例では同図(a)に示
したように、所定位置に所定枚数の翼体単体54を取付
可能な胴部51が採用されている。同図(a)に示した
例では、接合フランジ部分にそれぞれ1枚ずつの翼体5
2が形成されており、さらに胴部51の外周に沿って約
45°の角度間隔で形成された翼体取付フランジ53が
形成されている。この翼体取付フランジ53のうち、接
合フランジ52と直角をなす位置に翼体54がボルト止
めにより固着されている。これにより本変形例において
も、杭体11の所定位置に平面形状が略十字形をなす翼
体を形成することができる。本変形例での翼体取付フラ
ンジ53のすべてに翼体54を固着すれば、全体として
8枚の翼体を設けることができるようになっている。図
8(b)は、図7と同等の地盤攪乱効果を有する水平抵
抗増強杭とした例を示したものである。同図(c)は、
複数の翼体アタッチメント50で長尺の翼体プレート5
5を支持固定するようにした適用例を示したものであ
る。本例によれば、液状化のおそれのある層厚が大きい
場合にも、水平抵抗増強杭として既製杭を容易に適用す
ることができるという利点がある。
Each drawing of FIG. 8 shows a modified example of the blade attachment 50. In this modification, as shown in FIG. 7A, a body portion 51 to which a predetermined number of blade bodies 54 can be attached at a predetermined position is adopted. In the example shown in FIG. 7A, one blade body 5 is provided for each joint flange portion.
2 is formed, and further, blade body mounting flanges 53 are formed along the outer periphery of the body portion 51 at angular intervals of about 45 °. A wing body 54 is fixed to the wing body mounting flange 53 at a position perpendicular to the joint flange 52 by bolting. As a result, also in this modification, the wing body having a substantially cruciform planar shape can be formed at a predetermined position of the pile body 11. If the blade bodies 54 are fixed to all of the blade body mounting flanges 53 in this modified example, it is possible to provide eight blade bodies as a whole. FIG. 8 (b) shows an example of a horizontal resistance enhancing pile having a ground disturbance effect equivalent to that of FIG. The figure (c) shows
Long blade plate 5 with multiple blade attachments 50
5 shows an application example in which 5 is supported and fixed. According to this example, there is an advantage that ready-made piles can be easily applied as the horizontal resistance-enhancing piles even when the layer thickness that may cause liquefaction is large.

【0029】なお、翼体アタッチメント50は、現場に
搬入された通常の既製杭に取り付けて使用するわけであ
るが、翼体アタッチメント50取付作業は、あらかじめ
仮置き場に横置きされた既製杭の所定位置に翼体アタッ
チメント50を取り付けておいて、その後翼体アタッチ
メント50が取り付けられた杭体11を杭打ち機等を用
いて打設しても良いし、または翼体アタッチメント50
を取り付ける位置の下端位置まで既製杭を打設してお
き、地表面付近に突出している杭部分に翼体アタッチメ
ント50を順次取り付け、杭打設するようにしても良
い。
The wing body attachment 50 is used by attaching it to a normal ready-made pile that has been brought into the field. The wing body attachment 50 may be attached to the position, and then the pile body 11 to which the wing body attachment 50 is attached may be driven by using a pile driver or the like, or the wing body attachment 50
It is also possible to drive ready-made piles up to the lower end of the mounting position, attach the blade attachments 50 in sequence to the pile portions projecting near the ground surface, and drive the piles.

【0030】以上の説明では地盤攪乱体としての翼体構
造により杭周辺地盤のせん断弾性係数の向上が図れるこ
とを述べたが、鋼管杭やPC杭のような地盤攪乱体を有
する杭を打ち込み等により施工することで、周辺地盤に
対する締固め効果も期待できる。
In the above description, it was stated that the wing structure as a ground disturbing body can improve the shear elastic modulus of the ground around the pile, but a pile having a ground disturbing body such as a steel pipe pile or a PC pile is driven in. The construction can be expected to have a compaction effect on the surrounding ground.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
によれば、地震時に杭が水平変位した際の周辺地盤の変
形挙動を積極的に利用して、杭周辺地盤のせん断弾性強
度を向上させて杭の水平抵抗性を増強できるので、杭と
いう構造物の一部で地盤抵抗性を増強でき、安価できわ
めて有効な液状化対策工を提供できるという効果を奏す
る。
As is apparent from the above description, according to the present invention, the shear elastic strength of the ground around the pile is positively utilized by positively utilizing the deformation behavior of the surrounding ground when the pile is horizontally displaced during an earthquake. Since it is possible to improve the horizontal resistance of the pile, it is possible to enhance the ground resistance in a part of the structure called the pile, and it is possible to provide an inexpensive and extremely effective liquefaction countermeasure work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水平抵抗増強杭のいくつかの実施
例を示した部分斜視図。
FIG. 1 is a partial perspective view showing some embodiments of a horizontal resistance enhancing pile according to the present invention.

【図2】図1に示した水平抵抗増強杭の平面形状の一例
を示した平面図。
FIG. 2 is a plan view showing an example of a planar shape of the horizontal resistance enhancement pile shown in FIG.

【図3】鋼管杭の周面に形成された地盤攪乱体の一例を
示した部分横断面図。
FIG. 3 is a partial transverse cross-sectional view showing an example of a ground disturbing body formed on the peripheral surface of a steel pipe pile.

【図4】コンクリート杭、合成杭の周面に形成された地
盤攪乱体の一例を示した部分横断面図。
FIG. 4 is a partial cross-sectional view showing an example of a ground disturbing body formed on the peripheral surface of a concrete pile or a composite pile.

【図5】他の実施例として、翼体アタッチメントを取り
付けた水平抵抗増強杭の一例を示した正面図、横断面
図。
FIG. 5 is a front view and a cross-sectional view showing an example of a horizontal resistance enhancement pile to which a wing attachment is attached as another embodiment.

【図6】図5に示した水平抵抗増強杭への翼体アタッチ
メントの取付け例を示した概略斜視図。
6 is a schematic perspective view showing an example of attachment of a wing body attachment to the horizontal resistance enhancement pile shown in FIG.

【図7】複数の翼体アタッチメントを杭体に取り付けた
例を示した部分斜視図。
FIG. 7 is a partial perspective view showing an example in which a plurality of wing body attachments are attached to a pile body.

【図8】翼体アタッチメントの変形例を示した横断面
図、部分斜視図。
FIG. 8 is a cross-sectional view and a partial perspective view showing a modified example of the wing attachment.

【図9】土要素のせん断ひずみ−せん断応力(γ−τ)
関係の履歴曲線の一例を示した関係図。
[Fig. 9] Shear strain of soil element-Shear stress (γ-τ)
FIG. 6 is a relationship diagram showing an example of a relationship history curve.

【図10】杭の水平変位と地盤の変形状態、土要素のせ
ん断変形ひずみとの関係を模式的に示した説明図。
FIG. 10 is an explanatory view schematically showing the relationship between horizontal displacement of piles, ground deformation state, and shear deformation strain of soil elements.

【符号の説明】[Explanation of symbols]

10 鋼管杭 11,14 PC杭 20,27,28,43,54 鋼板製翼体 25,26 コンクリート製翼体 40,50 翼体アタッチメント 42,52 接合フランジ 10 Steel Pipe Pile 11,14 PC Pile 20,27,28,43,54 Steel Plate Wing 25,26 Concrete Wing 40,50 Wing Attachment 42,52 Joint Flange

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも液状化が生じる地層部分を貫通
する範囲の杭体周面に地盤攪乱体を形成したことを特徴
とする水平抵抗増強杭。
1. A horizontal resistance-enhancing pile, wherein a ground disturbing body is formed on a peripheral surface of the pile body that penetrates at least a stratum portion where liquefaction occurs.
【請求項2】前記地盤攪乱体は杭周面に固着された翼体
であることを特徴とする請求項1記載の水平抵抗増強
杭。
2. The horizontal resistance enhancement pile according to claim 1, wherein the ground disturbing body is a wing body fixed to a peripheral surface of the pile.
【請求項3】前記地盤攪乱体は既製杭の周面に固着させ
た翼体アタッチメントからなることを特徴とする請求項
1記載の水平抵抗増強杭。
3. The horizontal resistance enhancement pile according to claim 1, wherein the ground disturbing body comprises a wing attachment attached to a peripheral surface of a ready-made pile.
JP6230400A 1993-09-07 1994-08-31 Pile for liquefied ground and method of enhancing horizontal resistance of pile with the pile Expired - Fee Related JP2715261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6230400A JP2715261B2 (en) 1993-09-07 1994-08-31 Pile for liquefied ground and method of enhancing horizontal resistance of pile with the pile

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-246370 1993-09-07
JP24637093 1993-09-07
JP6230400A JP2715261B2 (en) 1993-09-07 1994-08-31 Pile for liquefied ground and method of enhancing horizontal resistance of pile with the pile

Publications (2)

Publication Number Publication Date
JPH07127053A true JPH07127053A (en) 1995-05-16
JP2715261B2 JP2715261B2 (en) 1998-02-18

Family

ID=26529325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6230400A Expired - Fee Related JP2715261B2 (en) 1993-09-07 1994-08-31 Pile for liquefied ground and method of enhancing horizontal resistance of pile with the pile

Country Status (1)

Country Link
JP (1) JP2715261B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050083320A (en) * 2004-02-23 2005-08-26 (주)씨에스티개발 Shear force equipment of steel pile for bridge
KR100888166B1 (en) * 2008-01-22 2009-03-10 (주)진산이엔지 Construction method of site direct forming soil concrete pile and the soil concrete pile
KR200445662Y1 (en) * 2007-07-23 2009-08-24 대한주택공사 A cast-in place pile using multi-piled up H-beam strengthen directional faults
JP2010001599A (en) * 2008-06-18 2010-01-07 Asahi Chubu Shizai Kk Pile for exterior and foundation structure of exterior structure
WO2012115138A1 (en) * 2011-02-22 2012-08-30 新日本製鐵株式会社 Steel pipe with concavities, and composite pile
JP5300163B1 (en) * 2012-12-03 2013-09-25 株式会社オーク Steel pile rooting method
KR101334393B1 (en) * 2012-03-21 2013-11-29 삼호쏘일텍(주) Pre-boring method for micro pile
JP2013249685A (en) * 2012-06-04 2013-12-12 Something:Kk Band-like blade member for steel pipe pile, steel pipe pile, and composite pile and method of manufacturing the same
CN103853000A (en) * 2012-11-30 2014-06-11 三星电子株式会社 Cleaning blades, cleaning units, electrophotographic imaging apparatuses and electrophotographic cartridges
JP2014109190A (en) * 2013-06-17 2014-06-12 Oak:Kk Foot protection method for steel pile
KR101423613B1 (en) * 2011-06-22 2014-07-28 이대동 Bearing power reinforcement part and pile having bearing power reinforcement part
KR20180012330A (en) * 2018-01-16 2018-02-05 유철 Earthquake-proof stiffening member for seamed pipe
KR101980134B1 (en) * 2018-12-13 2019-05-17 건창산업(주) The self-supporting type prestress beam for earth retaining earth which can improve earth pressure holding force and shape deformation
JP2020051063A (en) * 2018-09-25 2020-04-02 ジャパンパイル株式会社 Ground improvement pile, construction method of ground improvement body and protrusion of ground improvement pile
KR102160619B1 (en) * 2020-04-24 2020-09-28 주식회사 임성 A Foundation Pile
CN115419056A (en) * 2022-09-08 2022-12-02 中铁二院工程集团有限责任公司 Reinforcing structure for resisting foundation expansion and contraction deformation and design method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641907B2 (en) * 2015-11-11 2020-02-05 日本製鉄株式会社 Steel pipe coupler structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202115A (en) * 1986-03-03 1987-09-05 Fujita Corp Pile with blade
JPS6327551U (en) * 1986-08-07 1988-02-23
JP3018238U (en) * 1995-02-03 1995-11-14 株式会社オフィス・オートメーション・システム Information service system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202115A (en) * 1986-03-03 1987-09-05 Fujita Corp Pile with blade
JPS6327551U (en) * 1986-08-07 1988-02-23
JP3018238U (en) * 1995-02-03 1995-11-14 株式会社オフィス・オートメーション・システム Information service system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050083320A (en) * 2004-02-23 2005-08-26 (주)씨에스티개발 Shear force equipment of steel pile for bridge
KR200445662Y1 (en) * 2007-07-23 2009-08-24 대한주택공사 A cast-in place pile using multi-piled up H-beam strengthen directional faults
KR100888166B1 (en) * 2008-01-22 2009-03-10 (주)진산이엔지 Construction method of site direct forming soil concrete pile and the soil concrete pile
JP2010001599A (en) * 2008-06-18 2010-01-07 Asahi Chubu Shizai Kk Pile for exterior and foundation structure of exterior structure
WO2012115138A1 (en) * 2011-02-22 2012-08-30 新日本製鐵株式会社 Steel pipe with concavities, and composite pile
JP5085809B2 (en) * 2011-02-22 2012-11-28 新日本製鐵株式会社 Recessed steel pipe and composite pile
US9062432B2 (en) 2011-02-22 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Depression-provided steel pipe and composite pile
CN103370476A (en) * 2011-02-22 2013-10-23 新日铁住金株式会社 Steel pipe with concavities, and composite pile
CN103370476B (en) * 2011-02-22 2015-06-03 新日铁住金株式会社 Steel pipe with concavities, and composite pile
KR101423613B1 (en) * 2011-06-22 2014-07-28 이대동 Bearing power reinforcement part and pile having bearing power reinforcement part
KR101334393B1 (en) * 2012-03-21 2013-11-29 삼호쏘일텍(주) Pre-boring method for micro pile
JP2013249685A (en) * 2012-06-04 2013-12-12 Something:Kk Band-like blade member for steel pipe pile, steel pipe pile, and composite pile and method of manufacturing the same
CN103853000A (en) * 2012-11-30 2014-06-11 三星电子株式会社 Cleaning blades, cleaning units, electrophotographic imaging apparatuses and electrophotographic cartridges
JP5300163B1 (en) * 2012-12-03 2013-09-25 株式会社オーク Steel pile rooting method
JP2014109190A (en) * 2013-06-17 2014-06-12 Oak:Kk Foot protection method for steel pile
KR20180012330A (en) * 2018-01-16 2018-02-05 유철 Earthquake-proof stiffening member for seamed pipe
JP2020051063A (en) * 2018-09-25 2020-04-02 ジャパンパイル株式会社 Ground improvement pile, construction method of ground improvement body and protrusion of ground improvement pile
KR101980134B1 (en) * 2018-12-13 2019-05-17 건창산업(주) The self-supporting type prestress beam for earth retaining earth which can improve earth pressure holding force and shape deformation
KR102160619B1 (en) * 2020-04-24 2020-09-28 주식회사 임성 A Foundation Pile
CN115419056A (en) * 2022-09-08 2022-12-02 中铁二院工程集团有限责任公司 Reinforcing structure for resisting foundation expansion and contraction deformation and design method

Also Published As

Publication number Publication date
JP2715261B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JPH07127053A (en) Horizontal resistance increasing pile
US20080253845A1 (en) Building foundation structure formed with soil improving body and raft foundation and construction method for soil improvement and raft foundation
JPH09158212A (en) Foundation reinforcing structure for structure group
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP5041758B2 (en) Seismic isolation structure with artificial ground
JP4987652B2 (en) Reinforcement structure and method of embankment and linear embankment
JP2019019503A (en) Pile head structure
JPH07119549B2 (en) Twin tunnel
JP4636478B2 (en) Liquefaction prevention structure
JP6292028B2 (en) Embankment reinforcement structure
JP3098719B2 (en) Building structures using piles as pillars
JP3599414B2 (en) Liquefaction countermeasures pile and ground liquefaction countermeasure method using the pile
JP3648646B2 (en) Structure liquefaction countermeasure structure
KR102051386B1 (en) construction method of flexural and seismic reinforcing high strength concrete pile with metal cap
JP4543268B2 (en) Liquefaction prevention structure
JP4502442B2 (en) Seismic foundation, seismic building, and pile reinforcement method
KR101020217B1 (en) rock construction structure of using anchor and method thereof
JPH108422A (en) Reinforcement structure of bridge pier
JP2002138574A (en) Building construction method and building
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
KR102661410B1 (en) Internally tightened and head reinforced structure for pile
JP2751652B2 (en) Liquefaction prevention structure for lifeline structures
KR102593945B1 (en) Construction method of an ultra-close parallel tunnel using steel beams and shotcrete reinforcement pillars
JP4607485B2 (en) Expanded caisson foundation structure and seismic reinforcement structure for existing caisson foundation
KR101253051B1 (en) Arching pile

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees