JPH07122228A - Photoelectric transfer tube - Google Patents

Photoelectric transfer tube

Info

Publication number
JPH07122228A
JPH07122228A JP26365993A JP26365993A JPH07122228A JP H07122228 A JPH07122228 A JP H07122228A JP 26365993 A JP26365993 A JP 26365993A JP 26365993 A JP26365993 A JP 26365993A JP H07122228 A JPH07122228 A JP H07122228A
Authority
JP
Japan
Prior art keywords
photocathode
contact electrode
electrode
airtight container
cathode contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26365993A
Other languages
Japanese (ja)
Other versions
JP2796046B2 (en
Inventor
Tokuaki Futahashi
得明 二橋
Toshimitsu Nagai
俊光 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP26365993A priority Critical patent/JP2796046B2/en
Publication of JPH07122228A publication Critical patent/JPH07122228A/en
Application granted granted Critical
Publication of JP2796046B2 publication Critical patent/JP2796046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE:To provide a cathode contact electrode structure of photoelectric transfer tube which can generate the photoelectric surface of good workmanship at a low cost. CONSTITUTION:A cathode contact electrode consisting of the first cathode contact electrode 17 and the second cathode contact electrodes 16a, 16b is pinched between an optical glass base board 11 and a side tubing 15. A semiconductor photoelectric surface 12 is provided on the surface of the base board 11, and the first electrode 17 is in contact with this photoelectric surface 12. A spring 17a is furnished at the first electrode 17, which is in contact with one of the second electrodes 16b through the spring 17a. This second electrode 16b encloses the circumferential end part 12a of the photoelectric surface 12 and is embodied with roundness. The other end of the second electrode 16a in a single piece structure with this second electrode 16b is exposed at the outside of an airtight vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光電子増倍管やイメージ
管などの光電面を有する光電変換管に関し、特に、光電
面へ陰極電圧を与える構造に特徴を有する光電変換管に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion tube having a photoelectric surface such as a photomultiplier tube or an image tube, and more particularly to a photoelectric conversion tube characterized by a structure for applying a cathode voltage to the photoelectric surface.

【0002】[0002]

【従来の技術】光入射に応じて光電子を放出する光電面
には透過形光電面と反射形光電面とがあり、透過形光電
面においては光電面の基板として光学ガラスなどが用い
られている。
2. Description of the Related Art There are a transmission type photocathode and a reflection type photocathode as photocathodes which emit photoelectrons in response to incident light, and in the transmission type photocathode, optical glass or the like is used as a substrate of the photocathode. .

【0003】図7および図8はこの透過形光電面を示し
ており、これら各光電面は、光学ガラスと光電面サイズ
の大小によって端部形状が異なっている。図7(a)は
光電面1の端部が光学ガラス基板2の周縁部からはみだ
している光電面の側断面図を示している。この光電面1
は単結晶半導体光電面、例えばGaAs透過形光電面か
ら形成され、同図(b)の平面図に示すように、結晶破
断面が現れる光電面1の端部には非常に鋭い突起1aが
必ず存在している。
FIG. 7 and FIG. 8 show this transmission type photocathode, and these photocathodes have different end shapes depending on the size of the optical glass and the size of the photocathode. FIG. 7A shows a side cross-sectional view of the photocathode in which the end of the photocathode 1 protrudes from the peripheral edge of the optical glass substrate 2. This photocathode 1
Is formed of a single crystal semiconductor photocathode, for example, a GaAs transmission type photocathode, and as shown in the plan view of FIG. 2B, a very sharp protrusion 1a is always formed at the end of the photocathode 1 where the crystal fracture surface appears. Existing.

【0004】また、図8(a)はGaAs透過形光電面
3の端部が光学ガラス基板4の周端部からはみださず、
光学ガラス基板4の径よりも小さい径を有する光電面の
側断面図を示している。同図(b)は同図(a)におけ
るA部を拡大した断面図を示している。この光電面構造
にあっては、光電面3の周端部に存在する鋭い突起3a
が、光学ガラス基板4の周縁部4aに形成された盛り上
がり部分によって覆われている。
Further, in FIG. 8A, the end of the GaAs transmission type photocathode 3 does not protrude from the peripheral end of the optical glass substrate 4,
It shows a side sectional view of a photocathode having a diameter smaller than that of the optical glass substrate 4. The figure (b) has shown the sectional view which expanded the A section in the figure (a). In this photocathode structure, the sharp protrusions 3a existing on the peripheral edge of the photocathode 3 are formed.
Are covered by the raised portion formed on the peripheral edge portion 4 a of the optical glass substrate 4.

【0005】これら各光電面1,3に陰極電圧を与える
ため、従来、「T」字状に形成された各ガラス基板2,
4の肩部2b,4bに、光電面1,3に電気的に接触し
てアルミニウム金属等が蒸着され、図示しない接触電極
が形成されていた。この接触電極は光電面1,3を真空
雰囲気におく気密容器の外部に導かれており、この接触
電極を通じて気密容器外部から光電面1,3に陰極電圧
が与えられていた。
In order to apply a cathode voltage to each of these photocathodes 1, 3 each glass substrate 2, which is conventionally formed in a "T" shape,
Aluminum metal or the like was vapor-deposited on the shoulder portions 2b and 4b of No. 4 in electrical contact with the photocathodes 1 and 3 to form contact electrodes (not shown). The contact electrodes were guided to the outside of an airtight container in which the photocathodes 1 and 3 were placed in a vacuum atmosphere, and a cathode voltage was applied to the photocathodes 1 and 3 from outside the airtight container through the contact electrodes.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の構造をした透過形半導体光電面にあっては、光電変
換管の最近の小型化の傾向から、光電面部分やその周辺
に高電界が形成される場合が多く、電界放出現象が発生
しやすい状態にある。このため、光学ガラス基板2,4
は、電界が集中しやすい突起や傷が皆無になるよう、真
空雰囲気に保たれる内側全面に渡って光学的研磨が施さ
れていた。特に、いわゆる段付き面板と称される光学ガ
ラス基板における端部はより入念に研磨されるうえ、製
造過程での取扱いや処理に細心の注意が払われながら工
程が進められていた。
However, in the transmission type semiconductor photocathode having the above-mentioned conventional structure, a high electric field is formed in the photocathode portion and its periphery due to the recent tendency of miniaturization of the photoelectric conversion tube. In many cases, the field emission phenomenon is likely to occur. Therefore, the optical glass substrates 2, 4
In order to eliminate all the protrusions and scratches where the electric field is likely to concentrate, the entire inner surface kept in a vacuum atmosphere was optically polished. In particular, the end portion of an optical glass substrate, which is a so-called stepped face plate, is polished more carefully, and the process is advanced while paying close attention to the handling and processing in the manufacturing process.

【0007】また、光電面の形成にも苦心が払われてい
た。つまり、上記従来の図7に示す光電面1にあって
は、光学ガラス基板2に光電面用単結晶薄膜ウエハが形
成された後、その周端部に存在する鋭い突起が研磨によ
って除去される。その後、光電面に陰極電圧を与えるた
めの接触電極の形成工程に移行する。この電極形成にお
いても、ほこりの付着や傷、突起が発生しないよう、注
意しながらが工程が進められる。また、上記従来の図8
に示す光電面3にあっては、光電面用単結晶薄膜ウエハ
の周端部を覆うよう、光学ガラス基板4の周縁部4aを
盛り上げなければならない。従って、従来の光電変換管
の構造においては、光学ガラス基板の端面や光電面の周
端部を研磨したり、光学ガラス基板の周縁部を盛り上げ
る難しい工程が必要とされ、管の製造に熟練技術や時間
を要した。
Further, it has been difficult to form the photocathode. That is, in the conventional photocathode 1 shown in FIG. 7, the single crystal thin film wafer for photocathode is formed on the optical glass substrate 2, and then the sharp protrusions present at the peripheral edge are removed by polishing. . After that, the process moves to the step of forming a contact electrode for applying a cathode voltage to the photocathode. Also in this electrode formation, the process proceeds while being careful so that dust adhesion, scratches, and protrusions do not occur. Further, FIG.
In the photocathode 3 shown in (1), the peripheral edge portion 4a of the optical glass substrate 4 must be raised so as to cover the peripheral edge portion of the single crystal thin film wafer for photocathode. Therefore, in the structure of the conventional photoelectric conversion tube, it is necessary to perform a difficult process of polishing the end surface of the optical glass substrate or the peripheral end portion of the photoelectric surface, or raising the peripheral edge portion of the optical glass substrate. It took time.

【0008】また、研磨工程における光電面への研磨剤
の付着、接触電極形成工程における光電面への汚染物の
付着が発生し、光電面表面の清浄度を確保する観点から
好ましくない状態が発生した。従って、従来、光電面表
面に付着したこのような汚染物を除去する工程が必要と
なり、製造時間が増加して製造コストは上昇した。ま
た、光電面表面の汚染物は完全に除去しきれず、汚染物
の付着は光電面の光検出特性を低下させる方向に働い
た。
In addition, adhesion of an abrasive to the photocathode in the polishing step and adhesion of contaminants to the photocathode in the contact electrode formation step cause an undesirable state from the viewpoint of ensuring cleanliness of the photocathode surface. did. Therefore, conventionally, a step of removing such contaminants adhering to the surface of the photocathode has been required, resulting in an increase in manufacturing time and an increase in manufacturing cost. In addition, the contaminants on the surface of the photocathode could not be completely removed, and the attachment of the contaminants tended to deteriorate the light detection characteristics of the photocathode.

【0009】[0009]

【課題を解決するための手段】本発明はこのような課題
を解消するためになされたもので、内部が真空状態に保
たれた気密容器と、この気密容器の一部を形成する透光
性の受光面板と、入射光を光電変換して電子を放出する
受光面板の内面に配置された透過形の半導体光電面と、
電子を捕らえる気密容器内に形成された陽極電極とを備
えて構成された光電変換管において、丸みを帯びた一端
部が光電面に電気的に接触しつつ半導体光電面の周端部
を覆い、他端部が気密容器の外部に露出している、気密
容器および受光面板によって挟持された接触電極を備え
たものである。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is an airtight container whose inside is kept in a vacuum state and a translucent material forming a part of this airtight container. And a light-transmitting semiconductor photocathode disposed on the inner surface of the light-receiving face plate that photoelectrically converts incident light to emit electrons.
In a photoelectric conversion tube configured with an anode electrode formed in an airtight container for capturing electrons, a rounded one end covers a peripheral end portion of a semiconductor photoelectric surface while electrically contacting the photoelectric surface, The contact electrode is sandwiched between the airtight container and the light-receiving face plate, the other end of which is exposed to the outside of the airtight container.

【0010】また、上記接触電極は、光電面の周端部に
電気的に接した金属板からなる第1の接触電極と、この
第1の接触電極に当接しつつ光電面の周端部および第1
の接触電極を覆い、端部が気密容器の外部に露出した金
属板からなる丸みを帯びた第2の接触電極とから構成さ
れ、第1の接触電極または第2の接触電極に光電面およ
び第1の接触電極間を緩衝するスプリング部が形成され
ているものである。
The contact electrode includes a first contact electrode made of a metal plate which is in electrical contact with the peripheral edge of the photocathode, and a peripheral edge of the photocathode while contacting the first contact electrode. First
And a rounded second contact electrode which is made of a metal plate whose end is exposed to the outside of the airtight container, and the first contact electrode or the second contact electrode has a photocathode and a second contact electrode. A spring portion is formed to buffer between the contact electrodes.

【0011】[0011]

【作用】鋭い突起部が存在する半導体光電面の周端部は
丸みを帯びた接触電極によって覆われ、光電面および陽
極電極間に形成される電界に集中は生じない。
The peripheral edge of the semiconductor photocathode having the sharp projection is covered by the rounded contact electrode, and the electric field formed between the photocathode and the anode electrode is not concentrated.

【0012】また、気密容器外部に露出する接触電極の
端部に陰極電圧が与えられ、光電面に機械的に接する接
触電極を介して陰極電圧が伝えられる。
Further, a cathode voltage is applied to the end of the contact electrode exposed to the outside of the airtight container, and the cathode voltage is transmitted through the contact electrode mechanically contacting the photocathode.

【0013】また、第1の接触電極または第2の接触電
極にスプリング部が形成され、光電面および第1の接触
電極間が緩衝されることにより、光電面および第1の接
触電極間の電気接触抵抗は安定した低抵抗状態に保たれ
る。
In addition, a spring portion is formed on the first contact electrode or the second contact electrode, and the space between the photocathode and the first contact electrode is buffered. The contact resistance is kept in a stable low resistance state.

【0014】[0014]

【実施例】次に、GaAs透過形光電面を持つ近接形光
電管に本発明を適用した第1の実施例について説明す
る。本実施例による近接形光電管は以下のようにして製
造される。
Next, a first embodiment in which the present invention is applied to a proximity type phototube having a GaAs transmission type photocathode will be described. The proximity photocell according to this example is manufactured as follows.

【0015】まず、III −V族化合物半導体であるGa
As半導体基板上に、GaAlAsエッチングストップ
層、GaAs単結晶層、およびGaAlAsバッファ層
が順次結晶成長される。次に、この結晶積層構造の最上
層にあるGaAlAsバッファ層の表面にシラン(Si
4 )が熱CVD法によってコートされ、酸化シリコン
(SiO2 )層が形成される。次に、この酸化シリコン
層に光学ガラス基板11が熱接着される。この際、酸化
シリコン層は、光学ガラス基板11との熱接着によって
結晶積層構造に不純物が侵入することを防止すると共
に、光学ガラス基板11との接着を強固にする機能を果
たす。次に、GaAs半導体基板がエッチング除去さ
れ、引き続いてGaAlAsエッチングストップ層が除
去されてGaAs単結晶層が露出される。この結果、図
2(a)に示すように、光学ガラス基板11の表面にG
aAs単結晶薄膜からなる透過形光電面(光電陰極)1
2が形成される。なお、図2は中心線の左半分が側断面
図、右半分が側面図を表わしている。この光電面構造は
従来の図7(a)または図8(a)に示す構造に相当し
ており、光学ガラス基板11および光電面12の周端部
には鋭い突起が存在している。
First, Ga which is a III-V compound semiconductor is used.
A GaAlAs etching stop layer, a GaAs single crystal layer, and a GaAlAs buffer layer are sequentially grown on the As semiconductor substrate. Next, silane (Si) is formed on the surface of the GaAlAs buffer layer which is the uppermost layer of this crystal laminated structure.
H 4 ) is coated by the thermal CVD method to form a silicon oxide (SiO 2 ) layer. Next, the optical glass substrate 11 is thermally bonded to this silicon oxide layer. At this time, the silicon oxide layer has a function of preventing impurities from invading the crystal laminated structure due to thermal adhesion with the optical glass substrate 11 and strengthening adhesion with the optical glass substrate 11. Next, the GaAs semiconductor substrate is removed by etching, and then the GaAlAs etching stop layer is removed to expose the GaAs single crystal layer. As a result, as shown in FIG. 2A, the surface of the optical glass substrate 11 has G
Transmission type photocathode (photocathode) consisting of aAs single crystal thin film 1
2 is formed. In FIG. 2, the left half of the center line is a side sectional view and the right half is a side view. This photocathode structure corresponds to the conventional structure shown in FIG. 7 (a) or FIG. 8 (a), and sharp projections are present at the peripheral edges of the optical glass substrate 11 and the photocathode 12.

【0016】光電面12の露出したこの受光面板13は
図5に示す近接形光電管生産用の真空装置にセットされ
る。この真空装置はトランスファー装置と称される。こ
の際、従来のように、光学ガラス基板11や光電面12
の端部を研磨することなく、また、アルミ金属を蒸着し
て接触電極を形成することなく、受光面板13はトラン
スファー装置にセットされる。また、同時に、この受光
面板13と一体になって真空気密容器を形成する側管ア
センブリ14が、受光面板13とは別の位置にセットさ
れる。この側管アセンブリ14は図2(b),(c)に
示される。電気的絶縁材料からなる側管15の一方の開
口面には、溶接によって一体に形成された、金属板から
なる陰極接触電極16a,16bが設けられている。さ
らに陰極接触電極16bに接して図示しない後述する陰
極接触電極17が設けられており、この陰極接触電極1
7は第1の陰極接触電極、上記の陰極接触電極16a,
bは第2の陰極接触電極を形成している。また、側管1
5の他方の開口面には、金属の円筒板からなる第1の陽
極接触電極18が設けられている。さらに、この第1の
陽極接触電極18に接触して金属板からなる第2の陽極
接触電極19が図2(c)に示すように設けられてお
り、この第2の陽極接触電極19に接触してファイバプ
レート20が配されている。このファイバプレート20
の表面には図示しない蛍光膜および陽極電極薄膜が形成
されており、この陽極電極薄膜が第2の陽極接触電極1
9と電気的に接触している。
The light-receiving surface plate 13 with the exposed photocathode 12 is set in the vacuum apparatus for producing a proximity type phototube shown in FIG. This vacuum device is called a transfer device. At this time, as in the conventional case, the optical glass substrate 11 and the photocathode 12 are used.
The light-receiving face plate 13 is set in the transfer device without polishing the end portion of the substrate and without forming the contact electrode by vapor-depositing aluminum metal. At the same time, the side tube assembly 14 that is integrated with the light-receiving surface plate 13 to form a vacuum-tight container is set at a position different from that of the light-receiving surface plate 13. This side tube assembly 14 is shown in FIGS. 2 (b) and 2 (c). On one opening surface of the side tube 15 made of an electrically insulating material, cathode contact electrodes 16a, 16b made of a metal plate and integrally formed by welding are provided. Further, a cathode contact electrode 17 (not shown), which will be described later, is provided in contact with the cathode contact electrode 16b.
7 is a first cathode contact electrode, the above-mentioned cathode contact electrode 16a,
b forms the second cathode contact electrode. Also, the side tube 1
A first anode contact electrode 18 made of a metal cylindrical plate is provided on the other opening surface of the electrode 5. Further, as shown in FIG. 2C, a second anode contact electrode 19 made of a metal plate is provided in contact with the first anode contact electrode 18, and contacts the second anode contact electrode 19. Then, the fiber plate 20 is arranged. This fiber plate 20
A fluorescent film and an anode electrode thin film (not shown) are formed on the surface of the anode electrode thin film.
9 is in electrical contact.

【0017】トランスファー装置にこのように受光面板
13および側管アセンブリ14がセットされた状態で、
真空ポンプによってトランスファー装置内部が真空排気
される。引き続いて光電面12に所定の表面処理が施さ
れ、光電面12が真空中に浮いた状態で清浄化される。
この清浄化工程により、光電面12の光電子に対する表
面障壁は非常に低くなり、良効率の光電面が得られる。
この後、受光面板13はマニュピュレータ31によって
トランスファー装置内を移動し、側管アセンブリ14の
上部空間で、光電面12がファイバプレート20に対向
する位置まで搬送させられる。この状態で受光面板13
の上方に位置するプレス機械32が作動し、図3(a)
に示す受光面板13は図3(b)に示す側管アセンブリ
14にプレスされ、図3(c)および図2(c)に示す
近接形光電管41が形成される。なお、図3において図
2と同一部分には同一符号を付してその説明は省略す
る。このプレス工程により、第1の陰極接触電極16
a,bは光学ガラス基板11および側管15間でシール
合体される。このシールは例えばインジウム(In)シ
ールやコールドウエルド等の手段によって行われる。こ
の結果、第1の陰極接触電極17および第2の陰極接触
電極16a,bからなる陰極接触電極は、光学ガラス基
板11および側管15の間に挟持される構造になる。
With the light-receiving face plate 13 and the side tube assembly 14 thus set in the transfer device,
The inside of the transfer device is evacuated by the vacuum pump. Subsequently, the photocathode 12 is subjected to a predetermined surface treatment, and the photocathode 12 is cleaned while floating in a vacuum.
By this cleaning step, the surface barrier of the photocathode 12 against the photoelectrons becomes extremely low, and a highly efficient photocathode can be obtained.
After that, the light-receiving surface plate 13 is moved within the transfer device by the manipulator 31, and is conveyed to a position where the photocathode 12 faces the fiber plate 20 in the upper space of the side tube assembly 14. In this state, the light-receiving face plate 13
The press machine 32 located above the
The light-receiving face plate 13 shown in FIG. 3 is pressed to the side tube assembly 14 shown in FIG. 3B to form the proximity photoelectric tube 41 shown in FIGS. 3C and 2C. In FIG. 3, the same parts as those in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted. By this pressing step, the first cathode contact electrode 16
A and b are sealed and integrated between the optical glass substrate 11 and the side tube 15. This sealing is performed by means of, for example, an indium (In) seal or cold weld. As a result, the cathode contact electrode composed of the first cathode contact electrode 17 and the second cathode contact electrodes 16a, 16b is sandwiched between the optical glass substrate 11 and the side tube 15.

【0018】また、受光面板13と陰極接触電極とは図
2(c)の断面図に示すように接触しており、より詳細
には同図のB部を拡大した図1(a)に示される。図1
(a)に示すように、光学ガラス基板11の表面に形成
された半導体光電面12に、第1の陰極接触電極17が
機械的および電気的に接している。この第1の陰極接触
電極17は図4(a)の斜視図に示される。この第1の
陰極接触電極17は円環状の金属板からなり、板バネ状
のスプリング部17aが形成されており、第2の陰極接
触電極16b上に図4(b)に示すように載置される。
なお、図4(b)において図2および図3と同一部分に
は同一符号を付してその説明は省略する。このため、第
1の陰極接触電極17はこのスプリング部17aを介
し、図1(a)に示すように第2の陰極接触電極16b
と当接している。
Further, the light-receiving face plate 13 and the cathode contact electrode are in contact with each other as shown in the sectional view of FIG. 2C, and more specifically, it is shown in FIG. Be done. Figure 1
As shown in (a), the first cathode contact electrode 17 is in mechanical and electrical contact with the semiconductor photocathode 12 formed on the surface of the optical glass substrate 11. This first cathode contact electrode 17 is shown in the perspective view of FIG. The first cathode contact electrode 17 is made of an annular metal plate and has a leaf spring-shaped spring portion 17a formed thereon, and is placed on the second cathode contact electrode 16b as shown in FIG. 4 (b). To be done.
In FIG. 4B, the same parts as those in FIGS. 2 and 3 are designated by the same reference numerals, and the description thereof will be omitted. Therefore, the first cathode contact electrode 17 is connected to the second cathode contact electrode 16b via the spring portion 17a as shown in FIG.
Is in contact with.

【0019】また、この第2の陰極接触電極16bは、
第1の陰極接触電極17に当接しつつ、光電面12の周
端部12aおよび第1の陰極接触電極17を覆ってい
る。また、この第2の陰極接触電極16bと一体になっ
た第2の陰極接触電極16aの他端部は、図2(b),
(c)に示すように、気密容器の外部に露出している。
さらに、光電面12の周端部を覆う第2の陰極接触電極
16bは、図1(b)の断面図に示すように丸みを帯び
て形成され、その端部は鏡面仕上げが施されて突起や傷
が消滅させられている。
Further, the second cathode contact electrode 16b is
While contacting the first cathode contact electrode 17, the peripheral end portion 12 a of the photocathode 12 and the first cathode contact electrode 17 are covered. Further, the other end of the second cathode contact electrode 16a integrated with the second cathode contact electrode 16b has a structure shown in FIG.
As shown in (c), it is exposed to the outside of the airtight container.
Further, the second cathode contact electrode 16b covering the peripheral end portion of the photocathode 12 is formed in a rounded shape as shown in the sectional view of FIG. 1 (b), and its end portion is mirror-finished to form a protrusion. And scratches have disappeared.

【0020】このような本実施例による近接形光電管に
おいては、鋭い突起部が存在する半導体光電面12の周
端部12aは、丸みを帯びた第2の陰極接触電極16b
によって覆われ、光電面12と、ファイバプレート20
の表面に形成された陽極電極との間に形成される電界に
集中は生じない。つまり、光電陰極と陽極との間には電
界集中を生じやすい突起部や傷といった鋭利な部分が従
来のように存在しないため、電界集中は生じない。従っ
て、光電面12とその周辺部はより高い電界に対しても
耐えられるようになり、不必要な電界放出現象は従来の
ように発生しなくなる。また、半導体光電面12の周端
部12aは丸みを帯びた第2の陰極接触電極16bによ
って覆われるため、周端部12aに存在する鋭い突起を
研磨する工程を設ける必要もない。従って、従来のよう
に、研磨工程において光電面に研磨剤が付着し、光電面
を汚染することもない。また、光学ガラス基板11の端
面の研磨は荒くてもよく、研磨に熟練技術がいらなくな
り、しかも、半導体光電面12の周端部12aの研磨が
不要になることと相俟って工数が減少する。このため、
光電管の製造コストは低減する。
In the proximity type photoelectric tube according to the present embodiment, the peripheral end portion 12a of the semiconductor photocathode 12 having the sharp protrusion portion has the rounded second cathode contact electrode 16b.
Covered by the photocathode 12 and the fiber plate 20.
Concentration does not occur in the electric field formed between the anode electrode formed on the surface of the. That is, since there is no sharp portion such as a protrusion or a scratch that easily causes electric field concentration between the photocathode and the anode, unlike the conventional case, electric field concentration does not occur. Therefore, the photocathode 12 and its peripheral portion can withstand a higher electric field, and unnecessary field emission phenomenon does not occur unlike the conventional case. Further, since the peripheral end portion 12a of the semiconductor photocathode 12 is covered with the rounded second cathode contact electrode 16b, it is not necessary to provide a step of polishing the sharp protrusion existing on the peripheral end portion 12a. Therefore, unlike the conventional case, the polishing agent does not adhere to the photocathode in the polishing step and contaminate the photocathode. Further, the polishing of the end surface of the optical glass substrate 11 may be rough, so that no skilled technique is required for polishing, and the number of steps is reduced in combination with the fact that polishing of the peripheral end portion 12a of the semiconductor photocathode 12 is unnecessary. To do. For this reason,
The manufacturing cost of the photocell is reduced.

【0021】また、気密容器の外部に露出する第2の陰
極接触電極16aの端部に陰極電圧が与えられ、この陰
極接触電極16aと一体になった陰極接触電極16bに
陰極電圧が伝えられ、さらに第1の陰極接触電極17を
介し、光電面12に陰極電圧が伝えられる。すなわち、
本実施例による光電変換管においては、気密容器外部か
ら光電面12に陰極電圧を伝える構造が、第1の陰極接
触電極17および第2の陰極接触電極16a,bによっ
て機械的に構成されている。従って、光学ガラス基板の
表面に金属材料を蒸着して接触電極を形成する従来構造
と異なり、光電面の清浄工程時に蒸着金属電極からガス
が放出したり、蒸着金属電極が合金化するといった現象
は起きなくなる。また、上述したように研磨工程が不要
となり、しかも、電極蒸着工程もいらなくなるため、こ
れら各工程時に光電面の活性面が汚染されることが回避
される。このため、光電面の光検出特性は劣化せず、良
好な光電面が得られる。
Further, a cathode voltage is applied to the end of the second cathode contact electrode 16a exposed to the outside of the airtight container, and the cathode voltage is transmitted to the cathode contact electrode 16b integrated with the cathode contact electrode 16a. Further, the cathode voltage is transmitted to the photocathode 12 via the first cathode contact electrode 17. That is,
In the photoelectric conversion tube according to the present embodiment, the structure for transmitting the cathode voltage from the outside of the airtight container to the photoelectric surface 12 is mechanically configured by the first cathode contact electrode 17 and the second cathode contact electrodes 16a and 16b. . Therefore, unlike the conventional structure in which a contact electrode is formed by depositing a metal material on the surface of an optical glass substrate, there is no phenomenon that gas is released from the deposited metal electrode during the cleaning process of the photocathode or that the deposited metal electrode is alloyed. I won't get up. Further, as described above, the polishing process is unnecessary and the electrode deposition process is not required, so that the active surface of the photocathode is prevented from being contaminated during each of these processes. Therefore, the photodetection characteristics of the photocathode are not deteriorated, and a good photocathode is obtained.

【0022】また、第1の陰極接触電極17にスプリン
グ部17aが形成されているため、光電面12と、この
光電面12に電気的・機械的に接触する第1の陰極接触
電極17との間がスプリング部17aによって緩衝され
る。このため、光電管を使用する環境に温度変化があっ
たり、また、光電管に振動が加わったりしても、光電面
12および第1の陰極接触電極17間の電気接触抵抗は
常に安定した低抵抗状態に保たれる。つまり、本実施例
のように、陰極接触電極を単一電極でなく、複数の電極
部品によって構成し、しかも、その内の1部品にスプリ
ング機能を持たせる構造を採用することにより、光電面
12との接触抵抗は長期間安定して低い状態に保たれ
る。すなわち、本実施例の電極構造においては、装置の
使用環境から電気接触部位に必要とされる種々の機械的
要件が満足されている。
Further, since the spring portion 17a is formed on the first cathode contact electrode 17, the photocathode 12 and the first cathode contact electrode 17 that makes electrical and mechanical contact with the photocathode 12 are formed. The space is buffered by the spring portion 17a. Therefore, even if there is a temperature change in the environment in which the phototube is used or vibration is applied to the phototube, the electrical contact resistance between the photocathode 12 and the first cathode contact electrode 17 is always in a stable low resistance state. Kept in. That is, as in the present embodiment, the cathode contact electrode is not composed of a single electrode but is composed of a plurality of electrode parts, and by adopting a structure in which one of the parts has a spring function, the photocathode 12 The contact resistance with is stable and kept low for a long period of time. That is, in the electrode structure of the present embodiment, various mechanical requirements required for the electrical contact portion from the environment in which the device is used are satisfied.

【0023】なお、本実施例においては第1の陰極接触
電極17にスプリング機能を持たせた場合について説明
したが、第2の陰極接触電極16b側にスプリング機能
を持たせても良く、この場合においても本実施例と同様
な効果が奏される。
Although the first cathode contact electrode 17 is provided with a spring function in this embodiment, the second cathode contact electrode 16b may be provided with a spring function. Also in the above, the same effect as this embodiment is exhibited.

【0024】また、上記本実施例における光電面はGa
As単結晶半導体光電面として説明したが、これに限定
される必要はなく、例えばInP系半導体光電面であっ
ても本実施例と同様な効果が奏される。
The photocathode in this embodiment is Ga.
Although described as an As single crystal semiconductor photocathode, the present invention is not limited to this, and the same effect as that of the present embodiment can be obtained even with an InP-based semiconductor photocathode.

【0025】また、上記本実施例では本発明を光電管に
適用した場合について説明したが、光電子増倍管に適用
してもよい。図6は本発明の第2の実施例による光電子
増倍管を示している。なお、同図において、図2および
図3と同一または相当する部分には同一符号を付し、そ
の説明は省略する。光電子増倍管は光電管に電子増倍機
能を持たせたものであり、気密容器内には光電面12か
ら放出された光電子を電子増倍する複数のマイクロチャ
ンネルプレート(MCP)51が設けられている。これ
らMCP51から2次電子放出された電子群は陽極プレ
ート52に収束される。この陽極プレート52はワイヤ
53を介してリードピン54に電気的に接続されてお
り、リードピン54は絶縁材料からなるベースプレート
55に固定されている。このリードピン54のベースプ
レート55への固定はテーパー状ハーメチックガラス5
6によって行われている。
Further, although the case where the present invention is applied to the phototube is explained in the above-mentioned embodiment, it may be applied to the photomultiplier tube. FIG. 6 shows a photomultiplier tube according to a second embodiment of the present invention. In the figure, parts that are the same as or correspond to those in FIGS. 2 and 3 are given the same reference numerals, and descriptions thereof will be omitted. The photomultiplier tube is a phototube having an electron multiplying function, and a plurality of microchannel plates (MCP) 51 for multiplying photoelectrons emitted from the photocathode 12 are provided in the hermetic container. There is. A group of electrons emitted from these MCPs 51 as secondary electrons are converged on the anode plate 52. The anode plate 52 is electrically connected to a lead pin 54 via a wire 53, and the lead pin 54 is fixed to a base plate 55 made of an insulating material. The fixing of the lead pin 54 to the base plate 55 is performed by the tapered hermetic glass 5
It is done by 6.

【0026】本実施例においても、気密容器外部から光
電面12への陰極電圧供給は、第2の陰極接触電極16
a,bおよび前述の第1の陰極接触電極17を介して行
われる。また、陽極プレート52への陽極電圧供給は、
リードピン54およびワイヤ53を介して行われる。従
って、本実施例においても、蒸着金属電極を用いること
なく機械的な接触電極によって光電面に陰極電圧が与え
られ、上記第1の実施例と同様な効果が奏される。
Also in this embodiment, the cathode voltage is supplied from the outside of the airtight container to the photocathode 12 by the second cathode contact electrode 16.
a, b and the first cathode contact electrode 17 described above. Also, the anode voltage supply to the anode plate 52 is
This is performed via the lead pin 54 and the wire 53. Therefore, also in this embodiment, the cathode voltage is applied to the photocathode by the mechanical contact electrode without using the vapor-deposited metal electrode, and the same effect as that of the first embodiment can be obtained.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、鋭
い突起部が存在する半導体光電面の周端部は丸みを帯び
た接触電極によって覆われ、光電面および陽極電極間に
形成される電界に集中は生じない。このため、従来のよ
うに電界放出現象は発生しなくなる。また、鋭い突起部
等を研磨する熟練を要する工程がいらなくなり、また、
研磨剤によって光電面が汚染することもない。このた
め、工数が減少し、光電変換管の製造コストは低減す
る。
As described above, according to the present invention, the peripheral edge portion of the semiconductor photocathode having the sharp protrusion is covered with the rounded contact electrode and formed between the photocathode and the anode electrode. There is no concentration in the electric field. Therefore, unlike the conventional case, the field emission phenomenon does not occur. In addition, there is no need for a process that requires skill to polish sharp protrusions, etc.
The photocathode is not contaminated by the abrasive. Therefore, the number of steps is reduced, and the manufacturing cost of the photoelectric conversion tube is reduced.

【0028】また、気密容器外部に露出する接触電極の
端部に陰極電圧が与えられ、光電面に機械的に接する接
触電極を介して陰極電圧が伝えられる。従って、電極蒸
着工程がいらなくなり、しかも、上記のように研磨工程
が不要となるため、これら各工程時に光電面が汚染され
ることがない。このため、光電面の光検出特性は劣化せ
ず、良好な光電面が得られる。
Further, a cathode voltage is applied to the end portion of the contact electrode exposed to the outside of the airtight container, and the cathode voltage is transmitted through the contact electrode mechanically contacting the photocathode. Therefore, the electrode vapor deposition process is not necessary and the polishing process is not required as described above, so that the photocathode is not contaminated during each of these processes. Therefore, the photodetection characteristics of the photocathode are not deteriorated, and a good photocathode is obtained.

【0029】また、第1の接触電極または第2の接触電
極にスプリング部が形成され、光電面および第1の接触
電極間が緩衝されることにより、光電面および第1の接
触電極間の電気接触抵抗は安定した低抵抗状態に保たれ
る。このため、光電管の使用環境にかかわらず、常に安
定した電気接触を得ることができる。
In addition, a spring portion is formed on the first contact electrode or the second contact electrode, and the space between the photocathode and the first contact electrode is buffered, so that the electricity between the photocathode and the first contact electrode is reduced. The contact resistance is kept in a stable low resistance state. For this reason, stable electrical contact can always be obtained regardless of the usage environment of the photoelectric tube.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による近接形光電管にお
ける光電面と陰極接触電極との接触部を一部拡大した断
面図である。
FIG. 1 is a partially enlarged sectional view of a contact portion between a photocathode and a cathode contact electrode in a proximity type photocell according to a first embodiment of the present invention.

【図2】第1の実施例による近接形光電管を構成する各
部品の側断面および側面を示す図である。
FIG. 2 is a diagram showing a side cross-section and a side surface of each component forming the proximity photocell according to the first embodiment.

【図3】第1の実施例による近接形光電管を構成する各
部品を一部破断して示した斜視図である。
FIG. 3 is a partially cutaway perspective view showing each component that constitutes the proximity type photocell according to the first embodiment.

【図4】第1の実施例による近接形光電管に用いられる
第1の陰極接触電極の構造を示す一部破断斜視図であ
る。
FIG. 4 is a partially cutaway perspective view showing the structure of a first cathode contact electrode used in the proximity photocell according to the first embodiment.

【図5】第1の実施例による近接形光電管の製造に用い
られるトランスファー装置の構成を示す図である。
FIG. 5 is a diagram showing a configuration of a transfer device used for manufacturing the proximity type photocell according to the first embodiment.

【図6】本発明の第2の実施例による光電子増倍管の一
部を破断して示した斜視図である。
FIG. 6 is a partially cutaway perspective view of a photomultiplier according to a second embodiment of the present invention.

【図7】従来の第1の光電変換管に用いられる光電面構
造を示す図である。
FIG. 7 is a diagram showing a photocathode structure used in a conventional first photoelectric conversion tube.

【図8】従来の第2の光電変換管に用いられる光電面構
造を示す図である。
FIG. 8 is a diagram showing a photocathode structure used in a second conventional photoelectric conversion tube.

【符号の説明】[Explanation of symbols]

11…光学ガラス基板、12…光電面(光電陰極)、1
5…側管、16a,b…第2の陰極接触電極、17…第
1の陰極接触電極、18…第1の陽極接触電極、19…
第2の陽極接触電極、20…ファイバプレート。
11 ... Optical glass substrate, 12 ... Photocathode (photocathode), 1
5 ... Side tube, 16a, b ... 2nd cathode contact electrode, 17 ... 1st cathode contact electrode, 18 ... 1st anode contact electrode, 19 ...
Second anode contact electrode, 20 ... Fiber plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内部が真空状態に保たれた気密容器と、
この気密容器の一部を形成する透光性の受光面板と、入
射光を光電変換して電子を放出する前記受光面板の内面
に配置された透過形の半導体光電面と、電子を捕らえる
陽極電極とを備えて構成された光電変換管において、 丸みを帯びた一端部が前記光電面に電気的に接触しつつ
前記半導体光電面の周端部を覆い、他端部が前記気密容
器の外部に露出している、前記気密容器および前記受光
面板によって挟持された接触電極を備えていることを特
徴とする光電変換管。
1. An airtight container whose inside is kept in a vacuum state,
A light-transmissive light-receiving face plate that forms a part of the airtight container, a transmissive semiconductor photocathode disposed on the inner surface of the light-receiving face plate that photoelectrically converts incident light to emit electrons, and an anode electrode that traps electrons. In a photoelectric conversion tube configured with, a rounded one end covers a peripheral end of the semiconductor photocathode while electrically contacting the photocathode, and the other end is outside the airtight container. A photoelectric conversion tube comprising: an exposed contact electrode sandwiched between the airtight container and the light-receiving surface plate.
【請求項2】 前記接触電極は、前記光電面の周端部に
電気的に接した金属板からなる第1の接触電極と、この
第1の接触電極に当接しつつ前記光電面の周端部および
前記第1の接触電極を覆い端部が前記気密容器の外部に
露出した金属板からなる丸みを帯びた第2の接触電極と
から構成され、前記第1の接触電極または前記第2の接
触電極に前記光電面および前記第1の接触電極間を緩衝
するスプリング部が形成されていることを特徴とする請
求項1記載の光電変換管。
2. The contact electrode comprises a first contact electrode made of a metal plate that is in electrical contact with a peripheral edge of the photocathode, and a peripheral edge of the photocathode while contacting the first contact electrode. And a rounded second contact electrode made of a metal plate whose end portion covers the first contact electrode and is exposed to the outside of the airtight container, the first contact electrode or the second contact electrode. The photoelectric conversion tube according to claim 1, wherein a spring portion that buffers between the photocathode and the first contact electrode is formed on the contact electrode.
JP26365993A 1993-10-21 1993-10-21 Photoelectric conversion tube Expired - Fee Related JP2796046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26365993A JP2796046B2 (en) 1993-10-21 1993-10-21 Photoelectric conversion tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26365993A JP2796046B2 (en) 1993-10-21 1993-10-21 Photoelectric conversion tube

Publications (2)

Publication Number Publication Date
JPH07122228A true JPH07122228A (en) 1995-05-12
JP2796046B2 JP2796046B2 (en) 1998-09-10

Family

ID=17392549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26365993A Expired - Fee Related JP2796046B2 (en) 1993-10-21 1993-10-21 Photoelectric conversion tube

Country Status (1)

Country Link
JP (1) JP2796046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127971A (en) * 2004-10-29 2006-05-18 Hamamatsu Photonics Kk Photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127971A (en) * 2004-10-29 2006-05-18 Hamamatsu Photonics Kk Photodetector

Also Published As

Publication number Publication date
JP2796046B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
KR100492139B1 (en) Photocathodes and electron tubes containing them
EP0554145B1 (en) Image intensifier tube, particularly of the proximity focusing type
US5912500A (en) Integrated photocathode
EP1098347A1 (en) Photocathode
US4286373A (en) Method of making negative electron affinity photocathode
EP0059640B1 (en) Photocathodes
EP1008567B1 (en) Method of bonding glass members
US4999211A (en) Apparatus and method for making a photocathode
US20050174052A1 (en) Transmission type photoelectric cathode and electron tube
EP1513185A1 (en) Semiconductor photoelectric surface and its manufacturing method, and photodetecting tube using semiconductor photoelectric surface
JP2796046B2 (en) Photoelectric conversion tube
US7208874B2 (en) Transmitting type secondary electron surface and electron tube
US6597112B1 (en) Photocathode for night vision image intensifier and method of manufacture
US5977705A (en) Photocathode and image intensifier tube having an active layer comprised substantially of amorphic diamond-like carbon, diamond, or a combination of both
EP1329930A1 (en) Photocathode and electron tube
US5789759A (en) Cathode structure for reduced emission and robust handling properties
JP3623068B2 (en) Photocathode
US20060038473A1 (en) Photocathode plate and electron tube
US4604519A (en) Intensified charge coupled image sensor having an improved CCD support
US6069445A (en) Having an electrical contact on an emission surface thereof
JP4772414B2 (en) Transmission type photocathode and photodetector
RU2734075C1 (en) Method and device for manufacturing of electrode assembly for photoelectronic device
JPH04303535A (en) Photoelectric conversion tube
JPS5986140A (en) Phototube
US4613880A (en) Light sensitive apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees