JPH07122985A - Gate circuit - Google Patents

Gate circuit

Info

Publication number
JPH07122985A
JPH07122985A JP26463793A JP26463793A JPH07122985A JP H07122985 A JPH07122985 A JP H07122985A JP 26463793 A JP26463793 A JP 26463793A JP 26463793 A JP26463793 A JP 26463793A JP H07122985 A JPH07122985 A JP H07122985A
Authority
JP
Japan
Prior art keywords
power source
igbt
gtr
circuit
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26463793A
Other languages
Japanese (ja)
Inventor
Toru Aisaka
亨 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26463793A priority Critical patent/JPH07122985A/en
Publication of JPH07122985A publication Critical patent/JPH07122985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To provide the gate circuit of an IGBT and a GTR which does not turn on the IGBT and the GTR at the time of turning off a power source. CONSTITUTION:In the gate circuit of an IGBT and a GTR where the bipolarity power source obtained from the rectifier circuit 3 connected with the secondary side of a transducer 2 is made a power source, the control signal of the IGBT or the GTR becomes off when the power source is turned off and the gate voltage of the IGBT or the GTR becomes minus voltage because the bipolarity power source is connected with each capacitor 41 and 42 and the capacitance connected with the plus side of the power source is made smaller than the capacitance connected with the minus side and the voltage on the side of the plus becomes zero first because the resistance value or the capacitance on the plus side of the bipolarity power source is smaller than the resistance value or the capacitance on the minus side. Therefore, plus voltage is not impressed on the gate of the IGBT or GTR when the power source is turned off.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電源オフ時のゲート回
路の誤動作を防止するIGBTやGTRのゲート回路に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gate circuit for an IGBT or GTR which prevents malfunction of the gate circuit when the power is off.

【0002】[0002]

【従来の技術】従来、IGBTのゲート回路の両極性電
源に取り付けられるコンデンサ、抵抗は同一定格のもの
を使用していた。しかし、IGBTのゲート回路の電源
をオフすると、IGBTの制御信号はオフとなり、IG
BTのゲート電圧はマイナス電圧が印加される。このた
め、両極性電源のうちマイナス側の電圧が先にゼロにな
るが、この時はまだプラス側の電圧が残っているので、
ゲート回路出力がプラス電圧となり、IGBTがオンし
てしまうという欠点があった。また、GTRのゲート回
路についても上記IGBTのゲート回路と同様の欠点が
ある。
2. Description of the Related Art Conventionally, capacitors and resistors attached to bipolar power supplies of an IGBT gate circuit have the same rating. However, when the power supply of the gate circuit of the IGBT is turned off, the control signal of the IGBT is turned off and the IG
A negative voltage is applied to the gate voltage of BT. For this reason, the voltage on the negative side of the bipolar power source becomes zero first, but at this time the voltage on the positive side still remains,
There is a drawback that the output of the gate circuit becomes a positive voltage and the IGBT is turned on. The GTR gate circuit also has the same drawbacks as the IGBT gate circuit.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記欠点を解
消するためになされたもので、その目的は、電源オフ時
にIGBTやGTRをオンさせないIGBTやGTRの
ゲート回路を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above drawbacks, and an object thereof is to provide an IGBT or GTR gate circuit which does not turn on the IGBT or GTR when the power is turned off.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明の請求項1は、トランスの2次側に接続された
整流回路から得られる両極性電源を電源とするIGBT
のゲート回路において、前記両極性電源に各々コンデン
サが接続されていて、当該電源のプラス側に接続された
コンデンサ容量をマイナス側に接続されたコンデンサ容
量より小さくしたことを特徴とする。また、請求項2
は、トランスの2次側に接続された整流回路から得られ
る両極性電源を電源とするIGBTのゲート回路におい
て、前記両極性電源に各々抵抗とコンデンサの並列回路
が接続されていて、当該電源のプラス側の抵抗の抵抗値
をマイナス側の抵抗の抵抗値より小さくしたことを特徴
とする。さらに、請求項3は、トランスの2次側に接続
された整流回路から得られる両極性電源を電源とするG
TRのゲート回路において、前記両極性電源に各々抵抗
とコンデンサの並列回路が接続されていて、当該電源の
プラス側の抵抗値またはコンデンサ容量をマイナス側の
抵抗値またはコンデンサ容量より小さくしたことを特徴
とする。
In order to achieve the above object, the first aspect of the present invention is to use an bipolar power source obtained from a rectifier circuit connected to the secondary side of a transformer as a power source.
In the gate circuit, a capacitor is connected to each of the bipolar power supplies, and the capacitor capacity connected to the positive side of the power supply is smaller than the capacitor capacity connected to the negative side. In addition, claim 2
In a gate circuit of an IGBT which uses a bipolar power source obtained from a rectifier circuit connected to the secondary side of a transformer as a power source, a parallel circuit of a resistor and a capacitor is connected to each bipolar power source, It is characterized in that the resistance value of the positive side resistance is made smaller than the resistance value of the negative side resistance. Further, claim 3 uses a bipolar power source obtained from a rectifier circuit connected to the secondary side of the transformer as a power source.
In the TR gate circuit, a parallel circuit of a resistor and a capacitor is connected to each of the bipolar power supplies, and the resistance value or the capacitance of the power supply on the plus side is smaller than the resistance value or the capacitance of the minus side. And

【0005】[0005]

【作用】本発明によると、電源がオフされた時、IGB
TまたはGTRの制御信号がオフとなり、IGBTまた
はGTRのゲート電圧はマイナス電圧となるが、両極性
電源のプラス側の抵抗値またはコンデンサ容量がマイナ
ス側の抵抗値またはコンデンサ容量より小さいので、プ
ラス側の電圧が先にゼロになる。したがって、電源オフ
時、IGBTまたはGTRのゲートにプラス電圧が印加
されない。
According to the present invention, when the power is turned off, the IGB
The control signal of T or GTR is turned off and the gate voltage of IGBT or GTR becomes a negative voltage, but the positive side resistance value or capacitor capacity of the bipolar power supply is smaller than the negative side resistance value or capacitor capacity, so the positive side Voltage becomes zero first. Therefore, no positive voltage is applied to the gate of the IGBT or GTR when the power is off.

【0006】[0006]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の一実施例の回路構成図である。同図
に示すように、電源1を絶縁降圧するトランス2の1次
側に接続し、このトランス2の2次側に整流回路3が接
続され、両極性電源が得られる。この両極性電源のプラ
ス側にはコンデンサ41と抵抗51が並列接続され、ま
たマイナス側にはコンデンサ42と抵抗52が並列接続
されている。ただし、コンデンサ42の方がコンデンサ
41より容量が大きくしており、またプラス側の抵抗51
の抵抗値をマイナス側の抵抗52の抵抗値より小さくして
いる。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a circuit configuration diagram of an embodiment of the present invention. As shown in the figure, the power source 1 is connected to the primary side of a transformer 2 for insulating and stepping down, and the rectifier circuit 3 is connected to the secondary side of this transformer 2 to obtain a bipolar power source. A capacitor 41 and a resistor 51 are connected in parallel on the positive side of the bipolar power source, and a capacitor 42 and a resistor 52 are connected in parallel on the negative side. However, the capacitor 42 has a larger capacity than the capacitor 41, and the positive resistance 51
The resistance value of is smaller than the resistance value of the resistor 52 on the negative side.

【0007】IGBT7の制御信号6はフォトカプラで
構成された絶縁回路8に入力され、その出力は増幅回路
9に入力される。この増幅回路9の電源は、コンデンサ
41のプラス側とコンデンサ42のマイナス側が用いら
れている。そして増幅回路9の出力はゲート直列抵抗1
0を通ってIGBT7のゲートに接続され、IGBT7
のエミッタは、両極性電源のゼロ電位であるAGに接続
されている。
The control signal 6 of the IGBT 7 is input to an insulating circuit 8 composed of a photocoupler, and its output is input to an amplifier circuit 9. As the power source of the amplifier circuit 9, the positive side of the capacitor 41 and the negative side of the capacitor 42 are used. The output of the amplifier circuit 9 is the gate series resistance 1
Connected to the gate of the IGBT7 through 0
The emitter of is connected to AG, which is the zero potential of the bipolar power supply.

【0008】次に、本実施例の作用を図2のタイムチャ
ートを参照して説明する。今、電源1がオフされた時、
IGBT7の制御信号6がオフとなり、IGBT7のゲ
ート電圧はマイナス電圧となる。このため増幅回路9へ
供給される両極性電源のうちマイナス電源の消費電流が
大きいがコンデンサ42の方がコンデンサ41より容量
が大きいので、プラス電源のコンデンサ41の電圧が先
にゼロになり、それより遅れてマイナス電源のコンデン
サ42の電圧がゼロになる。したがって、電源1のオフ
時、IGBT7のゲートにプラス電圧が印加されないの
で、IGBT7が誤オンすることはない。
Next, the operation of this embodiment will be described with reference to the time chart of FIG. Now, when the power supply 1 is turned off,
The control signal 6 of the IGBT 7 is turned off, and the gate voltage of the IGBT 7 becomes a negative voltage. Therefore, of the bipolar power supplies supplied to the amplifier circuit 9, the negative power supply consumes a large amount of current, but the capacitor 42 has a larger capacity than the capacitor 41. Therefore, the voltage of the positive power supply capacitor 41 becomes zero first, and After a further delay, the voltage of the negative power supply capacitor 42 becomes zero. Therefore, when the power supply 1 is turned off, the positive voltage is not applied to the gate of the IGBT 7, so that the IGBT 7 does not turn on erroneously.

【0009】本発明の他の実施例としてIGBT7のゲ
ート回路に接続される増幅回路9へ供給される両極性電
源に各々コンデンサ41,42と抵抗51,52が接続
されているが、プラス電源側の抵抗51の抵抗値をマイ
ナス電源側の抵抗52の抵抗値より小さくしても上記実
施例と同様な作用を有する。すなわち、電源1がオフさ
れるとIGBT7のゲート電圧はマイナス電圧となる。
このため、マイナス電源の消費電流以上の電流をプラス
電源側の抵抗51に流れるので、プラス側の電圧が先に
ゼロとなる。したがって、電源1をオフした時、IGB
T7のゲートがプラス電圧になることなく、マイナス電
圧のままでゼロまで減少するためIGBT7が誤オンす
ることがない。
As another embodiment of the present invention, capacitors 41 and 42 and resistors 51 and 52 are connected to the bipolar power supplies supplied to the amplifier circuit 9 connected to the gate circuit of the IGBT 7, respectively. Even if the resistance value of the resistor 51 is set smaller than the resistance value of the resistor 52 on the minus power source side, the same operation as in the above embodiment is obtained. That is, when the power supply 1 is turned off, the gate voltage of the IGBT 7 becomes a negative voltage.
For this reason, a current more than the current consumption of the negative power source flows through the resistor 51 on the positive power source side, and the voltage on the positive side becomes zero first. Therefore, when the power supply 1 is turned off, the IGB
Since the gate of T7 does not become a positive voltage and decreases to zero with a negative voltage, the IGBT 7 does not turn on erroneously.

【0010】なお、上記各実施例ではIGBTのゲート
回路について説明したが、本発明はIGBT素子に限ら
ずGTR素子にも適用可能であることは勿論である。
Although the IGBT gate circuit has been described in each of the above-described embodiments, the present invention is not limited to the IGBT element but can be applied to a GTR element.

【0011】[0011]

【発明の効果】以上説明したように、本発明によれば、
電源オフ時のIGBTやGTRのゲート回路の不正動作
を防止できるので、IGBTやGTRが不正にオンする
ことがなく、信頼性の向上を図ることができる。
As described above, according to the present invention,
Since the illegal operation of the gate circuit of the IGBT or GTR at the time of power-off can be prevented, the IGBT or GTR is prevented from being illegally turned on, and the reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の回路構成図。FIG. 1 is a circuit configuration diagram of an embodiment of the present invention.

【図2】図1において電源をオフした時の各点のタイム
チャート。
FIG. 2 is a time chart of each point when the power is turned off in FIG.

【符号の説明】[Explanation of symbols]

1…電源、2…トランス、3…整流回路、41,42…
コンデンサ、51,52…抵抗、6…制御信号、7…I
GBT、8…絶縁回路、9…増幅回路、10…ゲート直
列抵抗。
1 ... Power supply, 2 ... Transformer, 3 ... Rectifier circuit, 41, 42 ...
Capacitors, 51, 52 ... Resistors, 6 ... Control signals, 7 ... I
GBT, 8 ... Insulation circuit, 9 ... Amplification circuit, 10 ... Gate series resistance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 トランスの2次側に接続された整流回路
から得られる両極性電源を電源とするIGBTのゲート
回路において、前記両極性電源に各々コンデンサが接続
されていて、当該電源のプラス側に接続されたコンデン
サ容量をマイナス側に接続されたコンデンサ容量より小
さくしたことを特徴とするIGBTのゲート回路。
1. A gate circuit of an IGBT, which uses a bipolar power source obtained from a rectifier circuit connected to a secondary side of a transformer as a power source, wherein a capacitor is connected to each bipolar power source, and the positive side of the power source. An IGBT gate circuit characterized in that the capacitance of the capacitor connected to is smaller than the capacitance of the capacitor connected to the negative side.
【請求項2】 トランスの2次側に接続された整流回路
から得られる両極性電源を電源とするIGBTのゲート
回路において、前記両極性電源に各々抵抗とコンデンサ
の並列回路が接続されていて、当該電源のプラス側の抵
抗の抵抗値をマイナス側の抵抗の抵抗値より小さくした
ことを特徴とするIGBTのゲート回路。
2. A gate circuit of an IGBT which uses a bipolar power source obtained from a rectifier circuit connected to the secondary side of a transformer as a power source, wherein a parallel circuit of a resistor and a capacitor is connected to each bipolar power source, A gate circuit of an IGBT, wherein a resistance value of a positive side resistance of the power source is made smaller than a resistance value of a negative side resistance.
【請求項3】 トランスの2次側に接続された整流回路
から得られる両極性電源を電源とするGTRのゲート回
路において、前記両極性電源に各々抵抗とコンデンサの
並列回路が接続されていて、当該電源のプラス側の抵抗
値またはコンデンサ容量をマイナス側の抵抗値またはコ
ンデンサ容量より小さくしたことを特徴とするGTRの
ゲート回路。
3. A gate circuit of a GTR using a bipolar power source obtained from a rectifier circuit connected to the secondary side of a transformer as a power source, wherein a parallel circuit of a resistor and a capacitor is connected to each bipolar power source, A gate circuit of a GTR, characterized in that the resistance value or the capacitance of the power source on the plus side is made smaller than the resistance value or the capacitance of the minus side.
JP26463793A 1993-10-22 1993-10-22 Gate circuit Pending JPH07122985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26463793A JPH07122985A (en) 1993-10-22 1993-10-22 Gate circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26463793A JPH07122985A (en) 1993-10-22 1993-10-22 Gate circuit

Publications (1)

Publication Number Publication Date
JPH07122985A true JPH07122985A (en) 1995-05-12

Family

ID=17406122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26463793A Pending JPH07122985A (en) 1993-10-22 1993-10-22 Gate circuit

Country Status (1)

Country Link
JP (1) JPH07122985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825602A (en) * 2012-11-16 2014-05-28 三菱电机株式会社 Semiconductor device driving circuit and method of testing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825602A (en) * 2012-11-16 2014-05-28 三菱电机株式会社 Semiconductor device driving circuit and method of testing the same
DE102013216007A1 (en) 2012-11-16 2014-06-05 Mitsubishi Electric Corporation Semiconductor device driver circuit and method for testing it

Similar Documents

Publication Publication Date Title
JPH07122985A (en) Gate circuit
JPH0155762B2 (en)
JPS60181927U (en) Transistor switching circuit with protection function
JPH048129U (en)
JPS59151164U (en) Power off detection circuit
JPS5950115U (en) Protection circuit for switching type amplifier
JPS6125088U (en) switching regulator
JPS60192022U (en) Auto clear circuit
JPS6051737U (en) power supply
JPS6228203U (en)
JPS6024144U (en) Voltage switching circuit
JPS5836414U (en) DC stabilized power supply
JPS58101217U (en) Stabilized power supply circuit
JPH0334692B2 (en)
JPS60155275U (en) Projection tube heating prevention circuit
JP2000217353A (en) Synchronous rectifying converter
JPS5834464U (en) High voltage stop circuit detection circuit
JPS59138913U (en) power circuit
JPS6050519U (en) Vacuum tube amplifier overcurrent detector
JPS5914426U (en) input circuit
JPS5921770U (en) Overcurrent detection malfunction prevention circuit
JPH03271818A (en) Digital input circuit
JPS5897936U (en) Output fluctuation prevention circuit during momentary power failure
JPS6028485U (en) Switching regulator protection circuit
JPS58101568U (en) brightness limiter circuit