JPH07122126B2 - Ceramic heat insulating material - Google Patents

Ceramic heat insulating material

Info

Publication number
JPH07122126B2
JPH07122126B2 JP63007999A JP799988A JPH07122126B2 JP H07122126 B2 JPH07122126 B2 JP H07122126B2 JP 63007999 A JP63007999 A JP 63007999A JP 799988 A JP799988 A JP 799988A JP H07122126 B2 JPH07122126 B2 JP H07122126B2
Authority
JP
Japan
Prior art keywords
ceramic
layer
zro
alloy
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63007999A
Other languages
Japanese (ja)
Other versions
JPH01184261A (en
Inventor
典孝 宮本
隆司 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63007999A priority Critical patent/JPH07122126B2/en
Publication of JPH01184261A publication Critical patent/JPH01184261A/en
Publication of JPH07122126B2 publication Critical patent/JPH07122126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車エンジンのピストンの如く高温加熱さ
れる部位に使用される部材に関し、特にアルミニウム合
金を母材としかつ断熱のためのセラミック層を表面に形
成したセラミック断熱部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member used at a high temperature heated portion such as a piston of an automobile engine, and particularly to a member made of an aluminum alloy as a base material and a ceramic layer for heat insulation on the surface thereof. The present invention relates to the formed ceramic heat insulating member.

従来の技術 従来から、自動車エンジン用のピストンあるいはシリン
ダボア部などの如く、高温加熱される部位を有する部
材、特にアルミニウム合金を母材とする部位において
は、母材表面に熱伝導率が低くかつ耐熱性の優れたセラ
ミックを溶射して、断熱性、耐熱性に優れた溶射皮膜を
形成することが行なわれている。
2. Description of the Related Art Conventionally, a member having a portion that is heated to a high temperature such as a piston or a cylinder bore portion for an automobile engine, particularly a portion having an aluminum alloy as a base material, has a low thermal conductivity and heat resistance on the surface of the base material. BACKGROUND ART Ceramics having excellent properties are sprayed to form a sprayed coating having excellent heat insulation and heat resistance.

このような従来のセラミック溶射による断熱部材につい
て、ディーゼルエンジン用のピストンを例にとって以下
にさらに詳細に説明する。
Such a conventional ceramic thermal spraying heat insulating member will be described in more detail below by taking a piston for a diesel engine as an example.

近年、ディーゼルエンジンに使用されるピストンとして
は、エンジンにおける往復運動部の慣性力を低減させる
ための軽量化を主目的として、アルミニウム合金により
鋳造成形されたピストンを使用することが多くなってい
る。一方、最近のディーゼルエンジンでは、高過給、高
出力化の傾向が強く、そのためピストンに加わる熱負荷
も大きくなっている。しかるにアルミニウム合金は熱伝
導率が高い材料であるところから、アルミニウム合金性
のピストンでは、ピストン頂面の熱がピストンリング溝
部まで伝達されて、ピストンリング溝部が高温となり易
い。ところがピストンリング溝部が高温となり過ぎれ
ば、オイルの燃焼が生じ、ピスンリングの焼き付きなど
の不都合が生じる。そこでピストン頂面の熱がピストン
リング溝部まで伝達されないように、ピストン頂面に熱
伝導率の低いセラミック材料を溶射して遮熱性を改善す
る試みが適用されている。そしてこの場合、セラミック
溶射皮膜とアルミニウム合金母材との密着性を良好にす
るため、予めNi−Al合金やNi−Cr−Al合金、Ni−Cr−Al
−Y合金あるいはNi−Co−Cr−Al−Y合金などの下地溶
射皮膜を溶射形成しておき、その上にセラミック溶射を
施すことが試みられている(例えば「Cumins/TACOM Adv
anded Adiabatic Engin」R.Kamo et al.;SAE Paper No.
840428号)。
2. Description of the Related Art In recent years, as a piston used in a diesel engine, a piston molded by an aluminum alloy has been often used mainly for the purpose of weight reduction for reducing the inertial force of the reciprocating part of the engine. On the other hand, in recent diesel engines, there is a strong tendency toward high supercharging and high output, and therefore the heat load applied to the piston is also large. However, since the aluminum alloy is a material having a high thermal conductivity, the heat of the piston top surface is transferred to the piston ring groove portion in the aluminum alloy piston, and the piston ring groove portion is likely to have a high temperature. However, if the temperature of the piston ring groove becomes too high, oil combustion will occur, causing problems such as seizure of the piston ring. Therefore, in order to prevent the heat of the piston top surface from being transferred to the piston ring groove, an attempt has been made to improve the heat shielding property by spraying a ceramic material having a low thermal conductivity on the piston top surface. In this case, in order to improve the adhesion between the ceramic sprayed coating and the aluminum alloy base material, Ni-Al alloy, Ni-Cr-Al alloy, Ni-Cr-Al are prepared in advance.
-Y alloys or Ni-Co-Cr-Al-Y alloys have been spray-formed on a base spray coating, and then ceramic spraying has been attempted (for example, "Cumins / TACOM Adv.
anded Adiabatic Engin '' R. Kamo et al .; SAE Paper No.
No. 840428).

しかしながらこのようにアルミニウム合金を母材として
下地溶射後セラミック溶射を施したピストンにおいて
は、母材であるアルミニウム合金とセラミック溶射皮膜
との熱膨張係数の差に起因して、エンジンの作動に伴な
う加熱−冷却を繰返している間にセラミック溶射皮膜と
下地溶射皮膜との界面近傍に亀裂が生じ、遂にはセラミ
ック溶射皮膜の剥離・脱落に至ってしまうことがある。
However, in a piston that has been subjected to ceramic spraying after base metal spraying using an aluminum alloy as a base material in this manner, due to the difference in the coefficient of thermal expansion between the aluminum alloy base material and the ceramic sprayed coating, During repeated heating-cooling, cracks may occur in the vicinity of the interface between the ceramic sprayed coating and the base sprayed coating, and eventually the ceramic sprayed coating may come off or fall off.

このような問題を解決するための一つの方法としては、
特開昭60−197861号に示されているように、Ni−Cr−Al
合金からなる下地溶射皮膜(アンダーコート層)上に形
成されるセラミック溶射皮膜の気孔率を厚さ方向に制御
する方法も提案されており、このような方法でもある程
度は剥離を防止することができるが、未だ充分とは言い
えなのが実情である。
One way to solve this problem is
As shown in JP-A-60-197861, Ni-Cr-Al
A method of controlling the porosity of the ceramic sprayed coating formed on the undercoating spray coating (undercoat layer) made of an alloy in the thickness direction has also been proposed, and such method can also prevent peeling to some extent. However, the reality is that it is not enough.

発明が解決すべき問題点 前述のようにアルミニウム合金からなるピストン母材1
に溶射による下地皮膜2を形成し、さらにその下地皮膜
2上に溶射によりセラミック皮膜3を形成したピストン
を実機エンジンに使用し場合の使用中の温度分布につい
て本発明者等が調べた結果を第3図に、またその温度分
布に基いて各皮膜層内の伸び(=熱膨張率×温度)を調
べた結果を第4図に示す。ここで、下地溶射皮膜2とし
てはNi−Cr−Al合金を用い、またセラミツ溶射皮膜3と
しては熱膨張率が金属に近いZrO2・8Y2O3を用いた。
Problems to be Solved by the Invention As described above, the piston base material 1 made of an aluminum alloy
The results of the present inventors' investigation of the temperature distribution during use when the piston having the undercoat film 2 formed by thermal spraying and the ceramic film 3 formed by thermal spraying on the undercoat film 2 is used in an actual engine FIG. 3 shows the results of examining the elongation (= coefficient of thermal expansion × temperature) in each coating layer based on the temperature distribution, and FIG. Here, a Ni—Cr—Al alloy was used as the base thermal spray coating 2, and ZrO 2 · 8Y 2 O 3 having a thermal expansion coefficient close to that of a metal was used as the ceramic spray coating 3.

第3図に示すように、ピストン頂面すなわち燃焼室に面
した触火部に相当するセラミック皮膜3の表面付近の温
度(Tco)は700〜800℃と著しく高く、またセラミック
皮膜3自体は断熱性が高いため、セラミック皮膜3内で
の厚さ方向の温度勾配は著しく大きくなっている。その
結果、第4図に示すようにセラミック皮膜3の伸びは、
表面付近の伸び(lco)と下地皮膜2に接する部分の伸
び(lc1)との間で大きな差が生じている。またセラミ
ック材料と下地溶射材料、母材Al合金との熱膨張率の差
により、セラミック皮膜3における下地皮膜2に接する
部分の伸び(lco)と下地皮膜2の伸び(lbo、lb1)や
母材1の表面での伸び(lmo)にも大きな差が生じてい
る。
As shown in FIG. 3, the temperature (T co ) in the vicinity of the surface of the ceramic coating 3 corresponding to the piston top surface, that is, the ignition portion facing the combustion chamber is extremely high at 700 to 800 ° C., and the ceramic coating 3 itself is Due to the high heat insulating property, the temperature gradient in the thickness direction in the ceramic film 3 is remarkably large. As a result, the elongation of the ceramic film 3 as shown in FIG.
There is a large difference between the elongation near the surface (l co ) and the elongation in contact with the undercoat 2 (l c1 ). Also, due to the difference in the coefficient of thermal expansion between the ceramic material, the thermal sprayed base material, and the base material Al alloy, the elongation of the portion of the ceramic coating 3 in contact with the primary coating 2 (l co ) and the elongation of the primary coating 2 (l bo , l b1 ) Also, there is a large difference in the elongation (l mo ) on the surface of the base material 1.

セラミック皮膜が剥離、脱落する原因としては、上述の
ようなセラミック皮膜層内部での伸びの厚み方向の差に
よる熱応力と、セラミック皮膜と下地皮膜、母材との伸
びの差が挙げられ、したがってセラミック皮膜の剥離、
脱落を防止するためには、第4図中のlcoとlc1を、lbo
〜lmoに近付ければ良いことが判る。
The reasons why the ceramic film peels off or falls include the thermal stress due to the difference in the elongation in the thickness direction of the ceramic film layer as described above, and the difference in the elongation between the ceramic film, the base film, and the base material. Peeling of the ceramic film,
In order to prevent the falling off, lco and lc1 in Fig. 4 are changed to lbo
~ It turns out that it's better to get closer to l mo .

ここで、lc1の値を大きくしてlbo〜lmoに近付けるため
の方法としては、従来から種々の手段が考えられてい
る。例えばセラミック皮膜と下地皮膜との間に中間層と
してセラミックとNiやCo等の金属との混合層、すなわち
サーメット層を設けたり、あるいはセラミック皮膜自体
をセラミックと金属との混合層とし、しかもセラミック
金属との割合が漸変的に変化して下地皮膜と接する部分
(下地皮膜を設けない場合は母材と接する部分)で金属
が100%となるようにグレーテッド溶射する方法などが
考えられている。しかしながらこのようにlc1の値を大
きくする手法だけでは、充分に剥離を防止することは困
難であり、セラミックと金属との混合層の内部で破壊が
生じ、剥離してしまうことが多かった。
Here, as a method for increasing the value of l c1 to approach l bo to l mo , various means have been conventionally considered. For example, a mixed layer of ceramic and a metal such as Ni or Co, that is, a cermet layer may be provided as an intermediate layer between the ceramic film and the base film, or the ceramic film itself may be a mixed layer of the ceramic and the metal. It is considered to be a method of graded thermal spraying so that the metal content becomes 100% at the part that contacts the underlying film (the part that contacts the base metal when the underlying film is not provided) by gradually changing the ratio of . However, it is difficult to sufficiently prevent peeling only by the method of increasing the value of l c1 as described above, and in many cases, fracture occurs inside the mixed layer of ceramic and metal and peels off.

この発明は以上の事情を背景としてなされたもので、高
温に加熱された際に生じるセラミック皮膜内部での熱応
力を従来よりも格段に小さくし、これによってセラミッ
ク皮膜の耐熱衝撃性を高めて、セラミック皮膜の剥離、
脱落を確実に防止し得るようにして、熱サイクルが加わ
る使用条件下での耐久性を従来よりも格段に高めたセラ
ミック断熱部材を提供するものである。
This invention has been made against the background of the above circumstances, the thermal stress inside the ceramic coating generated when heated to a high temperature is significantly smaller than before, thereby increasing the thermal shock resistance of the ceramic coating, Peeling of the ceramic film,
It is intended to provide a ceramic heat insulating member which can be surely prevented from falling off and whose durability under a use condition to which a heat cycle is applied is remarkably improved as compared with the conventional case.

問題点を解決するための手段 この発明のセラミック断熱部材は、Al合金からなる母材
の表面にNi−Cr−Al系合金からなる下地層が形成され、
この下地層上には、Ni−Cr−Al系合金とZrO2・8Y2O3
が混合されかつ外側へ向ってNi−Cr−Al合金の混合割合
が減少する第1遷移層が下地層と連続一体に形成され、
その第1遷移層上には、実質的にZrO2・8Y2O3のみから
なる中間層が第1遷移層と連続一体に形成され、さらに
その中間層上には、熱膨張率が9×10-6/℃以下の低熱
膨張率セラミックとZrO2・8Y2O3とが混合されかつ外側
へ向ってZrO2・8Y2O3の混合割合が減少する第2遷移層
が中間層と連続一体に形成されていることを特徴とする
ものである。
Means for Solving Problems The ceramic heat insulating member of the present invention has a base layer made of a Ni—Cr—Al alloy formed on the surface of a base material made of an Al alloy,
On this underlayer, a first transition layer in which the Ni-Cr-Al-based alloy and ZrO 2 · 8Y 2 O 3 are mixed and the mixing ratio of the Ni-Cr-Al alloy decreases toward the outside is the underlayer. Is formed integrally with
An intermediate layer consisting essentially of ZrO 2 · 8Y 2 O 3 is continuously and integrally formed on the first transition layer, and a thermal expansion coefficient of 9 × is formed on the intermediate layer. 10 -6 / ° C. or lower thermal expansion ceramic and a ZrO 2 · 8Y 2 O 3 are mixed and continuously second transition layer the mixing ratio of ZrO 2 · 8Y 2 O 3 decreases toward the outside as an intermediate layer It is characterized by being integrally formed.

作用 第1図にこの発明のセラミック断熱部材の断面構造を模
式的に示し、第2図にその各層における構成材料の一例
を模式的に示す。
Action FIG. 1 schematically shows the cross-sectional structure of the ceramic heat insulating member of the present invention, and FIG. 2 schematically shows an example of the constituent material of each layer.

この発明のセラミック断熱部材においては、断熱等のた
めの主たるセラミック構成材料としては、高融点で耐食
生も良好でありしかも低熱伝導率でかつ高強度、高破壊
靭性を有する、部分安定化ジルコニアの1種であるZrO2
・8Y2O3を使用しており、主としてこのZrO2・8Y2O3によ
り、断熱、遮熱の機能や必要な強度の確保を図ってい
る。そしてこの発明の断熱部材で最も重要な点は、上述
のZrO2・8Y2O3がそのまま単独で部材表面(すなわち最
も高温に曝される部分)に露呈しているのではなく、最
外表面層が、上述のZrO2・8Y2O3と熱膨張率が9×10-6/
℃以下の低熱膨張率セラミックとの混合物からなりしか
も外側へ向ってZrO2・8Y2O3の混合割合が減少する遷移
層(第2遷移層)14によって構成されている点である。
In the ceramic heat insulating member of the present invention, as a main ceramic constituent material for heat insulation and the like, a partially stabilized zirconia having a high melting point, good corrosion resistance, low thermal conductivity, high strength, and high fracture toughness is used. One type of ZrO 2
· 8Y and using 2 O 3, mainly by the ZrO 2 · 8Y 2 O 3, thereby achieving thermal insulation, the securing features and required strength of the thermal barrier. And the most important point of the heat insulating member of the present invention is that the above ZrO 2 · 8Y 2 O 3 is not exposed as it is on the member surface (that is, the part exposed to the highest temperature), but the outermost surface. The layer has a coefficient of thermal expansion of 9 × 10 −6 / ZrO 2 · 8Y 2 O 3 described above.
The point is that the transition layer (second transition layer) 14 is made of a mixture with a ceramic having a low coefficient of thermal expansion of ℃ or less and the mixing ratio of ZrO 2 .8Y 2 O 3 decreases toward the outside.

ZrO2・8Y2O3は熱膨張率(0〜1000℃での平均熱膨張
率、以下同じ)が11×10-6/℃と比較的大きく、そのた
め下地層の金属や母材金属との熱膨張差を小さくするに
は有効である。しかしながら熱伝導率が低くて断熱性が
高いがために、ピストンの如く表面が700〜800℃もの高
温に曝される場合は、既に第3図、第4図において示し
たように表面までZrO2・8Y2O3単独の皮膜では皮膜内の
厚み方向での温度勾配が著しく急激になり、皮膜内部で
の伸びの厚み方向の差が極めて大きくなって、皮膜内部
での熱応力が大きくなる。
ZrO 2 · 8Y 2 O 3 has a relatively large coefficient of thermal expansion (average coefficient of thermal expansion at 0 to 1000 ° C, the same applies below) of 11 × 10 -6 / ° C. It is effective in reducing the difference in thermal expansion. However, for there is a high thermal insulation has low thermal conductivity, when the surface as the piston is exposed to a high temperature 700 to 800 ° C. stuff, ZrO already to Figure 3, the surface as shown in Figure 4 2・ In the case of 8Y 2 O 3 film alone, the temperature gradient in the film thickness direction becomes extremely sharp, the difference in elongation in the film thickness direction becomes extremely large, and the thermal stress inside the film increases.

しかるにこの発明の断熱部材では、最外表面層を熱膨張
率が11×10-6/℃のZrO2・8Y2O3と熱膨張率が9×10-6/
℃以下の低熱膨張率セラミックとの混合物からなりかつ
表面へ向ってZrO2・8Y2O3の割合が減少する遷移層(第
2遷移層)14としているため、その第2遷移層14内では
厚み方向に表面に向って熱膨張率が次第に小さくなって
いるから、最も高温となる表面での熱膨張による伸びは
ZrO2・8Y2O3単独の場合よりも小さくなり、そして表面
から厚み方向に内側へ向うほど温度は低くなるが熱膨張
率は大きくなるから、熱膨張による伸びの厚み方向の変
化が少なくなる。したがって第2遷移層14内での厚み方
向の伸びの差は小さく、内部で生じる熱応力も小さくな
る。また第2遷移層14からZrO2・8Y2O3単独の中間層13
に移行する部分は、ZrO2・8Y2O3の割合が100%未満から
100%に変化するだけであって、特に明確な境界が形成
されず、したがってその部分でも特に大きな熱応力が生
じない。
However, in the heat insulating member of the present invention, the outermost surface layer has a coefficient of thermal expansion of 11 × 10 −6 / ° C. and ZrO 2 · 8Y 2 O 3 and a coefficient of thermal expansion of 9 × 10 −6 /
Since the transition layer (second transition layer) 14 is made of a mixture with a low thermal expansion coefficient ceramic of ℃ or less and the ratio of ZrO 2 · 8Y 2 O 3 decreases toward the surface, the inside of the second transition layer 14 is Since the coefficient of thermal expansion gradually decreases toward the surface in the thickness direction, the expansion due to thermal expansion on the surface with the highest temperature
ZrO 2・ 8Y 2 O 3 is smaller than the case of using it alone, and the temperature decreases as it goes inward from the surface in the thickness direction, but the coefficient of thermal expansion increases, so there is less change in elongation in the thickness direction due to thermal expansion. . Therefore, the difference in the elongation in the thickness direction in the second transition layer 14 is small, and the thermal stress generated inside is also small. Also, from the second transition layer 14 to the intermediate layer 13 of ZrO 2 · 8Y 2 O 3 alone.
The ratio of ZrO 2 · 8Y 2 O 3 is less than 100%
Only the change to 100% does not result in the formation of a particularly clear boundary, so that no particularly large thermal stress occurs in that part.

さらにこの発明の断熱部材は、ZrO2・8Y2O3からなる中
間層13とNi−Cr−Al系合金からなる下地層11との間に、
中間層13を構成するZrO2・8Y2O3と下地層11を構成するN
i−Cr−Al系合金との混合物からなりしかも外側へ向っ
て(すなわち中間層へ向って)Ni−Cr−Al系合金の混合
割合が減少する遷移層(第1遷移層)12が形成されてい
る。この第1遷移層12は従来のグレーテッド溶射による
サーメット層に相当するものであって、この第1遷移層
12内においては中間層13から下地層11へ向って熱膨張率
がZrO2・8Y2O3の熱膨張率からNi−Cr−Al系合金の熱膨
張率へ漸変的に変化する。したがって中間層13ら下地層
11に至る部分においても熱膨張による伸びが急激に変化
することなく、そのため大きな熱応力は生じない。
Further, the heat insulating member of the present invention, between the intermediate layer 13 made of ZrO 2 · 8Y 2 O 3 and the base layer 11 made of Ni-Cr-Al alloy,
ZrO 2 , 8Y 2 O 3 forming the intermediate layer 13 and N forming the underlayer 11
A transition layer (first transition layer) 12 is formed which is composed of a mixture with the i-Cr-Al-based alloy and which is reduced outward (that is, toward the intermediate layer) in which the mixing ratio of the Ni-Cr-Al-based alloy is reduced. ing. This first transition layer 12 is equivalent to a conventional cermet layer formed by graded spraying, and the first transition layer 12
Within 12, the thermal expansion coefficient gradually changes from the intermediate layer 13 to the underlayer 11 from the thermal expansion coefficient of ZrO 2 · 8Y 2 O 3 to the thermal expansion coefficient of the Ni—Cr—Al alloy. Therefore, the intermediate layer 13 to the underlying layer
Even in the area up to 11, the expansion due to thermal expansion does not change rapidly, so that large thermal stress does not occur.

以上を総合すれば、最外表面(第2遷移層14の表面)が
700〜800℃の高温に曝された場合でも、最外表面から下
地層に至るまでの全厚みの問題で熱膨張による伸びの著
しい変化、差が生じることがなく、そのため全体的に熱
応力が小さくなって、母材10からの剥離、脱落を防止す
ることができる。
Summarizing the above, the outermost surface (the surface of the second transition layer 14) is
Even when exposed to a high temperature of 700 to 800 ° C, there is no significant change or difference in elongation due to thermal expansion due to the problem of the total thickness from the outermost surface to the underlying layer, so that the thermal stress as a whole is It becomes smaller and can be prevented from peeling off from the base material 10.

発明の実施のための具体的な説明 この発明の断熱部材において、第2遷移層に用いる熱膨
張率が9×10-6/℃以下の低熱膨張セラミックとして
は、例えば熱膨張率が8×10-6/℃のAl2O3、4.5×10-6/
℃のZrO2・SiO2、2.5×10-6/℃の2MgO・2Al2O3、・5SiO
2などを使用できるが、これらに限定されないことは勿
論である。
Specific Description for Carrying Out the Invention In the heat insulating member of the present invention, as the low thermal expansion ceramic having a thermal expansion coefficient of 9 × 10 −6 / ° C. or less used for the second transition layer, for example, a thermal expansion coefficient of 8 × 10 6 is used. -6 / ℃ Al 2 O 3 , 4.5 × 10 -6 /
℃ ZrO 2 · SiO 2 , 2.5 × 10 -6 / ℃ 2MgO · 2Al 2 O 3 , · 5SiO
2 and the like can be used, but the present invention is not limited to these.

また下地層に用いられるNi−Cr−Al系合金は、従来から
セラミック溶射の下地に用いられているものであれば良
く、その成分組成は特に限定しないが、通常はCr10〜30
wt%程度、Al5〜10wt%程度を含有し、残部が実質的にN
iなる成分組成のもの、あるいはさらにそのほか必要に
応じてYを0.3〜1.0wt%程度、Coを20〜60wt%程度添加
したものであっても良い。
The Ni-Cr-Al-based alloy used in the underlayer may be one that has been conventionally used for the undercoat of ceramic spraying, and its component composition is not particularly limited, but usually Cr10-30
wt%, Al 5-10 wt%, with the balance being substantially N
It may have a component composition of i, or may further contain Y of about 0.3 to 1.0 wt% and Co of about 20 to 60 wt% as required.

さらに、下地層、第1遷移層、中間層、第2遷移層はい
ずれも溶射によって形成することができるが、この場合
第1遷移層、第2遷移層はいずれも所謂グレーテッド溶
射を行なうことは勿論である。このように溶射を行なう
場合の溶射粉末粒子は、下地層のNi−Cr−Al系合金とし
ては粒径30〜105μm程度が望ましく、またZrO2・8Y2O3
や低熱膨張率セラミックとしては粒径10〜74μm程度が
好ましい。
Further, the underlayer, the first transition layer, the intermediate layer, and the second transition layer can all be formed by thermal spraying, but in this case, the first transition layer and the second transition layer are so-called graded thermal spraying. Of course. When the thermal spraying is performed as described above, the particle size of the Ni-Cr-Al-based alloy of the underlayer is preferably about 30 to 105 μm, and ZrO 2 · 8Y 2 O 3 is desirable.
As the low thermal expansion coefficient ceramic, a particle size of about 10 to 74 μm is preferable.

また第1遷移層は下地層の側から中間層へ向ってNi−Cr
−Al系合金の混合割合が連続的に減少することが最も好
ましいが、場合によっては段階的に減少するようにして
も良い。第2遷移層についても、中間層から最外表面へ
向ってZrO2・8Y2O3の混合割合が連続的に減少すること
が最も好ましいが、場合によっては段階的に減少しても
良い。
The first transition layer is Ni-Cr from the underlayer side to the intermediate layer.
It is most preferable that the mixing ratio of the -Al alloy is continuously reduced, but it may be gradually reduced in some cases. Also in the second transition layer, it is most preferable that the mixing ratio of ZrO 2 .8Y 2 O 3 continuously decreases from the intermediate layer toward the outermost surface, but it may decrease stepwise in some cases.

実 施 例 以下にこの発明の断熱部材の実施例および従来の断熱部
材からなる比較例について示すとともに、実施例、比較
例の各部材について耐熱サイクル試験およびピストンと
しての実機耐久試験を行なった結果を示す。
Examples Examples of heat insulating members of the present invention and comparative examples consisting of conventional heat insulating members are shown below, and the results of the heat cycle test and the actual machine durability test as pistons for each member of Examples and Comparative Examples are shown. Show.

[実施例1] JIS AC8A合金からなる直径50mm×厚さ10mmの円盤状を
なす母材の表面にショットブラスト処理を施した後、下
地層材料としてのNi−Cr−Al合金、具体的には94wt%
(Ni−20wt%Cr)−6wt%Al合金と、中間層材料として
のZrO2・8Y2O3とのグレーテッド溶射を厚み0.3mmで行な
った。このとき、母材側ではNi−Cr−Al系合金が100%
となるように、また最上部ではZrO2・8Y2O3が100%とな
るように溶射して、下地層、第1遷移層、中間層を連続
的に形成した。さらにその上にZrO2・8Y2O3と低熱膨張
率セラミックとしてのAl2O3とのグレーテッド溶射を厚
み0.2mmで行なって、第2遷移層を形成し、この発明の
セラミック断熱部材を得た。このとき、第2遷移層の中
間層に接する側ではZrO2・8Y2O3が100%、最外表面部分
ではAl2O3とZrO2・8Y2O3がそれぞれ50%となるように溶
射した。
[Example 1] A surface of a disk-shaped base material made of JIS AC8A alloy having a diameter of 50 mm and a thickness of 10 mm was shot-blasted, and then Ni-Cr-Al alloy as an underlayer material, specifically, 94wt%
And (Ni-20wt% Cr) -6wt % Al alloy, a graded thermal spray of ZrO 2 · 8Y 2 O 3 as the intermediate layer material was performed to a thickness 0.3 mm. At this time, the Ni-Cr-Al alloy is 100% on the base metal side.
And the uppermost layer was sprayed so that ZrO 2 .8Y 2 O 3 was 100% to continuously form an underlayer, a first transition layer, and an intermediate layer. Furthermore, a graded thermal spray of ZrO 2 · 8Y 2 O 3 and Al 2 O 3 as a low coefficient of thermal expansion ceramic was performed thereon with a thickness of 0.2 mm to form a second transition layer, and the ceramic heat insulating member of the present invention was formed. Obtained. At this time, ZrO 2 · 8Y 2 O 3 is 100% on the side of the second transition layer in contact with the intermediate layer, and Al 2 O 3 and ZrO 2 · 8Y 2 O 3 are 50% on the outermost surface portion. Sprayed.

[実施例2] 低熱膨張率セラミックとして、実施例1におけるAl2O3
との代りにZrO2・SiO2を用いた点以外は実施例1と同様
にしてセラミック断熱部材を作成した。
Example 2 As a low coefficient of thermal expansion ceramic, Al 2 O 3 in Example 1 was used.
A ceramic heat insulating member was prepared in the same manner as in Example 1 except that ZrO 2 .SiO 2 was used instead of.

[実施例3] 低熱膨張率セラミックとして、実施例1におけるAl2O3
の代りに2MgO・2Al2O3・5SiO2を用いた点以外は実施例
1と同様にしてセラミック断熱部材を作成した。
Example 3 As a low coefficient of thermal expansion ceramic, Al 2 O 3 in Example 1 was used.
A ceramic heat insulating member was prepared in the same manner as in Example 1 except that 2MgO.2Al 2 O 3 .5SiO 2 was used instead of.

[比較例1] JIS AC8A合金からなる直径50mm×厚さ10mmの円盤状を
なす母材の表面にショットブラスト処理を施した後、Ni
−Cr−Al合金(具体的組成は実施例1の場合と同じ)を
0.1mm厚で溶射して下地層を形成した。次いでその上にZ
rO2・8Y2O3を0.4mm厚で溶射して、従来品のセラミック
断熱部材を作成した。
[Comparative Example 1] After the surface of a disc-shaped base material made of JIS AC8A alloy with a diameter of 50 mm and a thickness of 10 mm was shot-blasted, Ni was used.
-Cr-Al alloy (specific composition is the same as in the case of Example 1)
An underlayer was formed by thermal spraying with a thickness of 0.1 mm. Then Z on it
A conventional ceramic heat insulating member was created by spraying rO 2 · 8Y 2 O 3 with a thickness of 0.4 mm.

[比較例2] JIS AC8A合金からなる直径50mm×厚さ10mmの円盤状を
なす母材の表面にショットブラスト処理を施した後、Ni
−Cr−Al合金(具体的組成は実施例1の場合と同じ)と
ZrO2・8Y2O3とのグレーテッド溶射を0.3mm厚で行なっ
た。このとき、母材に接する最下部ではNi−Cr−Al合金
が100%となりまた最上部ではZrO2・8Y2O3が100%とな
るように溶射した。さらにその上にZrO2・8Y2O3を0.2mm
厚で溶射して、従来品のセラミック断熱部材を作成し
た。
[Comparative Example 2] A surface of a disk-shaped base material having a diameter of 50 mm and a thickness of 10 mm made of JIS AC8A alloy was subjected to shot blasting, and then Ni
-Cr-Al alloy (specific composition is the same as in Example 1)
Greater thermal spraying with ZrO 2 · 8Y 2 O 3 was performed with a thickness of 0.3 mm. At this time, thermal spraying was performed so that the Ni-Cr-Al alloy was 100% at the lowermost part in contact with the base material and the ZrO 2 .8Y 2 O 3 was 100% at the uppermost part. On top of that, add ZrO 2 , 8Y 2 O 3 0.2 mm.
A conventional ceramic heat insulating member was prepared by thermal spraying with a thick thickness.

[熱サイクル試験] 前述の実施例1〜3、比較例1、2のセラミック断熱部
材について、次のように加熱−冷却のサイクルを与える
熱サイクル試験を行なった。
[Heat Cycle Test] The above-described ceramic heat insulating members of Examples 1 to 3 and Comparative Examples 1 and 2 were subjected to a heat cycle test for giving a heating-cooling cycle as follows.

すなわち、皮膜表面をC2H2−O2バーナにより12秒間加熱
して皮膜直下の母材の温度を400℃とし、続いて加熱を
停止するとともに母材の裏面側から30秒間冷却して皮膜
直下の母材の温度を70℃とする加熱−冷却のサイクルを
3000サイクル繰返した。このとき、100サイクル毎に皮
膜の剥離状況を調べた。その結果を第1表に示す。
That is, the film surface C 2 H 2 -O 2 the temperature of the preform immediately below the film was heated for 12 seconds by the burner and 400 ° C., followed by heating and cooled for 30 seconds from the back surface side of the base material to stop film A heating-cooling cycle in which the temperature of the base metal immediately below is 70 ° C
3000 cycles were repeated. At this time, the peeling state of the coating was examined every 100 cycles. The results are shown in Table 1.

[実施例4] 母材として、JIS AC8A合金からなるφ80mmのディーゼ
ルエンジン用ピストンを用い、その頂面に実施例1と同
様な処理を施して、セラミック断熱ピストンを作成し
た。
[Example 4] A φ80 mm diesel engine piston made of JIS AC8A alloy was used as a base material, and the top surface thereof was treated in the same manner as in Example 1 to prepare a ceramic heat insulating piston.

[比較例3] 母材として、JIS AC8A合金からなるφ80mmのディーゼ
ルエンジン用ピストンを用い、その頂面に比較例2と同
様な処理を施して、セラミック断熱ピストンを作成し
た。
[Comparative Example 3] A φ80 mm diesel engine piston made of JIS AC8A alloy was used as a base material, and the top surface thereof was subjected to the same treatment as in Comparative Example 2 to prepare a ceramic heat insulating piston.

[実機耐久試験] 実施例4および比較例3のセラミック断熱ピストンをそ
れぞれターボチャージャ付2200ccディーゼルエンジンに
組込んで、連続運転試験を行なった。運転条件は、過給
圧550mmHg、4200rpm、95馬力であり、50時間ごとに運転
を停止してピストンの断熱皮膜の状況を調べ、合計300
時間試験した。その結果を第2表に示す。
[Actual Machine Durability Test] The ceramic heat insulating pistons of Example 4 and Comparative Example 3 were each incorporated into a 2200cc diesel engine with a turbocharger, and a continuous operation test was performed. The operating conditions are supercharging pressure of 550 mmHg, 4200 rpm, 95 horsepower, and the operation is stopped every 50 hours to check the condition of the heat insulating film on the piston.
Time tested. The results are shown in Table 2.

第1表に示される熱サイクル試験結果および第2表に示
される断熱ピストンとしての実機耐久試験結果から、こ
の発明の実施例品においては、従来の2層溶射品(比較
例1)、グレーテッド溶射品(比較例2、3)と比較し
て格段に耐熱衝撃性が優れており、皮膜の剥離が生じに
くいことが明らかである。これは、熱膨張率の低いセラ
ミックを皮膜上部に混合することによって最も高温とな
る皮膜上部の伸びを従来よりも小さく抑え、皮膜内での
熱応力を小さくすることができたためと考えられる。す
なわち、第4図に示されるlcoをlbo〜lmoに近付けるこ
とができたためと考えられる。
From the heat cycle test result shown in Table 1 and the actual machine durability test result as the heat insulating piston shown in Table 2, in the example product of the present invention, the conventional two-layer thermal spray product (comparative example 1) and the graded product were obtained. It is clear that the thermal shock resistance is remarkably superior to that of the thermal sprayed products (Comparative Examples 2 and 3), and peeling of the coating hardly occurs. It is considered that this is because by mixing a ceramic having a low coefficient of thermal expansion in the upper part of the film, the elongation of the upper part of the film, which has the highest temperature, can be suppressed to be smaller than in the conventional case, and the thermal stress in the film can be reduced. That is probably because that could close a l co shown in Figure 4 to l bo to l mo.

発明の効果 この発明のセラミック断熱部材は、皮膜上部が、断熱の
ための主たる構成材料であるZrO2・8Y2O3に低熱膨張率
セラミックを混合しかつ外側へ向ってZrO2・8Y2O3の割
合を減少させた第2遷移層となっているため、高温に曝
されて皮膜最外表面部が高温となった場合でも、第2遷
移層における皮膜内部での伸びの差が小さく、しかもZr
O2・8Y2O3からなる中間層から下地層にかけての部分に
おいても下地層のNi−Cr−Al系合金とZrO2・8Y2O3とが
混合されかつ中間層へ向ってNi−Cr−Al系合金の割合が
減少する第1遷移層が形成されているため、その部分で
も皮膜内部での伸びの差が小さく、したがって皮膜全体
としても内部の伸びの差が小さいから熱サイクルが加わ
った時の熱応力も小さく、そのため耐熱衝撃性が著しく
優れているから、皮膜の剥離、脱落が生じるおそれが少
なく、従来よりも格段に優れた耐久性能を得ることがで
きる。
Ceramic insulating member of Effect of the Invention The present invention, coating top, main constituent material ZrO 2 · 8Y 2 O 3 is mixed with low thermal expansion ceramic and toward the outer ZrO 2 · 8Y 2 O for thermal insulation Since it is the second transition layer in which the ratio of 3 is reduced, even if the outermost surface of the film becomes high temperature by being exposed to high temperature, the difference in elongation inside the film in the second transition layer is small, Moreover, Zr
O 2 · 8Y 2 O from an intermediate layer consisting of 3 also ground layer in portion ranging underlayer Ni-Cr-Al alloy and ZrO 2 · 8Y 2 O 3 and are mixed and toward the intermediate layer Ni-Cr -Since the first transition layer in which the proportion of -Al-based alloy decreases is formed, the difference in elongation inside the film is small even at that portion, and therefore the difference in elongation inside the film as a whole is also small, so thermal cycling is added. Since the thermal stress at that time is also small, and therefore the thermal shock resistance is remarkably excellent, there is little risk of peeling or falling of the film, and it is possible to obtain significantly superior durability performance than before.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明のセラミック断熱部材の構造の一例を
模式的に示す縦断面図、第2図は第1図のセラミック断
熱部材における各層の構成材料の厚さ方向の分布の一例
を示す線図である。第3図は従来のセラミック断熱部材
をピストンとして使用した場合における厚さ方向の温度
分布を示す略解図、第4図は第3図の温度分布に基いて
各層の伸び量を示す略解図である。 10……母材、11……下地層、12……第1遷移層、13……
中間層、14……第2遷移層。
FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of the ceramic heat insulating member of the present invention, and FIG. 2 is a line showing an example of distribution in the thickness direction of constituent materials of each layer in the ceramic heat insulating member of FIG. It is a figure. FIG. 3 is a schematic diagram showing the temperature distribution in the thickness direction when a conventional ceramic heat insulating member is used as a piston, and FIG. 4 is a schematic diagram showing the amount of expansion of each layer based on the temperature distribution of FIG. . 10 …… Base material, 11 …… Underlayer, 12 …… First transition layer, 13 ……
Middle layer, 14 ... Second transition layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−197861(JP,A) 特開 昭61−250159(JP,A) 特開 昭62−103368(JP,A) 特開 昭61−143576(JP,A) 特開 昭61−250161(JP,A) 特開 昭53−54214(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-60-197861 (JP, A) JP-A-61-250159 (JP, A) JP-A-62-103368 (JP, A) JP-A-61- 143576 (JP, A) JP 61-250161 (JP, A) JP 53-54214 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Al合金からなる母材の表面にNi−Cr−Al系
合金からなる下地層が形成され、この下地層上には、Ni
−Cr−Al系合金とZrO2・8Y2O3とが混合されかつ外側へ
向ってNi−Cr−Al合金の混合割合が減少する第1遷移層
が下地層と連続一体に形成され、その第1遷移層上に
は、実質的にZrO2・8Y2O3のみからなる中間層が第1遷
移層と連続一体に形成され、さらにその中間層上には、
熱膨張率が9×10-6/℃以下の低熱膨張率セラミックとZ
rO2・8Y2O3とが混合されかつ外側へ向ってZrO2・8Y2O3
の混合割合が減少する第2遷移層が中間層と連続一体に
形成されていることを特徴とするセラミック断熱部材。
1. A base layer made of a Ni—Cr—Al alloy is formed on the surface of a base material made of an Al alloy, and a Ni layer is formed on the base layer.
A first transition layer in which the --Cr--Al alloy and ZrO 2 .8Y 2 O 3 are mixed and the mixing ratio of the Ni--Cr--Al alloy decreases toward the outside is formed continuously and integrally with the underlayer. On the first transition layer, an intermediate layer consisting essentially of ZrO 2 · 8Y 2 O 3 is formed continuously and integrally with the first transition layer, and further on the intermediate layer,
Low coefficient of thermal expansion ceramics with a coefficient of thermal expansion of less than 9 × 10 -6 / ℃ and Z
When mixed with rO 2・ 8Y 2 O 3 and directed outward, ZrO 2・ 8Y 2 O 3
A ceramic heat insulating member, characterized in that the second transition layer in which the mixing ratio of is reduced is formed continuously and integrally with the intermediate layer.
JP63007999A 1988-01-18 1988-01-18 Ceramic heat insulating material Expired - Lifetime JPH07122126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007999A JPH07122126B2 (en) 1988-01-18 1988-01-18 Ceramic heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007999A JPH07122126B2 (en) 1988-01-18 1988-01-18 Ceramic heat insulating material

Publications (2)

Publication Number Publication Date
JPH01184261A JPH01184261A (en) 1989-07-21
JPH07122126B2 true JPH07122126B2 (en) 1995-12-25

Family

ID=11681090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007999A Expired - Lifetime JPH07122126B2 (en) 1988-01-18 1988-01-18 Ceramic heat insulating material

Country Status (1)

Country Link
JP (1) JPH07122126B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699554B1 (en) * 1992-12-23 1995-02-24 Metallisation Ind Ste Nle Thermal barriers, material and process for their development.
JP5765567B2 (en) * 2010-08-05 2015-08-19 アイシン精機株式会社 Die casting mold parts
JP6168034B2 (en) * 2014-11-21 2017-07-26 トヨタ自動車株式会社 Thermal spray coating, engine having the same, and method for forming thermal spray coating
CN104775087B (en) * 2014-12-05 2017-08-25 襄阳航泰动力机器厂 A kind of preparation method of metal composite ceramal thermal barrier coating
US10519854B2 (en) 2015-11-20 2019-12-31 Tenneco Inc. Thermally insulated engine components and method of making using a ceramic coating
US10578014B2 (en) 2015-11-20 2020-03-03 Tenneco Inc. Combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10876475B2 (en) 2015-11-20 2020-12-29 Tenneco Inc. Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588607A (en) * 1984-11-28 1986-05-13 United Technologies Corporation Method of applying continuously graded metallic-ceramic layer on metallic substrates
JPS61250159A (en) * 1985-04-27 1986-11-07 Riken Corp Sliding member
JPS62103368A (en) * 1985-10-31 1987-05-13 Toshiba Corp Ceramic coating metal

Also Published As

Publication number Publication date
JPH01184261A (en) 1989-07-21

Similar Documents

Publication Publication Date Title
US4612256A (en) Wear-resistant coating
JPH0250173B2 (en)
US4830932A (en) Heat resistant light alloy articles and method of manufacturing same
JPH08501602A (en) Composite ceramic coating material
JPH03194157A (en) Light metal pistion for pressure cast internal combustion engine
US4885213A (en) Ceramic-sprayed member and process for making the same
US5076866A (en) Heat resistant slide member for internal combustion engine
JPS58215291A (en) Aluminum base material with cured padding layer
EP0211032A1 (en) Aluminium-based article having a protective ceramic coating, and a method of producing it.
EP0303444B1 (en) Combustion chamber for diesel engines
JPH07122126B2 (en) Ceramic heat insulating material
JPH0527706B2 (en)
JPH07116583B2 (en) Thermal cycle thermal spray coating
JPH0726187B2 (en) Method of forming adiabatic sprayed layer
JPH028894B2 (en)
JPH01172554A (en) Flame spraying material
EP1231286A1 (en) Preliminarily formed article and formed article and parts for internal-combustion engine
US20210123346A1 (en) Thermal barrier coated vehicle turbocharger turbine wheel
JP2547815B2 (en) Piston for internal combustion engine
JPH0227149A (en) Piston made of al alloy
JPH04263037A (en) Engine and structural member for vehicle
JPH0337028B2 (en)
JPH08501349A (en) Reinforcement material for pistons of internal combustion engines
JP2003105518A (en) Slide member or internal combustion engine and method of forming the same
JP2856286B2 (en) piston ring