JPH07122397A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus

Info

Publication number
JPH07122397A
JPH07122397A JP5270105A JP27010593A JPH07122397A JP H07122397 A JPH07122397 A JP H07122397A JP 5270105 A JP5270105 A JP 5270105A JP 27010593 A JP27010593 A JP 27010593A JP H07122397 A JPH07122397 A JP H07122397A
Authority
JP
Japan
Prior art keywords
antenna
plasma
electric field
high frequency
antenna elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5270105A
Other languages
Japanese (ja)
Inventor
Satoru Narai
哲 奈良井
Takayoshi Inoue
隆善 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5270105A priority Critical patent/JPH07122397A/en
Publication of JPH07122397A publication Critical patent/JPH07122397A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a plasma treatment apparatus by which plasma with uniform density distribution and large surface area is obtained by improving the structure of an antenna for the plasma treatment apparatus by ICP. CONSTITUTION:An antenna 5 to induce a high frequency electric field in a vacuum container 2 is composed by setting or crossing one or more than one antenna elements. The electric field intensity is uniformalized by overlaying the high frequency electric fields induced by each antenna element and thus the density distribution of plasma generated and maintained by the high frequency electric fields is uniformalized. The more the number of the antenna elements and the number of the crossing times are increased, the more the high frequency electric fields induced by each antenna element is composed and the evenness of the electric field intensity distribution is improved. Furthermore, when high frequency electric power with phase difference corresponding to the crossing angle between antenna elements is applied, the direction of the composed electric field is rotated spatially and consequently the evenness of the intensity ditribution of electric fields is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,主として半導体集積回
路の製造プロセスや鋼板の表面処理等の工業的なプラズ
マ処理一般に用いられるプラズマ処理装置に係り,プラ
ズマ生成の手段として,アンテナからの電磁誘導結合に
より真空容器内に高周波電場を誘起させ,真空容器内に
導入した処理ガスをプラズマ化するICP(Inductivel
y Coupled Plasma)方式を用いてプラズマ処理装置を構
成するもので,詳しくは,上記高周波電場の分布を制御
して,高密度のプラズマを大面積且つ均一な分布で生成
させ,大口径の被処理物に対しても適切なプラズマ処理
が実施できるプラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus generally used for industrial plasma processing such as a semiconductor integrated circuit manufacturing process and surface treatment of a steel sheet. As a plasma generating means, electromagnetic induction from an antenna is used. An ICP (Inductivel) that induces a high-frequency electric field in the vacuum container by coupling and turns the processing gas introduced into the vacuum container into plasma
A plasma processing apparatus is configured using a y-coupled plasma method. Specifically, by controlling the distribution of the high-frequency electric field described above, high-density plasma is generated in a large area and in a uniform distribution, and a large-diameter object to be processed is generated. The present invention relates to a plasma processing apparatus that can perform an appropriate plasma processing on an object.

【0002】[0002]

【従来の技術】上記ICPを用いたプラズマ処理装置
は,磁場によるプラズマの閉じ込め作用を用いることな
くプラズマを発生させることができる特長を有してい
る。しかし,ICPでは基本的にアンテナ近傍でしかプ
ラズマが発生しない。そのため,円筒形の石英管にアン
テナコイルを巻き付け,その電磁誘導により石英管内に
プラズマを発生させる初期のICPでは,プラズマの円
筒に対する断面積均一性を確保することができず,大口
径の被処理物に対する処理ができない欠点があった。近
年,上記のごときソレノイド型のアンテナに代わり平面
状のループアンテナを用いることにより,ICPによっ
て高密度で大面積のプラズマを得ることが可能となっ
た。このICPによって得られるプラズマは,磁場を用
いる必要がないため,集積回路の高集積化,半導体基板
の大口径化が著しい近来の集積回路製造プロセスに有利
な条件を備えており,ICPによる大型のプラズマ処理
装置に期待がよせられている。
2. Description of the Related Art A plasma processing apparatus using the above ICP has a feature that plasma can be generated without using the confinement effect of plasma by a magnetic field. However, ICP basically generates plasma only near the antenna. Therefore, in an early ICP in which an antenna coil is wound around a cylindrical quartz tube and plasma is generated in the quartz tube by its electromagnetic induction, it is not possible to ensure the cross-sectional area uniformity of the plasma with respect to the cylinder, and a large-diameter object to be processed. There was a drawback that it could not be processed. In recent years, it has become possible to obtain high-density and large-area plasma by ICP by using a planar loop antenna instead of the solenoid type antenna as described above. Since the plasma obtained by this ICP does not need to use a magnetic field, it is provided with conditions advantageous for the recent integrated circuit manufacturing process in which high integration of integrated circuits and large diameter of semiconductor substrates are remarkable, and the large size of ICP There are high expectations for plasma processing equipment.

【0003】図12は,上記ループアンテナを用いたI
CPによるプラズマ生成メカニズムを説明する模式図で
ある。真空容器30に設けられた高周波導入窓31の近
傍にループアンテナ32を配置して,該ループアンテナ
32に高周波電力を印加すると,図示するようにループ
に直交して高周波磁場Bが発生する。この高周波磁場B
により真空容器30内に高周波電場Eが誘起され,高周
波電場Eは真空容器30内に導入された処理ガスから自
然放射線等により発生した電子を加速する。加速された
電子の運動エネルギーは,電子が中性原子と衝突するこ
とによって中性原子に与えられ,中性原子をイオン化し
てイオンと電子とが生成される。新たに生成された電子
が高周波電場Eによって加速される過程が繰り返される
ことによって発生したプラズマの密度が上昇する。プラ
ズマ密度がある程度に上昇すると,プラズマ中の電子の
応答周波数が上昇するために,プラズマがあたかも導電
体のように作用して電磁波を遮断しはじめ,特殊なモー
ド以外の電磁波はプラズマ内部に入れないので,プラズ
マ表面のみが密度を上昇させ,プラズマ内部にイオン励
起種等が拡散される。上記のようにICPによるプラズ
マでは,アンテナ32から誘起される高周波電場Eによ
ってプラズマを発生させると共に,発生させたプラズマ
の維持がなされるため,磁場を用いたプラズマ生成の場
合のプラズマ挙動の複雑さがなく,簡単な装置で高密度
のプラズマを得ることができる。
FIG. 12 shows an I using the above loop antenna.
It is a schematic diagram explaining the plasma generation mechanism by CP. When the loop antenna 32 is arranged near the high frequency introduction window 31 provided in the vacuum container 30 and high frequency power is applied to the loop antenna 32, a high frequency magnetic field B is generated orthogonal to the loop as shown in the figure. This high frequency magnetic field B
As a result, a high-frequency electric field E is induced in the vacuum container 30, and the high-frequency electric field E accelerates electrons generated by natural radiation or the like from the processing gas introduced into the vacuum container 30. The accelerated kinetic energy of the electron is given to the neutral atom by collision of the electron with the neutral atom, and the neutral atom is ionized to generate ions and electrons. The density of plasma generated is increased by repeating the process in which newly generated electrons are accelerated by the high frequency electric field E. When the plasma density rises to a certain extent, the response frequency of the electrons in the plasma rises, so the plasma acts like a conductor and begins to block electromagnetic waves, and electromagnetic waves other than special modes cannot enter the plasma. Therefore, only the plasma surface increases the density, and the ion-excited species are diffused inside the plasma. As described above, in the plasma by ICP, the plasma is generated by the high-frequency electric field E induced by the antenna 32, and the generated plasma is maintained. Therefore, the plasma behavior in the case of plasma generation using a magnetic field is complicated. High density plasma can be obtained with a simple device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,ICP
によるプラズマでは,上記したようにアンテナにより誘
起される高周波電場によってプラズマが生成されるた
め,高周波電場の強度分布によってプラズマ密度分布が
影響される。即ち,アンテナのループ直下で高周波電場
の強度が高く,ループの中心で弱くなるため,ドーナツ
状のプラズマ密度分布となり,均一な密度分布が得にく
い問題点があった。本発明は,上記ICPによるプラズ
マを利用してプラズマ処理装置を構成するにあたり,I
CPがかかえる上記問題点を解決すべく,その要因とな
るアンテナの構成を改良して,均一なプラズマ密度分布
で大面積のプラズマ生成が得られるプラズマ処理装置を
提供することを目的とするものである。
[Problems to be Solved by the Invention] However, ICP
As described above, since the plasma generated by the antenna is generated by the high frequency electric field induced by the antenna, the plasma density distribution is affected by the intensity distribution of the high frequency electric field. That is, the intensity of the high-frequency electric field is high immediately below the loop of the antenna and weakens at the center of the loop, resulting in a donut-shaped plasma density distribution, which makes it difficult to obtain a uniform density distribution. According to the present invention, in constructing a plasma processing apparatus using the plasma of the ICP,
In order to solve the above problems associated with CP, it is an object of the present invention to provide a plasma processing apparatus that improves the configuration of the antenna that causes the above problems and that can generate plasma in a large area with a uniform plasma density distribution. is there.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する第1の手段は,真空容器に導入され
た処理ガスをアンテナからの電磁誘導によって誘起され
た高周波電場によりプラズマ化し,該プラズマにより上
記真空容器内に配置された被処理物をプラズマ処理する
プラズマ処理装置において,上記アンテナが,1又は2
以上のアンテナ素子を交差配置して構成されてなること
を特徴とするプラズマ処理装置として構成されている。
上記交差配置される各アンテナ素子に対する高周波電力
の供給は,各アンテナ素子が交差する交差角度に対応し
た位相差で印加する構成,あるいは,交差配置したアン
テナ素子を直列に接続して高周波を印加する構成,ある
いは,交差配置したアンテナ素子それぞれへの印加電力
を調整可能にする構成を採用することができる。又,上
記複数のアンテナ素子の並列間隔が外側ほど粗くした構
成,あるいは,複数のアンテナ素子の並列間隔が外側ほ
ど密にした構成を採用することができる。更に,本発明
が採用する第2の手段は,真空容器に導入された処理ガ
スをアンテナからの電磁誘導によって誘起された高周波
電場によりプラズマ化し,該プラズマにより上記真空容
器内に配置された被処理物をプラズマ処理するプラズマ
処理装置において,上記アンテナが,1又は2以上のア
ンテナ素子を交差配置して構成された第1のアンテナ
と,上記真空容器の内形状と同形状のループで構成され
た第2のアンテナとからなることを特徴とするプラズマ
処理装置として構成されている。
In order to achieve the above object, the first means adopted by the present invention is to convert a processing gas introduced into a vacuum container into a plasma by a high frequency electric field induced by electromagnetic induction from an antenna. In the plasma processing apparatus for plasma-processing an object to be processed arranged in the vacuum container with the plasma, the antenna has 1 or 2
A plasma processing apparatus is characterized in that the above antenna elements are arranged in a crossed manner.
The high-frequency power is supplied to each of the cross-arranged antenna elements by applying a phase difference corresponding to the crossing angle at which the antenna elements intersect, or by connecting the cross-arranging antenna elements in series and applying a high frequency. It is possible to employ a configuration or a configuration in which the power applied to each of the cross-arranged antenna elements can be adjusted. Further, it is possible to employ a configuration in which the parallel spacing of the plurality of antenna elements is coarser toward the outside, or a configuration in which the parallel spacing of the plurality of antenna elements is closer to the outside. Further, the second means adopted by the present invention is that the processing gas introduced into the vacuum vessel is turned into plasma by the high frequency electric field induced by the electromagnetic induction from the antenna, and the plasma causes the plasma to be treated placed in the vacuum vessel. In a plasma processing apparatus for plasma processing an object, the antenna is composed of a first antenna formed by arranging one or more antenna elements in a crossed manner, and a loop having the same shape as the inner shape of the vacuum container. It is configured as a plasma processing apparatus including a second antenna.

【0006】[0006]

【作用】本発明によれば,真空容器内に高周波電場を誘
起させるためのアンテナは,1又は2以上のアンテナ素
子を交差配置して構成される。交差配置されたアンテナ
素子それぞれによって誘起される高周波電場が合成され
ることにより電界強度の均一化が図られ,高周波電場に
よって発生維持がなされるプラズマ密度分布の均一化が
図られる。上記アンテナ素子は,アンテナ素子の数及び
交差配置する数を増すほど,各アンテナ素子それぞれに
よって誘起される高周波電場が合成され,電界強度分布
の均一化が向上する。更に,各アンテナ素子の間に交差
角度に対応した位相差を与えて高周波を印加すると,そ
の合成電界の方向は空間的に回転するので,更に電界強
度分布の均一化が向上する。又,アンテナ素子それぞれ
に印加する高周波電力を個々に調整可能にして,プラズ
マ密度分布を判断することができる。又,複数のアンテ
ナ素子の並列間隔を変化させることにより,電界強度分
布を調整することができ,プラズマ処理の内容に対応す
るプラズマ密度分布を得ることができる。請求項1〜請
求項6がこれに該当する。又,真空容器内で発生したプ
ラズマは真空容器壁面で消費されるので,プラズマ周辺
部のプラズマ密度を上げて上記消費を補うことにより,
プラズマ密度分布の均一性を図ることができる。本発明
では,上記構成になるアンテナ(第1のアンテナ)に加
えて,真空容器の内形状と同形状のループアンテナ(第
2のアンテナ)を併用することにより,該ループアンテ
ナから誘起される高周波電場の作用でプラズマ周辺部の
密度分布を増加させている。請求項7がこれに該当す
る。
According to the present invention, an antenna for inducing a high frequency electric field in a vacuum container is constructed by arranging one or more antenna elements in a crossed manner. By synthesizing the high-frequency electric fields induced by each of the cross-arranged antenna elements, the electric field strength is made uniform, and the plasma density distribution generated and maintained by the high-frequency electric field is made uniform. As the number of antenna elements and the number of cross-arranged antenna elements increase, the high-frequency electric field induced by each antenna element is combined, and the uniformity of the electric field strength distribution improves. Furthermore, when a high frequency is applied by giving a phase difference corresponding to the crossing angle between the antenna elements, the direction of the combined electric field is spatially rotated, so that the uniformization of the electric field strength is further improved. Further, the high-frequency power applied to each antenna element can be adjusted individually to determine the plasma density distribution. Further, the electric field intensity distribution can be adjusted by changing the parallel spacing of the plurality of antenna elements, and the plasma density distribution corresponding to the content of the plasma processing can be obtained. Claims 1 to 6 correspond to this. Further, since the plasma generated in the vacuum container is consumed on the wall surface of the vacuum container, by increasing the plasma density in the plasma peripheral portion to compensate for the above consumption,
Uniformity of plasma density distribution can be achieved. In the present invention, in addition to the antenna (first antenna) having the above-described configuration, a loop antenna (second antenna) having the same shape as the inner shape of the vacuum container is used in combination, so that a high frequency wave induced from the loop antenna is generated. The density distribution around the plasma is increased by the action of the electric field. Claim 7 corresponds to this.

【0007】[0007]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の一実施例に係るプラズマ処理装置の構成を示す
模式図,図2はアンテナの第1実施例構成を示す平面
図,図3はアンテナの基本的構成とその作用を説明する
模式図,図4は高周波電場の合成を説明する説明図,図
5は第1実施例構成になるアンテナにより発生させたプ
ラズマの電子密度分布を示すグラフ,図6はアンテナの
第2実施例構成を示す模式図,図7はアンテナの第3実
施例構成を示す模式図,図8はアンテナの第4実施例構
成を示す模式図,図9はアンテナの第5実施例構成を示
す模式図,図10はアンテナの第6実施例構成を示す模
式図,図11はループアンテナによるプラズマの電子密
度分布を示すグラフである。図1において,実施例構成
になるプラズマ処理装置1は,真空排気のための排気ポ
ート7と処理ガスを導入するガス導入ポート8とを備え
た真空容器2の中心軸9上に高周波導入窓3を設けて,
この高周波導入窓3の外側にアンテナ5を配置して構成
される。本実施例構成では,上記真空容器の直径500
mm,高周波導入窓3の直径200mmで形成されている。
上記構成において,高周波電源6から13.56MH
z,最大電力2KWの高周波をアンテナ5に供給し,こ
のアンテナ5からの誘導結合により誘起させた高周波電
場により,真空容器2内に導入したArガスをプラズマ
化させるICPによるプラズマ発生を行う。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. 1 is a schematic diagram showing the configuration of a plasma processing apparatus according to an embodiment of the present invention, FIG. 2 is a plan view showing the configuration of a first embodiment of an antenna, and FIG. 3 is a basic configuration of the antenna and its operation. 4 is a schematic diagram for explaining the synthesis of a high frequency electric field, FIG. 5 is a graph showing an electron density distribution of plasma generated by the antenna having the configuration of the first embodiment, and FIG. 6 is a second diagram of the antenna. FIG. 7 is a schematic diagram showing a configuration of an embodiment, FIG. 7 is a schematic diagram showing a configuration of a third embodiment of the antenna, FIG. 8 is a schematic diagram showing a configuration of a fourth embodiment of the antenna, and FIG. 9 is a configuration of a fifth embodiment of the antenna. FIG. 10 is a schematic diagram showing the configuration of the sixth embodiment of the antenna, and FIG. 11 is a graph showing the electron density distribution of plasma by the loop antenna. In FIG. 1, a plasma processing apparatus 1 according to the embodiment has a high frequency introduction window 3 on a central axis 9 of a vacuum container 2 provided with an exhaust port 7 for vacuum exhaust and a gas introduction port 8 for introducing a processing gas. With
An antenna 5 is arranged outside the high frequency introduction window 3. In the configuration of this embodiment, the diameter of the vacuum container is 500
mm, and the high-frequency introduction window 3 has a diameter of 200 mm.
In the above configuration, the high frequency power source 6 to 13.56MH
A high frequency of z and a maximum electric power of 2 KW is supplied to the antenna 5, and the high frequency electric field induced by the inductive coupling from the antenna 5 causes plasma generation by the ICP that turns the Ar gas introduced into the vacuum container 2 into plasma.

【0008】上記構成になるプラズマ処理装置1におい
て,真空容器2内に配置される被処理物4の処理表面に
対して均等にプラズマ処理を行うためには,真空容器2
内に発生させるプラズマ20の密度分布が均一で,且つ
被処理物4より大きな面積でなければならない。プラズ
マ20を大面積で均一な密度分布にするためには,アン
テナ5からの高周波電場がプラズマ発生領域に均一な強
度分布で誘起されることが重要な要素となる。以下に上
記アンテナ5の実施例構成を順次説明する。図2にアン
テナ5の第1実施例構成を示す。図示するように,複数
の直線を平行に並べた第1のアンテナ枠素子11と第2
のアンテナ素子枠12とを直交交差させ,第1のアンテ
ナ素子枠11と第2のアンテナ素子枠12との間は進相
用コンデンサ10で接続する。各アンテナ素子枠11,
12は厚さ0.3mm,250×200mmの基板にアンテ
ナ素子11xとアンテナ素子12yとを図示形状に形成
し,テフロン被覆により絶縁して重ね合わせ,グリッド
状のアンテナ5を形成する。このアンテナ5に高周波電
源6から高周波電力が整合回路を介して供給される。
In the plasma processing apparatus 1 having the above-described structure, in order to uniformly perform the plasma processing on the processing surface of the object 4 to be processed arranged in the vacuum container 2, the vacuum container 2
The density distribution of the plasma 20 generated inside should be uniform, and the area should be larger than that of the object 4. In order to make the plasma 20 have a large area and a uniform density distribution, it is an important factor that the high-frequency electric field from the antenna 5 is induced in the plasma generation region with a uniform intensity distribution. The configuration of the antenna 5 according to the embodiment will be sequentially described below. FIG. 2 shows the configuration of the antenna 5 according to the first embodiment. As shown in the figure, the first antenna frame element 11 and the second antenna frame element 11 are formed by arranging a plurality of straight lines in parallel.
The antenna element frame 12 is orthogonally crossed, and the first antenna element frame 11 and the second antenna element frame 12 are connected by the phase advancing capacitor 10. Each antenna element frame 11,
The antenna element 12 has the antenna element 11x and the antenna element 12y formed in the illustrated shape on a substrate having a thickness of 0.3 mm and a size of 250 × 200 mm, and the antenna element 11x and the antenna element 12y are insulated by a Teflon coating and overlapped to form a grid-shaped antenna 5. High frequency power is supplied to this antenna 5 from a high frequency power supply 6 through a matching circuit.

【0009】上記アンテナ5により真空容器2内に高周
波電場を誘起させる作用を,本アンテナ5の基本的な構
成を用いて説明する。図3に示す基本構成になるアンテ
ナ5cは,1本の直線で形成されたアンテナ素子13x
及び13yを絶縁して直交交差させ,アンテナ素子13
xと13yとの間は進相用コンデンサ10で接続され
る。このアンテナ5cに高周波電源6から高周波電力が
供給されると,各アンテナ素子13x,13yの直線を
取り巻くように,それぞれ磁場Bx,Byが発生し,こ
の磁場Bx,Byが及ぶ真空容器2内に磁場Bx,By
に直交する電場Ex,Eyが誘起する。即ち,各アンテ
ナ素子13x,13yの直線方向に平行にそれぞれ電場
Ex,Eyが形成されることになる。アンテナ素子13
xと13yとの間は進相用コンデンサ10で接続され,
各アンテナ素子13x,13yの交差角度に対応する9
0度の位相差が与えられているので,各電場Ex,Ey
の変化は,図4に示すように90度の位相差が生じる。
従って,両アンテナ素子13x,13yによる電場E
x,Eyの合成電場Eは空間的に回転することになり,
交差位置を中心とする円周方向に均一な電場分布が得ら
れる。
The action of inducing a high frequency electric field in the vacuum container 2 by the antenna 5 will be described with reference to the basic configuration of the antenna 5. The antenna 5c having the basic configuration shown in FIG. 3 is an antenna element 13x formed by one straight line.
And 13y are insulated and crossed at right angles, and the antenna element 13
A phase advancing capacitor 10 is connected between x and 13y. When high-frequency power is supplied from the high-frequency power source 6 to the antenna 5c, magnetic fields Bx and By are generated so as to surround the straight lines of the antenna elements 13x and 13y, respectively, and inside the vacuum container 2 covered by the magnetic fields Bx and By. Magnetic field Bx, By
Electric fields Ex and Ey that are orthogonal to are induced. That is, the electric fields Ex and Ey are formed parallel to the linear directions of the antenna elements 13x and 13y, respectively. Antenna element 13
A capacitor 10 for phase advance is connected between x and 13y,
9 corresponding to the crossing angle of each antenna element 13x, 13y
Since the phase difference of 0 degree is given, each electric field Ex, Ey
Change causes a phase difference of 90 degrees as shown in FIG.
Therefore, the electric field E generated by both antenna elements 13x and 13y
The combined electric field E of x and Ey will rotate spatially,
A uniform electric field distribution can be obtained in the circumferential direction around the intersection position.

【0010】上記第1実施例構成になるグリッド状のア
ンテナ5は,上記基本構成になるアンテナ5cの各直線
の数を増したもので,誘起される電場の合成回転の分布
が格子状に配置されるので,電場分布がより均一になさ
れる。この第1実施例構成になるアンテナ5を図1に示
したプラズマ処理装置1に適用し,プラズマ20を発生
させたときのプラズマの電子密度分布の測定結果を図5
に示す。アンテナ5に供給される高周波電力500W,
Arガスの圧力1Torrの状態での密度分布で,高周
波導入窓の直径200mmよりやや大きな円盤状に均一な
プラズマが得られたことが示される。この構成により発
生させたプラズマは,1mTorrから500Torr
まで円盤状に均一で,一度発生すると大気圧までプラズ
マを維持させることができ,0.1mTorrまで無磁
場でもプラズマの維持がなされた。これは本実施例構成
になるプラズマ発生の応用範囲の広さを示すことに他な
らない。上記グリッド状に形成されたアンテナ5のグリ
ッド間隔に粗密を与えると,誘起される電場の分布が調
整でき,プラズマの密度分布を制御することができる。
図6に示す第2実施例では,アンテナ5aを構成する各
アンテナ素子11a,12aそれぞれの外側のグリッド
間隔を密に形成している。プラズマは一般的に真空容器
2の壁面で消費されるので,周辺部のプラズマ密度分布
を上げて消費を補うことにより,均一なプラズマ密度分
布を得ることができる。又,図7に示す第3実施例で
は,アンテナ5bを構成する各アンテナ素子11b,1
2bそれぞれの内側のグリッド間隔を密に形成して,中
心部の電場を強くしている。このような電場強度の分布
により得られるプラズマは,密度分布が一部分に集中し
たものとなり,プラズマで発生する活性種のみを利用し
て処理を行う場合に有効となる。
The grid-shaped antenna 5 having the structure of the first embodiment is obtained by increasing the number of each straight line of the antenna 5c having the basic structure, and the distribution of the combined rotation of the induced electric field is arranged in a grid. Therefore, the electric field distribution is made more uniform. The antenna 5 having the configuration of the first embodiment is applied to the plasma processing apparatus 1 shown in FIG. 1, and the measurement result of the electron density distribution of the plasma when the plasma 20 is generated is shown in FIG.
Shown in. High-frequency power of 500 W supplied to the antenna 5,
With the density distribution of Ar gas at a pressure of 1 Torr, it is shown that uniform plasma was obtained in the shape of a disk slightly larger than the diameter of the high frequency introducing window of 200 mm. The plasma generated by this configuration is from 1 mTorr to 500 Torr
It was uniform in the shape of a disc, and once generated, it was possible to maintain the plasma up to atmospheric pressure, and the plasma was maintained up to 0.1 mTorr even without a magnetic field. This is nothing but showing the wide range of application of plasma generation according to the structure of this embodiment. When the grid spacing of the antennas 5 formed in the grid shape is given a high density, the distribution of the induced electric field can be adjusted, and the plasma density distribution can be controlled.
In the second embodiment shown in FIG. 6, the outer grid intervals of the respective antenna elements 11a and 12a forming the antenna 5a are closely formed. Since the plasma is generally consumed on the wall surface of the vacuum container 2, a uniform plasma density distribution can be obtained by increasing the plasma density distribution in the peripheral portion to compensate for the consumption. In addition, in the third embodiment shown in FIG. 7, each antenna element 11b, 1 which composes the antenna 5b.
The inner grid spacing of each 2b is closely formed to strengthen the electric field at the center. The plasma obtained by such a distribution of the electric field strength has a density distribution concentrated in a part, which is effective when processing is performed using only active species generated in the plasma.

【0011】又,アンテナ5は上記各構成のようにアン
テナ素子を直交交差させるだけでなく,図8,図9に示
す第4,第5実施例のように構成することもできる。図
8に示すアンテナ5dの構成では,直線の各アンテナ素
子14a,14b,14cをそれぞれの両端部で交差さ
せて三角形に構成し,各アンテナ素子14a,14b,
14cの間を位相シフタ16を介して接続して,高周波
電源6からの高周波電力に順次位相差を与えて各アンテ
ナ素子に供給している。この構成の場合のアンテナ素子
間の位相差を120度に設定することにより,合成電場
の回転による均一化が得られる。同様に図9に示すアン
テナ5eの構成では,直線の各アンテナ素子15a,1
5b,15c,15d,15eをそれぞれの両端部で交
差させて五角形に構成し,各アンテナ素子15a,15
b,15c,15d,15eの間を位相シフタ17を介
して接続している。この構成の場合のアンテナ素子間の
位相差は72度にすることにより,合成電場の回転によ
る均一化が得られる。以上説明したアンテナ5及びその
基本構成のアンテナ5c,変化態様のアンテナ5a,5
b,5d,5eでは,各アンテナ素子間に位相差を与え
て合成電場の回転による均一化を図っているが,位相差
を与えることなく直列接続することによっても,電場合
成の効果を得ることができる。例えば,直交交差させた
場合の電場の合成は交差軸に45度の回転しない電場と
して形成され,ループアンテナのように中心に電場強度
がゼロになる部分が生じることはなく,均一なプラズマ
密度分布を得ることができる。又,以上説明した各実施
態様における各アンテナ素子に対する高周波電力の供給
を個別に調整すると,アンテナ素子毎の電界強度の分布
が判断できるので,プラズマ密度分布を所要の状態へと
変化させることが可能となる。
Further, the antenna 5 can be constructed not only by orthogonally intersecting the antenna elements as in each of the above-described configurations, but also by configuring as in the fourth and fifth embodiments shown in FIGS. 8 and 9. In the configuration of the antenna 5d shown in FIG. 8, the linear antenna elements 14a, 14b, 14c are crossed at both ends to form a triangle, and the antenna elements 14a, 14b,
14c are connected via a phase shifter 16, and the high frequency power from the high frequency power supply 6 is sequentially given a phase difference and supplied to each antenna element. By setting the phase difference between the antenna elements in this case to 120 degrees, the uniformization due to the rotation of the combined electric field can be obtained. Similarly, in the configuration of the antenna 5e shown in FIG. 9, the linear antenna elements 15a, 1
5b, 15c, 15d, and 15e are crossed at each end to form a pentagon, and each antenna element 15a, 15
b, 15c, 15d and 15e are connected via a phase shifter 17. In this configuration, the phase difference between the antenna elements is 72 degrees, so that the composite electric field can be made uniform by rotation. The antenna 5 described above, the antenna 5c of the basic configuration thereof, and the antennas 5a, 5 of the variation mode
In b, 5d, and 5e, a phase difference is given between the antenna elements to make them uniform by rotation of the combined electric field. However, even if they are connected in series without giving a phase difference, the effect of electrical case is obtained. be able to. For example, when the electric fields are combined orthogonally, the electric field is formed as a non-rotating electric field of 45 degrees on the crossing axis, and there is no part where the electric field strength becomes zero at the center like a loop antenna, and a uniform plasma density distribution is obtained. Can be obtained. Further, by individually adjusting the supply of the high frequency power to each antenna element in each of the embodiments described above, the distribution of the electric field strength for each antenna element can be determined, and thus the plasma density distribution can be changed to a desired state. Becomes

【0012】上記第2実施例に示したグリッド状のアン
テナ5aでは,グリッド間隔を変化させて真空容器2の
壁面で消費されるプラズマを補う構成を示したが(図
6),図10に示す第6実施例構成のように,グリッド
状のアンテナ5(第1のアンテナ)とループアンテナ1
8(第2のアンテナ)とを併用して,プラズマ周辺部の
消費を補うこともできる。グリッド状のアンテナ5によ
るプラズマの電子密度分布は図5に示された通り円盤状
に均一で,周辺部で電子密度が低下する分布を示す。一
方,同条件における直径200mmのループアンテナ18
単独でのプラズマの電子密度分布は,図11に示すよう
にループラインの直下でリング状にピークが発生した密
度分布となる。この両アンテナが作用するプラズマは,
図5,図11に示される密度分布が合成されたような状
態となるので,プラズマ周辺部で高い密度分布が得ら
れ,壁面での消費を補って均一化された状態が得られ
る。ループアンテナ18の形状は,本実施例の場合,真
空容器2が円筒型であるのでリング状に形成されている
が,真空容器2が矩形である場合には,矩形のループに
形成する。尚,上記実施例では,アンテナ5を真空容器
2の外側に配置しているが,アンテナ5を絶縁材で覆っ
て真空容器2内に配置することもできる。
In the grid-shaped antenna 5a shown in the second embodiment, the grid interval is changed to supplement the plasma consumed on the wall surface of the vacuum container 2 (FIG. 6), but FIG. 10 is shown. As in the configuration of the sixth embodiment, the grid antenna 5 (first antenna) and the loop antenna 1
8 (second antenna) can also be used together to supplement the consumption of the plasma peripheral part. The electron density distribution of plasma by the grid-shaped antenna 5 is uniform in a disc shape as shown in FIG. 5, and the electron density distribution decreases in the peripheral portion. On the other hand, under the same conditions, the loop antenna 18 with a diameter of 200 mm
The electron density distribution of plasma alone is a density distribution in which a ring-shaped peak is generated immediately below the loop line as shown in FIG. The plasma that these two antennas work on is
Since the state is such that the density distributions shown in FIGS. 5 and 11 are combined, a high density distribution is obtained in the plasma peripheral portion, and a uniform state is obtained by supplementing the consumption on the wall surface. In the present embodiment, the shape of the loop antenna 18 is formed in a ring shape because the vacuum container 2 is cylindrical, but when the vacuum container 2 is rectangular, it is formed in a rectangular loop. Although the antenna 5 is arranged outside the vacuum container 2 in the above embodiment, the antenna 5 may be arranged inside the vacuum container 2 by being covered with an insulating material.

【0013】[0013]

【発明の効果】以上の説明の通り本発明によれば,アン
テナ素子を交差配置して構成されたアンテナによって誘
起される高周波電場によって真空容器内に導入された処
理ガスをプラズマ化する。アンテナ素子それぞれの高周
波電場を合成することにより電界強度の均一化をなし,
高周波電場によって発生維持がなされるプラズマ密度分
布の均一化がなされる。このアンテナ素子の交差配置す
る数を増すほどに,各アンテナ素子により誘起される高
周波電場が合成されて電界強度分布が均一化される。更
に,各アンテナ素子の間に交差角度に対応した位相差を
与えて高周波を印加すると,その合成電界の方向は空間
的に回転するので,更に電界強度分布の均一化が向上す
る。又,上記複数のアンテナ素子それぞれに印加する電
力を調整する。あるいは,複数のアンテナ素子の並列間
隔を変化させることにより,電界強度分布を調整するこ
とができ,プラズマ処理の内容に対応するプラズマ密度
分布を得ることができる。(請求項1〜請求項6) 又,上記構成になるアンテナ(第1のアンテナ)に,真
空容器の内形状と同形状のループアンテナ(第2のアン
テナ)を併用することにより,該ループアンテナから誘
起される高周波電場の作用でプラズマ周辺部の密度分布
を増加させることができるので,真空容器壁面で消費さ
れるプラズマ周辺部のプラズマ密度を上げて上記消費を
補い,プラズマ密度分布の均一性を図ることができる。
(請求項7)
As described above, according to the present invention, the processing gas introduced into the vacuum container is turned into plasma by the high frequency electric field induced by the antenna constructed by arranging the antenna elements in a crossed manner. By combining the high frequency electric field of each antenna element, the electric field strength is made uniform,
The plasma density distribution that is generated and maintained by the high-frequency electric field is made uniform. As the number of antenna elements crossed increases, the high-frequency electric field induced by each antenna element is synthesized and the electric field strength distribution is made uniform. Furthermore, when a high frequency is applied by giving a phase difference corresponding to the crossing angle between the antenna elements, the direction of the combined electric field is spatially rotated, so that the uniformization of the electric field strength is further improved. Further, the power applied to each of the plurality of antenna elements is adjusted. Alternatively, the electric field intensity distribution can be adjusted by changing the parallel spacing of the plurality of antenna elements, and the plasma density distribution corresponding to the content of the plasma processing can be obtained. (Claims 1 to 6) Further, by using a loop antenna (second antenna) having the same shape as the inner shape of the vacuum container in combination with the antenna (first antenna) having the above-mentioned configuration, the loop antenna Since the density distribution around the plasma can be increased by the action of the high-frequency electric field induced from the plasma, the plasma density around the plasma consumed by the wall of the vacuum chamber is increased to compensate for the above consumption, and the uniformity of the plasma density distribution is improved. Can be achieved.
(Claim 7)

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るプラズマ処理装置の
構成を示す模式図。
FIG. 1 is a schematic diagram showing the configuration of a plasma processing apparatus according to an embodiment of the present invention.

【図2】 アンテナの第1実施例構成を示す平面図。FIG. 2 is a plan view showing the configuration of a first embodiment of the antenna.

【図3】 アンテナの基本的構成とその作用を説明する
模式図。
FIG. 3 is a schematic diagram illustrating a basic configuration of an antenna and its operation.

【図4】 高周波電場の合成を説明する説明図。FIG. 4 is an explanatory diagram illustrating synthesis of a high frequency electric field.

【図5】 実施例構成により発生させたプラズマの電子
密度分布を示すグラフ。
FIG. 5 is a graph showing an electron density distribution of plasma generated by the configuration of the embodiment.

【図6】 アンテナの第2実施例構成を示す模式図。FIG. 6 is a schematic diagram showing the configuration of a second embodiment of the antenna.

【図7】 アンテナの第3実施例構成を示す模式図。FIG. 7 is a schematic diagram showing a configuration of a third embodiment of the antenna.

【図8】 アンテナの第4実施例構成を示す模式図。FIG. 8 is a schematic diagram showing the configuration of a fourth embodiment of the antenna.

【図9】 アンテナの第5実施例構成を示す模式図。FIG. 9 is a schematic diagram showing the configuration of a fifth embodiment of the antenna.

【図10】 アンテナの第6実施例構成を示す模式図。FIG. 10 is a schematic diagram showing the configuration of an antenna according to a sixth embodiment.

【図11】 ループアンテナによるプラズマの電子密度
分布を示すグラフ。
FIG. 11 is a graph showing an electron density distribution of plasma by a loop antenna.

【図12】 従来構成になるICPのプラズマ生成メカ
ニズムを説明する模式図。
FIG. 12 is a schematic diagram illustrating a plasma generation mechanism of an ICP having a conventional configuration.

【符号の説明】[Explanation of symbols]

1…プラズマ処理装置 2…真空容器 3…高周波導入窓 4…被処理物 5,5a,5b,5c,5d,5e…アンテナ 11,12,13,14,15…アンテナ素子 18…ループアンテナ(第2のアンテナ) DESCRIPTION OF SYMBOLS 1 ... Plasma processing apparatus 2 ... Vacuum container 3 ... High frequency introduction window 4 ... Object to be processed 5, 5a, 5b, 5c, 5d, 5e ... Antenna 11, 12, 13, 14, 15 ... Antenna element 18 ... Loop antenna (first 2 antennas)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に導入された処理ガスをアン
テナからの電磁誘導によって誘起された高周波電場によ
りプラズマ化し,該プラズマにより上記真空容器内に配
置された被処理物をプラズマ処理するプラズマ処理装置
において, 上記アンテナが,1又は2以上のアンテナ素子を交差配
置して構成されてなることを特徴とするプラズマ処理装
置。
1. A plasma processing for converting a processing gas introduced into a vacuum container into a plasma by a high frequency electric field induced by electromagnetic induction from an antenna, and subjecting an object placed in the vacuum container to a plasma treatment by the plasma. In the apparatus, the above-mentioned antenna is configured by arranging one or more antenna elements so as to cross each other.
【請求項2】 上記アンテナ素子が交差する交差角度に
対応した位相差で各アンテナ素子に高周波を印加する請
求項1記載のプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein a high frequency is applied to each antenna element with a phase difference corresponding to an intersection angle at which the antenna elements intersect.
【請求項3】 上記交差配置したアンテナ素子を直列に
接続して高周波を印加する請求項1記載のプラズマ処理
装置。
3. The plasma processing apparatus according to claim 1, wherein the cross-arranged antenna elements are connected in series to apply a high frequency.
【請求項4】 上記交差配置したアンテナ素子それぞれ
に印加する高周波電力の大きさを個別に調整可能した請
求項1記載のプラズマ処理装置。
4. The plasma processing apparatus according to claim 1, wherein the magnitude of the high-frequency power applied to each of the cross-arranged antenna elements can be individually adjusted.
【請求項5】 複数のアンテナ素子の並列間隔が外側ほ
ど粗である請求項1記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein the parallel spacing of the plurality of antenna elements is rougher toward the outside.
【請求項6】 複数のアンテナ素子の並列間隔が外側ほ
ど密である請求項1記載のプラズマ処理装置。
6. The plasma processing apparatus according to claim 1, wherein the parallel spacing of the plurality of antenna elements is closer to the outside.
【請求項7】 真空容器に導入された処理ガスをアンテ
ナからの電磁誘導によって誘起された高周波電場により
プラズマ化し,該プラズマにより上記真空容器内に配置
された被処理物をプラズマ処理するプラズマ処理装置に
おいて, 上記アンテナが,1又は2以上のアンテナ素子を交差配
置して構成された第1のアンテナと,上記真空容器の内
形状と同形状のループで構成された第2のアンテナとか
らなることを特徴とするプラズマ処理装置。
7. A plasma processing apparatus for converting a processing gas introduced into a vacuum container into a plasma by a high frequency electric field induced by electromagnetic induction from an antenna, and subjecting an object to be processed placed in the vacuum container to plasma by the plasma. In above, the antenna comprises a first antenna configured by arranging one or more antenna elements in a crossed manner, and a second antenna configured by a loop having the same shape as the inner shape of the vacuum container. A plasma processing apparatus characterized by the above.
JP5270105A 1993-10-28 1993-10-28 Plasma treatment apparatus Pending JPH07122397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270105A JPH07122397A (en) 1993-10-28 1993-10-28 Plasma treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270105A JPH07122397A (en) 1993-10-28 1993-10-28 Plasma treatment apparatus

Publications (1)

Publication Number Publication Date
JPH07122397A true JPH07122397A (en) 1995-05-12

Family

ID=17481611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270105A Pending JPH07122397A (en) 1993-10-28 1993-10-28 Plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPH07122397A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050885A1 (en) * 1998-03-31 1999-10-07 Lam Research Corporation Parallel-antenna transformer-coupled plasma generation systems
JP2004537839A (en) * 2001-07-30 2004-12-16 プラズマート カンパニー リミテッド Antenna structure of inductively coupled plasma generator
JP2005026233A (en) * 1996-10-02 2005-01-27 Tokyo Electron Ltd Plasma processing device
JP2010165677A (en) * 2009-01-15 2010-07-29 Hitachi High-Technologies Corp Plasma processing device
JP2011511471A (en) * 2008-02-13 2011-04-07 ユージン テクノロジー カンパニー リミテッド Plasma processing apparatus and method
JP2011096687A (en) * 2009-10-27 2011-05-12 Tokyo Electron Ltd Plasma processing apparatus and method
US8608903B2 (en) 2009-10-27 2013-12-17 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP5391209B2 (en) * 2009-01-15 2014-01-15 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP2014044961A (en) * 2009-01-15 2014-03-13 Hitachi High-Technologies Corp Plasma processing equipment
US8741097B2 (en) 2009-10-27 2014-06-03 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US20150068681A1 (en) * 2013-09-06 2015-03-12 Hitachi High-Technologies Corporation Plasma processing apparatus
JP2015177651A (en) * 2014-03-14 2015-10-05 古河電気工業株式会社 power transmission system
US9313872B2 (en) 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026233A (en) * 1996-10-02 2005-01-27 Tokyo Electron Ltd Plasma processing device
WO1999050885A1 (en) * 1998-03-31 1999-10-07 Lam Research Corporation Parallel-antenna transformer-coupled plasma generation systems
JP2004537839A (en) * 2001-07-30 2004-12-16 プラズマート カンパニー リミテッド Antenna structure of inductively coupled plasma generator
JP2011511471A (en) * 2008-02-13 2011-04-07 ユージン テクノロジー カンパニー リミテッド Plasma processing apparatus and method
JP2014044961A (en) * 2009-01-15 2014-03-13 Hitachi High-Technologies Corp Plasma processing equipment
JP2010165677A (en) * 2009-01-15 2010-07-29 Hitachi High-Technologies Corp Plasma processing device
US10262835B2 (en) 2009-01-15 2019-04-16 Hitachi High-Technologies Corporation Plasma processing equipment and plasma generation equipment
JP5391209B2 (en) * 2009-01-15 2014-01-15 株式会社日立ハイテクノロジーズ Plasma processing equipment
US9899191B2 (en) 2009-10-27 2018-02-20 Tokyo Electron Limited Plasma processing apparatus
US8741097B2 (en) 2009-10-27 2014-06-03 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US9253867B2 (en) 2009-10-27 2016-02-02 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US9313872B2 (en) 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US8608903B2 (en) 2009-10-27 2013-12-17 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US9941097B2 (en) 2009-10-27 2018-04-10 Tokyo Electron Limited Plasma processing apparatus
US9997332B2 (en) 2009-10-27 2018-06-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP2011096687A (en) * 2009-10-27 2011-05-12 Tokyo Electron Ltd Plasma processing apparatus and method
US10804076B2 (en) 2009-10-27 2020-10-13 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US20150068681A1 (en) * 2013-09-06 2015-03-12 Hitachi High-Technologies Corporation Plasma processing apparatus
JP2015053172A (en) * 2013-09-06 2015-03-19 株式会社日立ハイテクノロジーズ Plasma processing apparatus
US10796884B2 (en) 2013-09-06 2020-10-06 Hitachi High-Tech Corporation Plasma processing apparatus
JP2015177651A (en) * 2014-03-14 2015-10-05 古河電気工業株式会社 power transmission system

Similar Documents

Publication Publication Date Title
US5401351A (en) Radio frequency electron cyclotron resonance plasma etching apparatus
US4948458A (en) Method and apparatus for producing magnetically-coupled planar plasma
JP2822103B2 (en) An improved resonant radio frequency wave coupler device.
US5578165A (en) Coil configurations for improved uniformity in inductively coupled plasma systems
US5880034A (en) Reduction of semiconductor structure damage during reactive ion etching
JPH07122397A (en) Plasma treatment apparatus
JPH0216732A (en) Plasma reactor
US6396024B1 (en) Permanent magnet ECR plasma source with integrated multipolar magnetic confinement
JPH0878191A (en) Plasma treatment method and device therefor
KR20130029453A (en) Plasma processing equipment
KR100333220B1 (en) Magnetically reinforced medium-capacity plasma generators and related methods
JPH11135438A (en) Semiconductor plasma processing apparatus
KR20100084108A (en) Processing device and generating device for plasma
JPH08337887A (en) Plasma treatment device
JP3156622B2 (en) Plasma generator
KR20010108968A (en) Plasma processing apparatus
JPS61213377A (en) Method and apparatus for plasma deposition
JP2005534185A (en) Inductively coupled plasma generator with low aspect ratio
JPH09102400A (en) Processing device using microwave plasma
JP3294839B2 (en) Plasma processing method
JP2000164578A (en) Plasma processing device and method
KR20110090877A (en) Plasma processing apparatus
JPH0790632A (en) Electric discharge plasma treating device
JPH02237117A (en) Semiconductor treatment apparatus
JP3088504B2 (en) Microwave discharge reactor