JPH07122766A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPH07122766A
JPH07122766A JP5266858A JP26685893A JPH07122766A JP H07122766 A JPH07122766 A JP H07122766A JP 5266858 A JP5266858 A JP 5266858A JP 26685893 A JP26685893 A JP 26685893A JP H07122766 A JPH07122766 A JP H07122766A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
indium
infrared ray
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5266858A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanaka
浩之 田中
Kaoru Torigoe
薫 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP5266858A priority Critical patent/JPH07122766A/en
Publication of JPH07122766A publication Critical patent/JPH07122766A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance a photoelectric conversion efficiency by a method wherein an organic-indium-compound-containing solution is applicel, and an indium-oxide- containing transparent conductive layer, which is formed by thermal decomposition, is combined with a photoelectric conversion element layer consisting of photoconductive material which is sensitive to infrared ray. CONSTITUTION:A indium-oxide-containing transparent conductive layer 2, which is formed by applying an organic-indium-compound containing solution and by conducting thermal decomposition, is combined with a photoelectric conversion element layer 3 consisting of photoconductive material having sensitivity with infrared ray. As the transparent conductive film, which is formed by applying an organic-indium-compound containing solution and using thermal decomposition method, has a high infrared ray permeability, there is no loss of infrared ray in the solar battery which is formed by combining a transparent conductive layer and a photoelectric conversion element layer formed by photo-conductive material having photosensitivity to infrared ray, and conversion efficiency can be improved. Also, as the reflectivity in the range from a visible light to infrared ray is low, the above-mentioned film can be used as a reflection-preventing film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塗布熱分解法により作
製した酸化インジウム含有透明導電体層を含む太陽電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell containing an indium oxide-containing transparent conductor layer produced by a coating pyrolysis method.

【0002】[0002]

【従来の技術】太陽電池用の透明導電体層としては、
金、銀、アルミ等の金属薄膜や、酸化亜鉛、ITO等の
金属酸化物が、一般的に知られている。ITOの作製方
法としては、スパッタ法や蒸着法が、一般的によく知ら
れている。(エレクトロセラミクス′85.5月号、
p.23(1985))また、特公昭54−28396
に、塗布熱分解法による酸化インジウム被膜の製造方法
が開示されている。しかしながら、金、銀、アルミ等の
金属薄膜は、光透過性が悪く、また、可視から赤外まで
光透過性が高い酸化亜鉛は、導電性が悪かった。また、
スパッタ法や蒸着法で作製したITO透明導電体層は、
導電性は高いが、作製プロセスが複雑でかつ赤外光の透
過性がなかった。すなわち、従来は、導電性が高く、可
視から赤外まで光透過性が高い太陽電池用の透明導電体
材料はなかった。また、塗布熱分解法による酸化インジ
ウム被膜の赤外線透過性および赤外線に光感度を有する
光導電材料との組合せについて述べられたものはなかっ
た。
2. Description of the Related Art As a transparent conductor layer for solar cells,
Metal thin films such as gold, silver and aluminum, and metal oxides such as zinc oxide and ITO are generally known. As a method for producing ITO, a sputtering method and a vapor deposition method are generally well known. (Electroceramics' 8 May issue,
p. 23 (1985)) and Japanese Patent Publication No. 54-28396.
Discloses a method for producing an indium oxide film by a coating pyrolysis method. However, metal thin films such as gold, silver, and aluminum have poor light transmittance, and zinc oxide, which has high light transmittance from visible to infrared, has poor conductivity. Also,
The ITO transparent conductor layer produced by the sputtering method or the vapor deposition method is
Although it had high conductivity, the manufacturing process was complicated and it did not transmit infrared light. That is, heretofore, there has been no transparent conductive material for solar cells that has high conductivity and high light transmittance from visible to infrared. Further, there is no mention of a combination of an indium oxide film formed by a coating pyrolysis method with infrared transmissivity and a photoconductive material having photosensitivity to infrared rays.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、可視から赤外まで、光透過性が高くかつ導
電性の高い、透明導電体層を用いて、赤外線に光感度を
有する光導電材料からなる光電変換素子層と組合せるこ
とで、太陽光の赤外線エネルギーを有効活用することに
よって、光変換効率の高い太陽電池を提供することにあ
る。
The problem to be solved by the present invention is to have a photosensitivity to infrared rays by using a transparent conductor layer having high light transmittance and high conductivity from visible to infrared rays. Another object of the present invention is to provide a solar cell with high light conversion efficiency by effectively utilizing the infrared energy of sunlight by combining it with a photoelectric conversion element layer made of a photoconductive material.

【0004】[0004]

【課題を解決するための手段】本発明の上記目的は、有
機インジウム化合物含有溶液を、塗布し、熱分解して形
成した酸化インジウム含有透明導電体層を、赤外線に光
感度を有する光導電材料からなる光電変換素子層と組合
せることによって達成される。本発明の太陽電池は、透
明基板上に、透明導電体層、光電変換素子層、電極(導
電体層)の順に積層して形成するか、あるいは、基板上
に、電極(導電体層)、光電変換素子層、透明導電体層
の順に積層して形成するか、あるいは、光導電体層基板
上に、透明導電体層、逆側に電極(導電体層)を設ける
ことによって形成される(図1)。また、光電変換素子
層は、光起電力を発生させるために、p−n接合を含む
p型とn型の積層構造にしたり、あるいは、電極(導電
体層)や透明導電体層の上に保護層を設けるなど、これ
らの構成以外に、別の層を設けても構わない。なお、本
発明のITO透明導電体層は、耐熱性に優れているの
で、ITO透明導電体層の上に加熱プロセスによる光電
変換素子層およびその他の層の形成あるいは、それらを
形成した後に、加熱処理を行うことが可能である。更
に、高熱下での使用も可能である。
The above object of the present invention is to provide a transparent conductive material layer containing indium oxide, which is formed by applying a solution containing an organic indium compound and thermally decomposing it, to a photoconductive material having photosensitivity to infrared rays. It is achieved by combining with a photoelectric conversion element layer consisting of. The solar cell of the present invention is formed by laminating a transparent conductor layer, a photoelectric conversion element layer, and an electrode (conductor layer) on a transparent substrate in this order, or an electrode (conductor layer) on the substrate, It is formed by stacking a photoelectric conversion element layer and a transparent conductor layer in this order, or by forming a transparent conductor layer and an electrode (conductor layer) on the opposite side on a photoconductor layer substrate ( (Fig. 1). In addition, the photoelectric conversion element layer has a p-type and n-type laminated structure including a pn junction, or is formed on an electrode (conductor layer) or a transparent conductor layer in order to generate a photoelectromotive force. In addition to these structures, such as a protective layer, another layer may be provided. Since the ITO transparent conductor layer of the present invention is excellent in heat resistance, a photoelectric conversion element layer and other layers are formed on the ITO transparent conductor layer by a heating process, or after forming them, heating is performed. Processing can be performed. Further, it can be used under high heat.

【0005】本発明に使用される透明基板の例として
は、石英、無アルカリガラス、ほうけい酸ガラス等が挙
げられる。透明基板の厚さは、特に限定されない。ま
た、透明導電体膜の形成に使用される有機インジウム化
合物としては、(R1COO)3ln〔式中R1は、炭素原子数4〜
16のアルキル基を示す〕、(CH3COCHCOCH3)3ln 等が挙
げられる。また、透明導電体膜上に形成する有機インジ
ウム金属化合物含有溶液には、有機インジウム金属化合
物の他に、導電性を向上させるために、有機スズ化合物
を加えても良い。有機スズ化合物としては、(R2COO)2Sn
〔式中R2 は、炭素原子数4〜16のアルキル基を示
す〕、(CH3COCHCOCH3)2Sn 等が挙げられる。有機スズ化
合物の添加量は、スズ/インジウムのmol 比にして、0
〜40%が望ましい。スズのmol 比をこれ以上多くする
と導電性が低くなる。有機インジウム化合物含有溶液の
溶媒としては、石英、無アルカリガラス、ほうけい酸ガ
ラス等の透明基板へのぬれ性の点から、オクタン、デカ
ン、ドデカン、トリデカン等の脂肪族炭化水素が、特に
望ましいが、トルエン、キシレン等の芳香族炭化水素、
塩化メチレン等のハロゲン化炭素水素等、有機インジウ
ム化合物の溶解性を有する溶媒であればよい。溶液の濃
度は、固形分比が5〜50%の範囲が望ましい。また、
添加剤として、溶液を増粘化して、基板との密着性を高
めるためにエチルセルロース、ニトロセルロース等のセ
ルロース誘導体を添加したり、あるいは基板とのぬれ性
を改善するためリノール酸、リノレン酸等の不飽和カル
ボン酸を添加してもよい。添加量は、それぞれ0〜20
%の範囲が望ましい。
Examples of the transparent substrate used in the present invention include quartz, non-alkali glass, borosilicate glass and the like. The thickness of the transparent substrate is not particularly limited. Further, as the organic indium compound used for forming the transparent conductor film, (R 1 COO) 3 ln (wherein R 1 is 4 to 4 carbon atoms).
16 alkyl groups], (CH 3 COCHCOCH 3 ) 3 ln and the like. In addition to the organic indium metal compound, an organic tin compound may be added to the organic indium metal compound-containing solution formed on the transparent conductor film in order to improve the conductivity. As an organic tin compound, (R 2 COO) 2 Sn
[In the formula, R 2 represents an alkyl group having 4 to 16 carbon atoms], (CH 3 COCHCOCH 3 ) 2 Sn, and the like. The addition amount of the organic tin compound is 0 in terms of tin / indium mol ratio.
-40% is desirable. If the mol ratio of tin is higher than this, the conductivity becomes low. As the solvent of the organic indium compound-containing solution, from the viewpoint of wettability to quartz, non-alkali glass, borosilicate glass and the like transparent substrates, aliphatic hydrocarbons such as octane, decane, dodecane and tridecane are particularly desirable. Aromatic hydrocarbons such as toluene, xylene,
Any solvent may be used as long as it is a solvent having solubility for the organic indium compound, such as carbon hydrogen halide such as methylene chloride. The concentration of the solution is preferably in the range of solid content ratio of 5 to 50%. Also,
As an additive, a cellulose derivative such as ethyl cellulose or nitrocellulose is added to increase the viscosity of the solution and increase the adhesion with the substrate, or linoleic acid, linolenic acid or the like is added to improve the wettability with the substrate. Unsaturated carboxylic acids may be added. The addition amount is 0 to 20
The range of% is desirable.

【0006】有機インジウム化合物含有溶液およびその
他の有機金属化合物含有溶液の塗布方法としては、例え
ば、バーコート塗布、スピンコート塗布、スプレー塗
布、スクリーン印刷、ディップ塗布等の方法が挙げられ
る。有機インジウム化合物含有溶液の塗布膜の熱分解の
方法は、電気炉等で、400〜1500℃の温度で、3
0分〜10時間おこなう。焼成温度が、低いと有機イン
ジウム化合物の熱分解が不充分で導電性が低く、高いと
基板成分が酸化インジウム膜中に侵入し、導電性が低く
なる。焼成時間は、10時間以上行っても構わないが、
特に10時間以上行う必要はない。焼成の雰囲気は、空
気中、窒素、酸素フロー中、窒素、酸素置換雰囲気、減
圧雰囲気等が挙げられる。焼成された酸化物の膜厚は、
0.05〜10μmが望ましい。これより薄いと導電性
が低く、厚すぎると透明性が悪くなる。また、膜厚を厚
くするために、有機インジウム化合物含有溶液の塗布、
熱分解を、繰り返しても構わない。光電変換素子層に含
まれる光導電材料としてはシリコン(非晶、単結晶、多
結晶)、GaAs、CdS等の無機化合物およびスクア
リリウム化合物、フタロシアニン化合物等の有機化合物
が挙げられるが、780nm以上の赤外光に吸収がある
光導電材料であればよい。また、p型やn型にするため
に、ほう素やリン等の添加剤を加えても構わない。光電
変換素子層の構造としては、pn接合型、ショットキー
障壁型、BSF型等があるが、特に限定しない。光電変
換素子層の作製手順としては、ガラス等の基板上に透明
導電性膜を形成した上に、光電変換素子層を設ける方法
あるいは光電変換素子層の上に透明導電性膜を設ける方
法等がある。また、作製方法としては、蒸着、プラズマ
CVD、キャスト法、CZ法、塗布法あるいは樹脂中に
分散させるなど光電変換素子層の材料や構造に応じて、
光電変換素子層あるいは光電変換素子層基板を形成させ
るが、特に限定しない。また、本発明の透明導電性膜に
おいては、耐熱性に優れているので、透明導電性膜を設
けた基板のアニールあるいは焼成などの加熱処理を必要
とする光電変換素子層の形成または、透明導電性膜およ
び光電変換素子層形成後の加熱処理等が可能である。
Examples of the coating method of the organic indium compound-containing solution and the other organic metal compound-containing solution include bar coating, spin coating, spray coating, screen printing and dip coating. The method of thermally decomposing the coating film of the solution containing the organic indium compound is 3 at an electric furnace temperature of 400 to 1500 ° C.
Do it for 0 minutes to 10 hours. When the baking temperature is low, the thermal decomposition of the organic indium compound is insufficient and the conductivity is low, and when the baking temperature is high, the substrate component penetrates into the indium oxide film and the conductivity is lowered. The firing time may be 10 hours or more,
Especially, it is not necessary to carry out for 10 hours or more. Examples of the firing atmosphere include air, nitrogen, an oxygen flow, nitrogen, an oxygen substitution atmosphere, and a reduced pressure atmosphere. The thickness of the fired oxide is
0.05 to 10 μm is desirable. If it is thinner than this, the conductivity is low, and if it is too thick, the transparency deteriorates. Further, in order to increase the film thickness, application of an organic indium compound-containing solution,
The thermal decomposition may be repeated. Examples of the photoconductive material contained in the photoelectric conversion element layer include inorganic compounds such as silicon (amorphous, single crystal, and polycrystal), GaAs, CdS, and organic compounds such as squarylium compounds and phthalocyanine compounds. Any photoconductive material that absorbs external light may be used. Further, an additive such as boron or phosphorus may be added to make it p-type or n-type. Examples of the structure of the photoelectric conversion element layer include a pn junction type, a Schottky barrier type, and a BSF type, but are not particularly limited. The procedure for producing the photoelectric conversion element layer includes a method of forming a transparent conductive film on a substrate such as glass and then providing a photoelectric conversion element layer or a method of providing a transparent conductive film on the photoelectric conversion element layer. is there. In addition, as a manufacturing method, vapor deposition, plasma CVD, casting method, CZ method, coating method, or dispersion in resin, depending on the material and structure of the photoelectric conversion element layer,
A photoelectric conversion element layer or a photoelectric conversion element layer substrate is formed, but is not particularly limited. Further, in the transparent conductive film of the present invention, since it has excellent heat resistance, it is necessary to form a photoelectric conversion element layer that requires heat treatment such as annealing or baking of the substrate provided with the transparent conductive film, or to form a transparent conductive film. The heat treatment and the like after forming the conductive film and the photoelectric conversion element layer are possible.

【0007】対向電極として用いる導電体層としては、
金、銀、プラチナ、アルミ等の金属があげられる。
As the conductor layer used as the counter electrode,
Examples include metals such as gold, silver, platinum, and aluminum.

【0008】[0008]

【作用】有機インジウム化合物含有溶液の塗布、熱分解
の手段により形成された透明導電性膜は、赤外光に対す
る透過性が高いので、赤外線に光感度を有する光導電材
料からなる光電変換素子層と組み合せた太陽電池におい
て、赤外光のロスがないので、変換効率の向上がはかれ
る。また、可視から赤外の範囲で反射率が低いので、反
射防止膜としての効果もある。 (実施例1)キャスト法で作製した10cm角、厚さ0.
4mmのほう素をドープしたp型多結晶シリコン基板の片
面に、リンをドープして、n型シリコン層を1μm形成
する。このn型シリコン層の上に、(C8H17COO)3In0.5g
、(C8H17COO)2Sn0.013gをドデカン1.857gに溶か
した溶液をワイヤーバー(♯10)で、塗布し、45℃
で30分間乾燥後、空気中で、800℃1時間焼成し
て、多結晶シリコン基板上に膜厚0.2μmの透明導電
体膜(In2O3/SnO2膜)を得る。さらに、多結晶シリコン
基板の逆のp型シリコン面に、アルミを蒸着して、膜厚
1μmの対向電極層を得る。このようにして、作製した
太陽電池の変換効率は、7.8%であった。 (実施例2)石英基板に、(C8H17COO)3In0.5 g、(C8
H17COO)2Sn0.013 gをドデカン1.857gに溶かした
溶液をワイヤーバー(#10)で、塗布し、45℃で3
0分間乾燥後、空気中で、800℃1時間焼成して、膜
厚0.2μmの透明導電体膜(In2O3/SnO2膜)を得る。
この上に、ペリレン化合物を膜厚0.1μm、ヒドロキ
シスクアリリウム化合物を膜厚0.1μmの厚さで順に
蒸着して、光電変換素子層を得る。以下に、ペリレン化
合物とヒドロキシスクアリリウム化合物の構造式1,2
をそれぞれ示す。
The transparent conductive film formed by applying a solution containing an organic indium compound and by thermal decomposition has high transparency to infrared light, and thus a photoelectric conversion element layer made of a photoconductive material having photosensitivity to infrared light. In the solar cell combined with, there is no loss of infrared light, so the conversion efficiency can be improved. Further, since the reflectance is low in the visible to infrared range, it also has an effect as an antireflection film. (Example 1) 10 cm square prepared by the cast method and having a thickness of 0.
On one surface of a p-type polycrystalline silicon substrate doped with 4 mm of boron, phosphorus is doped to form an n-type silicon layer of 1 μm. On top of this n-type silicon layer, (C 8 H 17 COO) 3 In0.5g
, (C 8 H 17 COO) 2 Sn 0.013 g dissolved in 1.857 g of dodecane is applied with a wire bar (# 10), and the temperature is 45 ° C.
After drying for 30 minutes at 800 ° C. for 1 hour in air, a transparent conductor film (In 2 O 3 / SnO 2 film) having a film thickness of 0.2 μm is obtained on the polycrystalline silicon substrate. Further, aluminum is vapor-deposited on the reverse p-type silicon surface of the polycrystalline silicon substrate to obtain a counter electrode layer having a film thickness of 1 μm. The conversion efficiency of the solar cell produced in this manner was 7.8%. (Example 2) (C 8 H 17 COO) 3 In0.5 g, (C 8
H 17 COO) 2 Sn 0.013 g dissolved in 1.857 g of dodecane was applied with a wire bar (# 10), and the solution was applied at 45 ° C for 3 hours.
After drying for 0 minutes, it is baked in air at 800 ° C. for 1 hour to obtain a transparent conductor film (In 2 O 3 / SnO 2 film) having a film thickness of 0.2 μm.
On this, a perylene compound having a film thickness of 0.1 μm and a hydroxysquarylium compound having a film thickness of 0.1 μm are sequentially deposited to obtain a photoelectric conversion element layer. The structural formulas 1 and 2 of the perylene compound and the hydroxysquarylium compound are shown below.
Are shown respectively.

【0009】[0009]

【化1】 [Chemical 1]

【0010】さらに、この上に、金を蒸着して、膜厚1
μmの対向電極層を得る。このようにして、作製した太
陽電池の変換効率は、0.4%であった。 (比較例1)実施例1で、真空蒸着によって、膜厚0.
2μmのITO透明導電体膜を作製したことを除き、実
施例と同様の方法で同様の構成の太陽電池を得る。この
ようにして、作製した太陽電池の変換効率は、6.8%
であった。 (比較例2)実施例2で、石英基板に、真空蒸着によっ
て、膜厚0.2μmのITO透明導電体膜を作製したこ
とを除き実施例2と同様の方法で同様の構成のヒドロキ
シスクアリリウム太陽電池を得る。このようにして、作
製した太陽電池の変換効率は、0.3 %であった。真空蒸
着のITO透明導電体膜(比較例)と塗布熱分解法のI
TO透明導電体膜(実施例)の光透過率を比べると図2
のように、塗布熱分解法のITO透明導電体膜は、可視
から赤外まで高い光透過率を示すのに対して、真空蒸着
のITO透明導電体膜は、700nmあたりから光透過
率が低下する。このように、真空蒸着のITO透明導電
体膜と塗布熱分解法のITO透明導電体膜において、7
00nm以上の光透過率に差があるため、赤外域に吸収
をもつ光導電性材料を用いた太陽電池において、塗布熱
分解法のITO透明導電体膜の太陽電池の方が、変換効
率が高くなる。真空蒸着のITO透明導電体膜の他に、
スパッタ法で作製したITO透明導電体膜においても真
空蒸着と同様に700nmあたりから光透過率が低下す
る現象がみられた。
Further, gold is vapor-deposited on this to form a film having a thickness of 1
A counter electrode layer of μm is obtained. The conversion efficiency of the solar cell produced in this manner was 0.4%. (Comparative Example 1) In Example 1, a film thickness of 0.
A solar cell having the same configuration is obtained by the same method as that of the example except that a 2 μm thick ITO transparent conductor film is formed. In this way, the conversion efficiency of the solar cell produced was 6.8%.
Met. (Comparative Example 2) A hydroxysquarylium sun having the same configuration as in Example 2 except that an ITO transparent conductor film having a thickness of 0.2 μm was formed on a quartz substrate by vacuum vapor deposition in Example 2. Get the battery. The conversion efficiency of the solar cell produced in this way was 0.3%. Vacuum-deposited ITO transparent conductor film (comparative example) and coating pyrolysis method I
Comparison of the light transmittances of the TO transparent conductor films (Examples) is shown in FIG.
As described above, the ITO transparent conductor film of the coating pyrolysis method shows a high light transmittance from visible to infrared, while the ITO transparent conductor film of the vacuum deposition has a lower light transmittance from around 700 nm. To do. As described above, in the vacuum vapor deposition ITO transparent conductor film and the coating pyrolysis ITO transparent conductor film,
Due to the difference in the light transmittance of 00 nm or more, in the solar cell using the photoconductive material having absorption in the infrared region, the solar cell of the ITO transparent conductor film of the coating pyrolysis method has higher conversion efficiency. Become. In addition to the vacuum-deposited ITO transparent conductor film,
Also in the ITO transparent conductor film produced by the sputtering method, a phenomenon in which the light transmittance was reduced from around 700 nm was observed as in the vacuum deposition.

【0011】また、耐熱性を比べると図3のように、塗
布熱分解法のITO透明導電体膜は、熱処理によって、
抵抗値が変わらないのに対して、真空蒸着のITO透明
導電体膜は、抵抗が高くなる。このため、塗布熱分解法
のITO透明導電体膜上では、加熱処理による光電変換
素子層の形成あるいは、透明導電性膜および光電変換素
子層形成後の加熱処理が可能である。
Further, comparing the heat resistance, as shown in FIG. 3, an ITO transparent conductor film formed by a coating pyrolysis method is subjected to a heat treatment,
While the resistance value does not change, the vacuum-deposited ITO transparent conductor film has a high resistance. Therefore, it is possible to form a photoelectric conversion element layer by heat treatment or heat treatment after the transparent conductive film and the photoelectric conversion element layer are formed on the ITO transparent conductor film formed by the coating pyrolysis method.

【0012】[0012]

【発明の効果】以上述べたように、この発明によれば、
可視から赤外まで、光透過性が高くかつ導電性の高い、
透明導電体層を用いて、赤外線に光感度を有する光導電
材料を含む光電変換素子層とを組合せることで、太陽電
池の光変換効率が高くなるという効果を奏する。また、
本発明によれば、塗布熱分解法により透明導電性体層を
作製することによって、スパッタや蒸着などの複雑な装
置を用いずに簡単に大面積化が可能で、さらに、エッチ
ングプロセスなしで、塗布、スクリーン印刷などの簡単
なプロセスによりパターン形成が可能な透明導電性体層
を作製することができ、太陽電池作製プロセスの簡略化
が図れる。更に、本発明の太陽電池は、クリーンな太陽
エネルギーを用いて、各種機器の電源や太陽光発電の発
電機としての応用も考えられる。
As described above, according to the present invention,
From visible to infrared, it has high light transmission and high conductivity.
By using a transparent conductor layer and combining it with a photoelectric conversion element layer containing a photoconductive material having photosensitivity to infrared rays, there is an effect that the light conversion efficiency of the solar cell is increased. Also,
According to the present invention, by forming a transparent conductive material layer by a coating pyrolysis method, it is possible to easily increase the area without using a complicated device such as sputtering or vapor deposition, and further, without an etching process, A transparent conductive material layer capable of pattern formation can be produced by a simple process such as coating and screen printing, and the solar cell production process can be simplified. Further, the solar cell of the present invention may be applied as a power source for various devices or a generator for solar power generation by using clean solar energy.

【図面の簡単な説明】[Brief description of drawings]

【図1】太陽電池の構成を示す略図。FIG. 1 is a schematic diagram showing the structure of a solar cell.

【図2】本発明による塗布熱分解法と従来法による蒸着
法のITO導電性膜の光透過率を対比しつつ示した図。
FIG. 2 is a diagram showing light transmittances of ITO conductive films of a coating thermal decomposition method according to the present invention and a conventional vapor deposition method while comparing them.

【図3】本発明による塗布熱分解法と従来法による蒸着
法の熱処理によるITO導電性膜抵抗の変化を対比しつ
つ示した図。
FIG. 3 is a diagram showing changes in the resistance of the ITO conductive film due to the heat treatment of the coating pyrolysis method according to the present invention and the vapor deposition method according to the conventional method in comparison.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機インジウム金属化合物含有溶液を、
塗布し、熱分解して形成した酸化インジウム含有透明導
電体層と、赤外線に光感度を有する光導電材料からなる
光電変換素子層との組合せを含むことを特徴とする太陽
電池。
1. A solution containing an organic indium metal compound,
A solar cell comprising a combination of an indium oxide-containing transparent conductor layer formed by coating and thermal decomposition and a photoelectric conversion element layer made of a photoconductive material having photosensitivity to infrared rays.
JP5266858A 1993-10-26 1993-10-26 Solar battery Pending JPH07122766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5266858A JPH07122766A (en) 1993-10-26 1993-10-26 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5266858A JPH07122766A (en) 1993-10-26 1993-10-26 Solar battery

Publications (1)

Publication Number Publication Date
JPH07122766A true JPH07122766A (en) 1995-05-12

Family

ID=17436643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5266858A Pending JPH07122766A (en) 1993-10-26 1993-10-26 Solar battery

Country Status (1)

Country Link
JP (1) JPH07122766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503315A (en) * 2008-09-15 2012-02-02 ユニバーシティ オブ サザン カリフォルニア Organic photosensitive device including squaraine containing organic heterojunction and method for producing the same
CN103112885A (en) * 2012-12-12 2013-05-22 南京工业大学 Preparation method of copper-based nano solar battery material
CN105489765A (en) * 2015-12-22 2016-04-13 成都新柯力化工科技有限公司 Water-resistant perovskite photovoltaic material and preparation method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503315A (en) * 2008-09-15 2012-02-02 ユニバーシティ オブ サザン カリフォルニア Organic photosensitive device including squaraine containing organic heterojunction and method for producing the same
CN103112885A (en) * 2012-12-12 2013-05-22 南京工业大学 Preparation method of copper-based nano solar battery material
CN105489765A (en) * 2015-12-22 2016-04-13 成都新柯力化工科技有限公司 Water-resistant perovskite photovoltaic material and preparation method therefor
CN105489765B (en) * 2015-12-22 2018-05-18 深圳市德朗能电子科技有限公司 A kind of water resistance perovskite photovoltaic material and preparation method thereof

Similar Documents

Publication Publication Date Title
AU712220B2 (en) Photovoltaic device and its method of preparation
RU2413333C2 (en) Front contact based on indium-zinc oxide for photoelectric device and method of making said contact
EP2341555B1 (en) Front electrode including pyrolytic transparent conductive coating on textured glass substrate for use in photovoltaic device and method of making same
US20090194165A1 (en) Ultra-high current density cadmium telluride photovoltaic modules
US20080223430A1 (en) Buffer layer for front electrode structure in photovoltaic device or the like
CN102206801B (en) The forming method of the conductive transparent oxide film layer used by film photovoltaic device based on cadmium telluride
TWI463682B (en) Heterojunction solar cell having intrinsic amorphous silicon film
CN103563088A (en) Intrinsically semitransparent solar cell and method of making same
US20120295087A1 (en) Method for producing a structured tco-protective coating
CN102013442A (en) Photovoltaic cell substrate and method of manufacturing the same
Han et al. Room-temperature sputtered tungsten-doped indium oxide for improved current in silicon heterojunction solar cells
Kanda et al. Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells
CN209963073U (en) Novel high-efficiency double-sided incident light CdTe perovskite laminated photovoltaic cell
Zaynabidinov et al. On the optical efficiency of silicon photoelectric converters of solar energy
US5643369A (en) Photoelectric conversion element having an infrared transmissive indium-tin oxide film
JPH07122766A (en) Solar battery
WO2023115870A1 (en) Pn heterojunction antimony selenide/perovskite solar cell, and preparation method therefor
WO2022247570A1 (en) Heterojunction solar cell and preparation method therefor
US4101341A (en) CdSe-SnSe photovoltaic cell
CN114242799A (en) Colored cover plate glass for solar cell
JP3293391B2 (en) Solar cell module
TW201240130A (en) Manufacturing method for multi-color crayoned solar cells
CN101246918A (en) Anti-reflection membrane of amorphous silicon photovoltaic device
JPH0572686B2 (en)
CN101246916A (en) Method for reducing internal reflection of silicon hydride thin film photovoltaic device