JPH07122130B2 - Densification method of thermal spray coating - Google Patents

Densification method of thermal spray coating

Info

Publication number
JPH07122130B2
JPH07122130B2 JP62285045A JP28504587A JPH07122130B2 JP H07122130 B2 JPH07122130 B2 JP H07122130B2 JP 62285045 A JP62285045 A JP 62285045A JP 28504587 A JP28504587 A JP 28504587A JP H07122130 B2 JPH07122130 B2 JP H07122130B2
Authority
JP
Japan
Prior art keywords
thermal spray
coating
spray coating
composite material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62285045A
Other languages
Japanese (ja)
Other versions
JPH01127659A (en
Inventor
保富 出谷
孝一 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62285045A priority Critical patent/JPH07122130B2/en
Publication of JPH01127659A publication Critical patent/JPH01127659A/en
Publication of JPH07122130B2 publication Critical patent/JPH07122130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶射被膜が形成された複合材料の該溶射被膜の
緻密化を図り、その品質を改善する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method of densifying a composite material having a sprayed coating and improving the quality thereof.

(従来の技術) 金属製基材の表面に溶射被膜を形成し、耐摩耗性や耐食
性等を向上させた複合材料がある。前記溶射被膜にはミ
クロポアーが多数存在しているため、溶射被膜の特性を
充分発揮させることができず、また被膜強度が低下する
欠点がある。
(Prior Art) There is a composite material in which a sprayed coating is formed on the surface of a metal base material to improve wear resistance, corrosion resistance and the like. Since many micropores are present in the thermal spray coating, there are drawbacks that the characteristics of the thermal spray coating cannot be fully exhibited and the coating strength is reduced.

かかる欠陥を除去して溶射被膜の品質を向上させる方法
として、フュージング法や熱間等方向加圧(以下、HIP
という。)法がある。フュージング法は、溶射被膜をガ
スバーナ等の加熱手段で再溶融させ、被膜中の欠陥を浮
上させたり、溶かし込んだりして欠陥を除去する方法で
ある。一方、HIP法は、複合材料を塑性変形容易な薄板
で形成されたカプセルに封入脱気した後、あるいは前記
カプセルに圧媒と共に封入した後、HIP処理を施し、被
膜中のミクロポアーを圧潰緻密化する方法である。
As a method of removing such defects and improving the quality of the sprayed coating, a fusing method or hot isostatic pressing (hereinafter, referred to as HIP
Say. There is a law. The fusing method is a method of remelting the sprayed coating with a heating means such as a gas burner to float or melt defects in the coating to remove the defects. On the other hand, in the HIP method, the composite material is encapsulated in a thin plate that is easily plastically deformed, deaerated, or encapsulated with a pressure medium in the capsule and then HIPed to crush and densify the micropores in the coating. Is the way to do it.

(発明が解決しようとする問題点) しかしながら、フュージング法は、ミクロポアーの除去
が充分行われず、作業者の熟練度によって品質が左右さ
れ易く、またガスバーナ等で再溶融するために溶射材料
として低融点の自溶性合金を用いなければならないとい
う制約がある。更に、溶射被膜が厚肉の場合、再溶融さ
れない部分が存在し、品質の向上が図れないという問題
がある。
(Problems to be solved by the invention) However, in the fusing method, the micropores are not sufficiently removed, the quality is easily influenced by the skill of the operator, and the melting point is low as a thermal spraying material because of remelting with a gas burner or the like. There is a constraint that the self-fluxing alloy of 1 must be used. Further, when the thermal spray coating is thick, there is a portion that is not remelted, and there is a problem that the quality cannot be improved.

また、HIP法では、複合材料をカプセルに封入する等の
煩雑な作業があり、生産性の低下、コスト高の要因とな
っている。
Further, in the HIP method, there are complicated operations such as encapsulating the composite material in a capsule, which causes a decrease in productivity and an increase in cost.

本発明はかかる問題点に鑑みなされたもので、複合材料
の溶射被膜中に存在するミクロポアーを簡単容易に除去
し、溶射被膜の品質の改善を図ることができる方法を提
供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a method capable of easily and easily removing micropores existing in a thermal spray coating of a composite material and improving the quality of the thermal spray coating. .

(問題点を解決するための手段) 上記目的を達成するためになされた本発明の溶射被膜の
緻密化方法は、溶射被膜が形成された複合材料を、真空
中でかつ溶射材料の液相と固相との共存温度域で保持し
て前記溶射被膜の表面のみを溶融した後、溶射材料の固
相線温度以下の温度に降温し、次いで前記複合材料をそ
のまま熱間等方向加圧することを発明の構成とするもの
である。
(Means for Solving the Problems) A method for densifying a sprayed coating of the present invention made to achieve the above object is to provide a composite material on which a sprayed coating is formed, in a vacuum and in a liquid phase of the sprayed material. After melting only the surface of the thermal spray coating by holding it in the coexistence temperature range with the solid phase, the temperature is lowered to a temperature below the solidus temperature of the thermal spray material, and then the composite material is hot isostatically pressed as it is. This is a constitution of the invention.

(作 用) 溶射被膜が形成された複合材料を、望ましくは1×10-1
torr以下の真空中でかつ溶射材料の液相と固相との共存
温度域(望ましくは液相が10%以下の温度域)で保持す
るので、溶射被膜を保形状態においたまま、すなわち被
膜の膜厚をほとんど変化させることなく該被膜中のミク
ロポアー内の酸素(空気)を排除すると共に被膜表面を
再溶融して表面の開孔を封止することができる。
(Working) The composite material with the sprayed coating is preferably 1 × 10 -1
Since it is maintained in a vacuum below torr and in the coexisting temperature range of the liquid phase and the solid phase of the sprayed material (preferably the temperature range where the liquid phase is 10% or less), the thermal spray coating remains in the shape-retaining state, that is, the coating It is possible to eliminate oxygen (air) in the micropores in the coating and to remelt the coating surface to seal the surface pores with almost no change in the coating thickness.

溶射被膜の表面のみを溶融し、表面の開孔を封止した
後、溶射材料の固相線温度以下の温度に複合材料を降温
するので、溶射被膜の内部のミクロポアーが真空(ほぼ
無酸素)状態とされかつ表面が溶射材料の被膜によって
密封された複合材料が得られる。このため、HIP処理に
際して、複合材料の封缶脱気処理が不要となる。
After melting only the surface of the thermal spray coating and sealing the openings in the surface, the composite material is cooled to a temperature below the solidus temperature of the thermal spray material, so the micropores inside the thermal spray coating are vacuum (almost oxygen free). A composite material is obtained which is conditioned and whose surface is sealed by a coating of thermal spray material. Therefore, in the HIP process, the degassing process of the can of the composite material is unnecessary.

次いで、該複合材料にそのままHIP処理を施すことによ
り、溶射被膜内部のミクロポアーが圧潰され緻密化が図
られると共に、溶射被膜が複合材料基材に強固に拡散接
合される。この際、溶射被膜内部のミクロポアーは真空
状態とされているので、前期圧潰及び緻密化が容易に行
われ、高品質の溶射被膜を容易に形成することができ
る。尚、HIP処理条件は従来と同様であり、通常、処理
温度Tは固相線温度をTsとするとTs≧T≧0.8×Ts、圧
力は700kg/cm2以上とされる。Tsを越えてHIP処理する
と、凝固時に再びミクロポアーが発生するので好ましく
ない。
Then, the composite material is subjected to the HIP treatment as it is, so that the micropores inside the sprayed coating are crushed and densified, and the sprayed coating is firmly diffusion-bonded to the composite material base material. At this time, since the micropores inside the thermal spray coating are in a vacuum state, crushing and densification in the previous period are easily performed, and a high quality thermal spray coating can be easily formed. The HIP treatment conditions are the same as in the conventional case, and normally, the treatment temperature T is Ts ≧ T ≧ 0.8 × Ts, and the pressure is 700 kg / cm 2 or more, where the solidus temperature is Ts. HIP treatment exceeding Ts is not preferable because micropores are generated again during solidification.

尚、以上の処理は、HIP炉中に複合材料を装入し、通常
のHIP処理操作のほか、温度調整するだけで簡単に行う
ことができ、作業性が極めて優れる。
In addition, the above processing can be easily performed by charging the composite material into the HIP furnace and performing a normal HIP processing operation as well as adjusting the temperature, and the workability is extremely excellent.

(実施例) 断面が方形状の金属基板(材質S35C)に下記組成のNi基
自溶性合金(固相線温度:1030℃、液相線温度:1070℃)
を粉末ガス溶射法により溶射し、膜厚3mmの溶射被膜を
形成した複合材料を製作した。
(Example) Ni-based self-fluxing alloy with the following composition (solidus temperature: 1030 ℃, liquidus temperature: 1070 ℃) on a metal substrate (material S35C) with a rectangular cross section
Was sprayed by a powder gas spraying method to produce a composite material having a sprayed coating with a thickness of 3 mm.

・Ni基自溶性合金組成(重量%) C:0.6%、Si:4.0%、Fe:3.5%、 Cr:16%、B:3.0%、Co:実質的残部 前記複合材料をHIP炉に装入して、1×10-1torr、1045
℃にて30分間保持した後、850℃に降温した。
・ Ni-based self-fluxing alloy composition (% by weight) C: 0.6%, Si: 4.0%, Fe: 3.5%, Cr: 16%, B: 3.0%, Co: Substantially the rest Charge the composite material into a HIP furnace Then, 1 × 10 -1 torr, 1045
After holding at 30 ° C for 30 minutes, the temperature was lowered to 850 ° C.

次いで、975℃にて、Arガスを圧媒として1000kg/cm2
で加圧し、2時間保持した後、炉冷した。
Then, the pressure was increased to 1000 kg / cm 2 using Ar gas as a pressure medium at 975 ° C., the temperature was maintained for 2 hours, and then the furnace was cooled.

以上の処理を施した実施例試料から、2mm厚×4mm幅×30
mm長さの溶射被膜1をワイヤーカット放電加工によって
切り出し、第1図の要領で4点曲げ試験を行った。ま
た、第2図に示す様に、基板3に溶射被膜の一部2を残
し、他は基板表面(接合面)から除去して接合面におい
てせん断試験を行った。第1図および第2図中の寸法単
位はmmである。上記結果を下記第1表および第2表に示
す。尚、同表には、同複合材料の溶射被膜にフュージン
グを施した従来例試料の試験結果を併せて示す。
From the example sample that has been subjected to the above processing, 2 mm thickness × 4 mm width × 30
The thermal spray coating 1 having a length of mm was cut out by wire-cut electric discharge machining, and a 4-point bending test was conducted as in the procedure of FIG. Further, as shown in FIG. 2, a part of the sprayed coating 2 was left on the substrate 3 and the others were removed from the substrate surface (bonding surface), and a shear test was performed on the bonding surface. The dimensional unit in FIGS. 1 and 2 is mm. The above results are shown in Tables 1 and 2 below. The table also shows the test results of a conventional sample in which the thermal spray coating of the composite material was fused.

第1表および第2表より、本発明実施例は従来例に対し
て、抗折強度が30%程度、せん断強度が40%程度向上
し、またデータのばらつきも極めて少ないことが知られ
る。
It is known from Tables 1 and 2 that the working examples of the present invention are improved in bending strength by about 30% and shear strength by about 40% as compared with the conventional example, and the variation in data is extremely small.

(発明の効果) 以上説明した通り、本発明の溶射被膜の緻密化方法によ
れば、複合材料に形成された溶射被膜は、真空中でかつ
溶射材料の液相と固相との共存温度域で保持されて前記
溶射被膜の表面のみが溶融され、固化されるので、溶射
被膜が保持状態におかれたまま、すなわち被膜の膜厚が
ほとんど変化することなく、溶射被膜内のミクロポアー
が真空状態とされて、溶射被膜表面の開孔が封止され、
これをそのままHIP処理することが可能となる。従っ
て、従来のように、HIP処理するに際し、複合材料の封
入脱気処理等の煩雑な作業が不要となり、作業の簡単容
易化が図られる。
(Effects of the Invention) As described above, according to the method for densifying a sprayed coating of the present invention, the sprayed coating formed on the composite material has a coexisting temperature range of the liquid phase and the solid phase of the sprayed material in vacuum. Since only the surface of the thermal spray coating is melted and solidified by being held by, the micropores in the thermal spray coating remain in a vacuum state while the thermal spray coating remains in the retained state, that is, the thickness of the coating hardly changes. And the openings on the surface of the sprayed coating are sealed,
This can be HIP processed as it is. Therefore, unlike the conventional case, the HIP process does not require complicated work such as encapsulation and deaeration process of the composite material, and the work can be simplified.

そして、HIP処理により、溶射被膜中の真空状態とされ
たミクロポアーは容易に圧潰され、溶射被膜の緻密化、
品質の向上を図ることができる。
Then, by the HIP treatment, the micropores in a vacuum state in the thermal spray coating are easily crushed and the thermal spray coating is densified,
The quality can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は4点曲げ試験要領説明図、第2図は接合面にお
けるせん断試験要領説明図である。
FIG. 1 is a diagram for explaining a 4-point bending test procedure, and FIG. 2 is a diagram for explaining a shear test procedure on a joint surface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶射被膜が形成された複合材料を、真空中
でかつ溶射材料の液相と固相との共存温度域で保持して
前記溶射被膜の表面のみを溶融した後、溶射材料の固相
線温度以下の温度に降温し、次いで前記複合材料をその
まま熱間等方向加圧することを特徴とする溶射被膜の緻
密化方法。
1. A composite material on which a thermal spray coating is formed is held in a vacuum and in a coexistence temperature range of a liquid phase and a solid phase of the thermal spray material to melt only the surface of the thermal spray coating, and then A method for densifying a sprayed coating, comprising lowering the temperature to a temperature below the solidus temperature, and then hot isostatically pressing the composite material as it is.
JP62285045A 1987-11-10 1987-11-10 Densification method of thermal spray coating Expired - Lifetime JPH07122130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285045A JPH07122130B2 (en) 1987-11-10 1987-11-10 Densification method of thermal spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285045A JPH07122130B2 (en) 1987-11-10 1987-11-10 Densification method of thermal spray coating

Publications (2)

Publication Number Publication Date
JPH01127659A JPH01127659A (en) 1989-05-19
JPH07122130B2 true JPH07122130B2 (en) 1995-12-25

Family

ID=17686452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285045A Expired - Lifetime JPH07122130B2 (en) 1987-11-10 1987-11-10 Densification method of thermal spray coating

Country Status (1)

Country Link
JP (1) JPH07122130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113796945B (en) * 2021-10-29 2023-08-18 苏州海宇新辰医疗科技有限公司 Cryoablation tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110862A (en) * 1983-11-22 1985-06-17 Mitsubishi Heavy Ind Ltd Manufacture of thruster
JPS61159566A (en) * 1985-01-08 1986-07-19 Daido Steel Co Ltd Coating method of metallic or ceramic base material

Also Published As

Publication number Publication date
JPH01127659A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
US4485961A (en) Welding by hot isostatic pressing (HIP)
EP0550439B1 (en) Powder metallurgy repair technique
US4568516A (en) Method of manufacturing an object of a powdered material by isostatic pressing
EP0833710B1 (en) Coating methods, coating products and coated articles
US4836978A (en) Method for making vacuum circuit breaker electrodes
GB2107628A (en) Improvements in or relating to filling fissures in metal articles
AU4067185A (en) Liquid phase bonded amorphous materials and process for preparation thereof
EP1043098A3 (en) Method for forming dendritic metal particles
CN110666175A (en) Hot isostatic pressing forming method of nickel-based high-temperature alloy powder
WO2019118991A1 (en) A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
CN114055012A (en) Multi-element copper-based alloy brazing filler metal containing rare earth elements, preparation method and brazing method thereof
JP2757287B2 (en) Manufacturing method of tungsten target
JPH04293743A (en) Ternary brazing alloy for carbon or graphite
CN109465567A (en) A kind of diamond abrasive tool soldering active solder
JPS6053099B2 (en) Method of manufacturing hot-processed titanium products
CN111593224B (en) Preparation method of consumable electrode bar for copper-chromium arc melting
CN111872594A (en) Titanium-based brazing filler metal and preparation method and application thereof
JPH07122130B2 (en) Densification method of thermal spray coating
CN109735757A (en) A kind of sintered hard alloy boat contact material
JPS60211717A (en) Method of producing electrode for vacuum breaker
JPH05148631A (en) Target for sputtering
JPH0342176A (en) Binding method by diffusion of metal alloy powder
WO1989002482A1 (en) BRITTLE, HOMOGENEOUS, METASTABLE BAg-GROUP BRAZING ALLOYS
US4928872A (en) Method of brazing employing bag-group homogeneous microcrystalline brazing powders
JP2919896B2 (en) Manufacturing method of brazing filler metal