JPH04263037A - Engine and structural member for vehicle - Google Patents

Engine and structural member for vehicle

Info

Publication number
JPH04263037A
JPH04263037A JP3270375A JP27037591A JPH04263037A JP H04263037 A JPH04263037 A JP H04263037A JP 3270375 A JP3270375 A JP 3270375A JP 27037591 A JP27037591 A JP 27037591A JP H04263037 A JPH04263037 A JP H04263037A
Authority
JP
Japan
Prior art keywords
magnesium
weight
added
matrix
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3270375A
Other languages
Japanese (ja)
Inventor
Eberhard E Schmid
エーベルハルト・エー・シュミット
Guenter Dr Neite
ギュンテル・ナイテ
Siegfried Dr Mielke
ジークフリート・ミールケ
Wolfgang Henning
ボルフガング・ヘニング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of JPH04263037A publication Critical patent/JPH04263037A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ

Abstract

PURPOSE: To provide a structural member for engine which is low in density and friction and excellent in heat resistance and wear resistance by allowing the fine layer-shaped eutectic magnesium silicide and lump-shaped magnesium silicide to be present in the matrix of the magnesium casting.
CONSTITUTION: A structural member for an engine and a vehicle is obtained from magnesium or its alloy through the low pressure casting, the die casting, the pressure casting, etc. Fine layer-shaped eutectic magnesium silicide 7 and primarily separated lump-shaped magnesium silicide 6 are present in the matrix. The quantity of the magnesium silicide is 1-50 mass %, preferably, 3-50%. In the structure, ≤12% Al or Zn, ≤16% Ag, ≤1% Zr or Ti, ≤7% rare earth metal, ≤1% one or more kinds of Mn, Cu, Co, Ni and Cr, can be added as necessary. The ceramic fiber such as Al2O3 and SiC may be present in the matrix as the formed body.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、低圧鋳造、ダイキヤ
スチングあるいは圧力鋳造によってマグネシウムまたは
マグネシウム合金から製造するエンジンおよび乗り物用
の構造部材、特に内燃機関あるいはコンプレッサ用のピ
ストン、シリンダ、シリンダヘッド、シリンダブロック
および歯車筐に使用する構造部材に関する。
[Field of Industrial Application] This invention relates to structural members for engines and vehicles manufactured from magnesium or magnesium alloys by low pressure casting, die casting or pressure casting, particularly pistons, cylinders, cylinder heads for internal combustion engines or compressors, This invention relates to structural members used in cylinder blocks and gear housings.

【0002】0002

【従来の技術】燃料消費効率が良く、静かでしかも振動
の少ないエンジンおよび乗り物を目標にすれば、その結
果は、これらを構成する構造部材に対する高度な要求に
なる。そしてこの目標を達成するには、実用される構造
部材についての質量の低減が重要である。何故ならこの
低減は、エンジンおよび乗り物により広い2次的重量軽
減をもたらすと共に、この重量軽減に加えてより広い燃
料消費の節減をもたらすからである。そして構造部材の
上記質量の低減は、エンジンにより低い振動をもたし、
騒音のより有効な抑制を促すと共に、さらに快適性を高
める結果を招来する。
BACKGROUND OF THE INVENTION The goal of fuel-efficient, quiet, and low-vibration engines and vehicles has resulted in high demands on the structural components that constitute them. In order to achieve this goal, it is important to reduce the mass of structural members that will be put into practical use. This is because this reduction provides a broader secondary weight reduction to the engine and vehicle, and in addition to this weight reduction, provides a larger fuel consumption savings. And said reduction in mass of structural members results in lower vibrations in the engine,
This not only promotes more effective noise suppression, but also results in even greater comfort.

【0003】上記ピストンにおいて、ピストンピンボス
部、リング溝部およびピストンヘッド部におけるピスト
ン質量の明らかな削減と、ピストンスカート部の高さの
短縮とをもたらす例えばピストンの圧縮高さの減少に加
え、相対的に軽量となるこのピストンに起因して起きる
内燃機関の振動質量の減少および軸受荷重の減少を実現
するため、マグネシウムまたはマグネシウム合金をピス
トン材料に試用しようとする剌戟が、内燃機関において
は常に存在していた。
In the piston described above, in addition to a reduction in the compression height of the piston, for example, which results in a clear reduction in the piston mass in the piston pin boss, ring groove and piston head, and a reduction in the height of the piston skirt, the relative In internal combustion engines, there has always been an attempt to use magnesium or magnesium alloys as piston materials in order to reduce the vibrating mass and bearing loads of internal combustion engines caused by the lighter weight of the pistons. Was.

【0004】ところでマグネシウム材は、内燃機関用軽
金属ピストンの製造に通常試用されるアルミニウム−珪
素合金に較べると、著しい欠点を有する。すなわちマグ
ネシウム材で作ったピストンの寿命は、耐摩耗性の不足
のために駆動されるエンジンの始動運転および定常運転
ならびに非常運転の際に生じる混合摩耗と比例して短く
なる。またその強度は、ガス圧に起因する動的応力に対
して比較的に低い。
[0004] However, magnesium materials have significant drawbacks when compared to aluminum-silicon alloys that are commonly used in the manufacture of light metal pistons for internal combustion engines. In other words, the service life of a piston made of magnesium material is shortened in proportion to the mixed wear that occurs during start-up, steady-state and emergency operation of the driven engine due to the lack of wear resistance. Also, its strength is relatively low against dynamic stresses caused by gas pressure.

【0005】上記耐摩耗性を改善するためにDE−20
  46  862では、マグネシウム材から成るピス
トンの摺接面を耐摩耗性のある金属層、例えばクロムで
被うようにしている。なおこの金属層は、アルミニウム
から成る中間層を介してピストン本体に固着されている
[0005] In order to improve the above wear resistance, DE-20
No. 46 862, the sliding surface of a piston made of magnesium material is covered with a wear-resistant metal layer, for example chromium. Note that this metal layer is fixed to the piston body via an intermediate layer made of aluminum.

【0006】また上記摺接面にアルミニウム合金、鉄、
黒鉛、マンガン、ニッケル、錫、鉛、カドミウムまたは
亜鉛から成る耐摩耗性材の被覆を用意すること、或いは
マグネシウムをアルミニウムまたは珪素のごとき耐摩耗
性を有する元素と合金させることも公知である。
[0006] Furthermore, aluminum alloy, iron,
It is also known to provide coatings of wear-resistant materials consisting of graphite, manganese, nickel, tin, lead, cadmium or zinc, or to alloy magnesium with wear-resistant elements such as aluminum or silicon.

【0007】さらに上記強度を改善するために、マグネ
シウムはセリウムおよびトリウムと合金され、またピス
トンは、結晶粒が好ましい方向に繊維状に並ぶように鍛
造される(企業誌マーレ・カー・ゲーとエレクトロン−
コウ・エム・ベー・ハー、スユトウツトガルト−バート
・カンスュタート、1946(Firmenschri
ft MahleKG und Electron−C
o. mbH, Stuttgart−Bad Can
nstadt, 1946)。
[0007] To further improve the strength, magnesium is alloyed with cerium and thorium, and the piston is forged so that the grains are oriented in a fibrous manner (as reported by the company journals Mahle Car Game and Electron). −
K. M. B. Har, Sututtgart-Bad Kanstutt, 1946 (Firmenschri)
ft MahleKG and Electron-C
o. mbH, Stuttgart-Bad Can
Nstadt, 1946).

【0008】[0008]

【発明が解決しようとする課題】しかしながら上述した
すべての手段は、内燃機関用の機能性あるピストンを、
マグネシウム材から生産するのにこれ迄のところ不充分
なものであった。確かにJP−63−042338Aに
は、3〜30容量%の酸化アルミニウム−酸化珪素繊維
にて強化されかつマグネシウム合金から成る内燃機関用
ピストンが開示されているが、この種の軽金属ピンスト
ンは、これ迄のところ実用化されていない。何故ならこ
の種のピストンは、シリンダ摺接面に比較的高い摩耗を
惹き起こすからである。
[Problem to be Solved by the Invention] However, all of the above-mentioned measures do not provide a functional piston for internal combustion engines.
Production from magnesium materials has hitherto been insufficient. It is true that JP-63-042338A discloses a piston for an internal combustion engine made of a magnesium alloy and reinforced with 3 to 30% by volume aluminum oxide-silicon oxide fiber, but this type of light metal piston is It has not been put into practical use so far. This is because pistons of this type cause relatively high wear on the cylinder sliding surfaces.

【0009】かくしてこの発明の課題は、動的応力に対
しての高度な強度的要求を充たす、特に内燃機関に使用
される場合、非常に高い特別な成果をもって強度的要求
を充たすエンジン又乗り物用のマグネシウム又はマグネ
シウム鋳造構造部材を提供することにある。
[0009] It is thus an object of the present invention to provide an engine or vehicle engine which satisfies high strength requirements against dynamic stresses, particularly when used in internal combustion engines, and which meets the strength requirements with very high special results. An object of the present invention is to provide a magnesium or magnesium cast structural member.

【0010】0010

【課題を解決するための手段】この課題は、耐熱性およ
び延性を有するマトリックス内に、硬い微細層状共晶珪
化マグネシウムと、一次分離された塊状の珪化マグネシ
ウムとを含むような、前記した材料から成る構造部材に
よって解決する。そしてこのような構造部材は、従来の
アルミニウム−珪素合金鋳造構造部材を較べると比較的
に低質量であり、またほぼ同時に、充分な耐熱性、耐摩
耗性を有しかつ比較的に低摩擦である。
[Means for Solving the Problem] This problem is achieved by using the above-mentioned material, which contains hard fine layered eutectic magnesium silicide and primary separated bulk magnesium silicide in a heat-resistant and ductile matrix. This is solved by a structural member consisting of Such structural members have a relatively low mass compared to conventional aluminum-silicon alloy cast structural members, and at the same time have sufficient heat resistance, wear resistance, and relatively low friction. be.

【0011】マグネシウムあるいはマグネシウム合金溶
融物に珪化マグネシウムまたは珪素が添加されると、微
細層状共晶珪化マグネシウムと一次分離された塊状の珪
化マグネシウムとの分離が、凝固する際に得られる。こ
れは高温時の構造部材に、良好な強度特性を与える。ま
た特に、高温時の疲れ強さを向上させる。
When magnesium silicide or silicon is added to a magnesium or magnesium alloy melt, a separation of finely layered eutectic magnesium silicide and primary separated bulk magnesium silicide is obtained during solidification. This gives the structural member good strength properties at high temperatures. In particular, it improves fatigue strength at high temperatures.

【0012】0.25〜7.0質量%の珪化マグネシウ
ムまたは0.1〜2.5質量%の珪素を、マグネシウム
またはマグネシウム溶融体に添加すると、微細層状共晶
の形の中にマグネシウムと並んで優勢的に珪化マグネシ
ウムを含みかつ共晶体珪化マグネシウムの網目構造によ
って構造部材の特記すべき高温強度(結合力)を生じる
組織が得られる。
When 0.25 to 7.0% by weight of magnesium silicide or 0.1 to 2.5% by weight of silicon is added to magnesium or a magnesium melt, it is aligned with the magnesium in the form of a finely layered eutectic. A structure containing predominantly magnesium silicide and resulting in a network structure of eutectic magnesium silicide yields a remarkable high-temperature strength (cohesive strength) of the structural member.

【0013】また3.6質量%よりも多い珪化マグネシ
ウムまたは1.3質量%よりも多い珪素を、マグネシウ
ムまたはマグネシウム合金溶融体に添加すると、一次分
離された塊状の珪化マグネシウムと、マグネシウム/珪
化マグネシウム共晶体とから成ると共に、高温強度の改
善に本質的に寄与する組織が得られる。
[0013] Furthermore, when more than 3.6% by mass of magnesium silicide or more than 1.3% by mass of silicon is added to a magnesium or magnesium alloy melt, primary separated lump-like magnesium silicide and magnesium/magnesium silicide A structure consisting of a eutectic and essentially contributing to improvement of high-temperature strength is obtained.

【0014】なおこの発明の特別な実施態様では、上記
構造部材のマトリックスは1〜50質量%(1を除く)
、好ましくは3〜50質量%の珪化マグネシウムを含有
する。
[0014] In a special embodiment of the invention, the matrix of the structural member comprises 1 to 50% by weight (excluding 1).
, preferably 3 to 50% by weight of magnesium silicide.

【0015】上記マグネシウムまたはマグネシウム合金
鋳造構造部材は共晶の形と一次晶の形で全ての珪化マグ
ネシウムを含んでいる。すなわち珪素を、とり分け0.
3〜18質量%(3を除く)の濃度範囲で含有している
The magnesium or magnesium alloy cast structural member contains all magnesium silicide in eutectic and primary form. That is, silicon, especially 0.
It is contained in a concentration range of 3 to 18% by mass (excluding 3).

【0016】とり分け考慮の対象となるマグネシウム合
金は、6〜9%アルミニウム、0.13%マンガン、0
.68〜0.7%亜鉛、残余マグネシウムから成るか、
あるいは3.5%希土類、5.25%イツトリウム、0
.5%ジルコニウム、残余マグネシウムから成っている
Magnesium alloys of particular interest include 6-9% aluminum, 0.13% manganese, 0.
.. Consisting of 68-0.7% zinc, remainder magnesium,
Or 3.5% rare earth, 5.25% yttrium, 0
.. Consists of 5% zirconium, balance magnesium.

【0017】この発明の及ぶ範囲で上記構造部材のマト
リックスは、12質量%までのアルミニウムおよび/ま
たは亜鉛を含有する。なおこのアルミニウムと亜鉛は、
分離によってピストン強度を高める効果がある。
[0017] Within the scope of the invention, the matrix of the structural component contains up to 12% by weight of aluminum and/or zinc. Furthermore, this aluminum and zinc are
Separation has the effect of increasing piston strength.

【0018】上記強度、特に高温強度の増加は、16質
量%までの銀の添加によって生じる。
The above-mentioned increase in strength, especially high-temperature strength, occurs with the addition of up to 16% by weight of silver.

【0019】溶解水素をゲッタ(gettern)する
ため、上記構造部材のマトリックスはさらに1質量%ま
でのジルコニウムおよび/またはチタンを含むことがで
きる。なおこのジルコニウムまたはチタンは、付加的に
結晶粒を微細化する作用を有する。
[0019] In order to getter dissolved hydrogen, the matrix of the structural element can further contain up to 1% by weight of zirconium and/or titanium. Note that this zirconium or titanium additionally has the effect of refining crystal grains.

【0020】1つまたは1つ以上から成る希土類金属の
7質量%までの添加によって、クリープ強度が改善され
る。また特に7質量%までのリチウムの添加によってマ
グネシウム材の比重が軽減される。
The addition of up to 7% by weight of one or more rare earth metals improves the creep strength. In addition, the specific gravity of the magnesium material is particularly reduced by adding up to 7% by mass of lithium.

【0021】この発明では、鋳造構造部材の時効硬化は
、1つまたは1つ以上の金属、マンガン、銅、ゴバルト
、ニッケルおよびクロムの1質量%までの添加によって
促進される。
In the present invention, age hardening of cast structural members is promoted by the addition of up to 1% by weight of one or more of the metals manganese, copper, gobalt, nickel and chromium.

【0022】上記構造部材のマトリックスには、セラミ
ックス繊維、とり分け酸化アルミニウム、炭化珪素、炭
素、窒化アルミニウム又は窒化珪素繊維を混入すること
ができる。これによって合目的的に繊維成形体が調整さ
れる。
Ceramic fibers, in particular aluminum oxide, silicon carbide, carbon, aluminum nitride or silicon nitride fibers, can be incorporated into the matrix of the structural component. In this way, the fibrous molding is prepared in an expedient manner.

【0023】[0023]

【実施例】以下本発明の1実施例につき、図1および図
2を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

【0024】第1図はピストン軸およびピストンピン軸
を含む面にて切断した内燃機関用ピストンの断面図であ
る。このピストンはマグネシウム鋳造ピストンであり、
燃焼凹部2を備えるピストンヘッド部1、リング溝部3
およびピストンピン孔5を備えるスカート部から成る。
FIG. 1 is a cross-sectional view of a piston for an internal combustion engine taken along a plane including a piston shaft and a piston pin shaft. This piston is a magnesium cast piston,
Piston head part 1 with combustion recess 2, ring groove part 3
and a skirt portion provided with a piston pin hole 5.

【0025】ピストンの一部(図1のX部分)を200
倍に拡大した図2に示す顕微鏡組織写真では、その容積
が約50%の一次分離された塊状の珪化マグネシウム6
が認められ、その色は暗灰色である。なおこの塊状の珪
化マグネシウム6は、その内部に微細層状共晶珪化マグ
ネシウムを有すると共にその色が明灰色のマグネシウム
7によって囲まれている。
[0025] A part of the piston (X part in Fig. 1) is
In the microscopic structure photograph shown in Fig. 2, which is magnified twice, the volume is approximately 50% of the primary separated lump-like magnesium silicide 6.
is observed and its color is dark gray. Note that this block-like magnesium silicide 6 has fine layered eutectic magnesium silicide therein and is surrounded by magnesium 7 having a light gray color.

【0026】上記材料は表1に示す特性を有する。表に
は比較のために、一般的なピストン用アルミニウム合金
すなわち、AlSi12CuNiMg系合金の特性をも
併せて示した。
The above material has the properties shown in Table 1. For comparison, the table also shows the characteristics of a common aluminum alloy for pistons, that is, an AlSi12CuNiMg alloy.

【0027】[0027]

【発明の効果】本発明は上述のような構成であるから、
ピストン製造用の一般的なアルミニウム−珪素合金と、
この発明の構造部材とを比較すると、この発明の構造部
材は、その密度が少くとも完全に30%も削減されなが
ら、しかもなお、従来に類似した充分に大きな耐熱性を
保持し続けるものである。
[Effects of the Invention] Since the present invention has the above-mentioned configuration,
Common aluminum-silicon alloys for piston manufacturing;
When compared with the structural member of the present invention, the structural member of the present invention has its density reduced by at least a full 30%, yet still retains a sufficiently high heat resistance similar to the prior art. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】内燃機関用ピストンの断面図[Figure 1] Cross-sectional view of a piston for an internal combustion engine

【図2】図1のX領域内における顕微鏡組織図[Figure 2] Microscopic organization diagram within the X region of Figure 1

【符号の説明】[Explanation of symbols]

6      塊状珪化マグネシウム 6 Blocked magnesium silicide

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】低圧鋳造、ダイキヤスチングあるいは圧力
鋳造によってマグネシウムまたはマグネシウム合金から
製造するエンジンおよび乗り物用の構造部材、特に内燃
機関あるいはコンプレッサ用のピストン、シリンダ、シ
リンダヘッド、シンダブロックおよび歯車筐に使用する
構造部材において、微細層状共晶珪化マグネシウム7と
、一次分離された塊状の珪化マグネシウム6とがマトリ
ックス内に存在するエンジンおよび乗り物用の構造部材
Claim 1: Structural members for engines and vehicles manufactured from magnesium or magnesium alloys by low pressure casting, die casting or pressure casting, particularly pistons, cylinders, cylinder heads, cinder blocks and gear housings for internal combustion engines or compressors. A structural member for engines and vehicles in which fine layered eutectic magnesium silicide 7 and primary separated bulk magnesium silicide 6 are present in a matrix.
【請求項2】上記マトリックス内に1〜50質量%(1
を除く)、好ましくは3〜50質量%の珪化マグネシウ
ムが存在する請求項1記載の構造部材。
[Claim 2] 1 to 50% by mass (1
2. Structural component according to claim 1, wherein magnesium silicide is present in an amount of 3 to 50% by weight.
【請求項3】12質量%までのアルミニウムおよび/ま
たは亜鉛が添加された請求項1または2記載の構造部材
3. Structural component according to claim 1, in which up to 12% by weight of aluminum and/or zinc is added.
【請求項4】16質量%までの銀が添加された請求項1
、2または3記載の構造部材。
Claim 4: Claim 1 in which up to 16% by mass of silver is added.
, 2 or 3.
【請求項5】1質量%までのジルコニウムおよび/また
はチタンが添加された請求項1、2、3または4記載の
構造部材。
5. Structural element according to claim 1, in which up to 1% by weight of zirconium and/or titanium is added.
【請求項6】7質量%までの希土類金属が添加された請
求項1、2、3、4または5記載の構造部材。
6. Structural component according to claim 1, 2, 3, 4 or 5, to which up to 7% by weight of rare earth metals are added.
【請求項7】1質量%までの金属マンガン、銅、コバル
ト、ニッケルおよびクロムの1つまたは1つ以上が添加
された請求項1、2、3、4、5または6記載の構造部
材。
7. A structural member according to claim 1, wherein up to 1% by weight of one or more of the metals manganese, copper, cobalt, nickel and chromium is added.
【請求項8】セラミック繊維、とり分け酸化アルミニウ
ム、炭化珪素、炭素、窒化アルミニウムまたは窒化珪素
から成るセラミック繊維が上記マトリックス内に存在す
る請求項1、2、3、4、5または6記載の構造部材。
8. Structure according to claim 1, 2, 3, 4, 5 or 6, wherein ceramic fibers, in particular ceramic fibers consisting of aluminum oxide, silicon carbide, carbon, aluminum nitride or silicon nitride, are present in the matrix. Element.
【請求項9】上記繊維は成形体として上記マトリックス
内に存在する請求項8記載の構造部材。
9. A structural member according to claim 8, wherein said fibers are present within said matrix as shaped bodies.
JP3270375A 1990-09-22 1991-09-20 Engine and structural member for vehicle Pending JPH04263037A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4030094 1990-09-22
DE4030094.3 1990-09-22
DE4125014A DE4125014A1 (en) 1990-09-22 1991-07-27 COMPONENTS FOR ENGINES AND VEHICLES
DE4125014.1 1991-07-27

Publications (1)

Publication Number Publication Date
JPH04263037A true JPH04263037A (en) 1992-09-18

Family

ID=25897109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270375A Pending JPH04263037A (en) 1990-09-22 1991-09-20 Engine and structural member for vehicle

Country Status (5)

Country Link
EP (1) EP0478025A1 (en)
JP (1) JPH04263037A (en)
BR (1) BR9104044A (en)
DE (1) DE4125014A1 (en)
NO (1) NO913293L (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279890A (en) * 1993-03-26 1994-10-04 Mitsui Mining & Smelting Co Ltd Production of magnesium alloy casting
US8282748B2 (en) 2003-11-07 2012-10-09 Mahle Gmbh Process for producing metal matrix composite materials
WO2015029661A1 (en) * 2013-08-30 2015-03-05 日立工機株式会社 Engine and engine work machine provided with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582200B2 (en) * 2000-07-14 2003-06-24 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate compressor having shoes made of a magnesium-based material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR568584A (en) * 1922-09-19 1924-03-28 Griesheim Elektron Chem Fab Piston for internal combustion engine
DE397346C (en) * 1922-11-18 1924-06-20 Griesheim Elektron Chem Fab Process for the production of magnesium-silicon alloys
DE392022C (en) * 1922-12-29 1924-03-15 Griesheim Elektron Chem Fab Magnesium alloys
US3162552A (en) * 1961-06-02 1964-12-22 Dow Chemical Co Magnesium-base extrusion alloy
GB1034227A (en) * 1964-06-04 1966-06-29 Magnesium Elektron Ltd Improvements in or relating to magnesium base alloys

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279890A (en) * 1993-03-26 1994-10-04 Mitsui Mining & Smelting Co Ltd Production of magnesium alloy casting
US8282748B2 (en) 2003-11-07 2012-10-09 Mahle Gmbh Process for producing metal matrix composite materials
WO2015029661A1 (en) * 2013-08-30 2015-03-05 日立工機株式会社 Engine and engine work machine provided with same
CN105492748A (en) * 2013-08-30 2016-04-13 日立工机株式会社 Engine and engine work machine provided with same
JPWO2015029661A1 (en) * 2013-08-30 2017-03-02 日立工機株式会社 Engine and engine working machine equipped with the same

Also Published As

Publication number Publication date
BR9104044A (en) 1992-06-02
NO913293D0 (en) 1991-08-22
NO913293L (en) 1992-03-23
DE4125014A1 (en) 1992-03-26
EP0478025A1 (en) 1992-04-01

Similar Documents

Publication Publication Date Title
US4817578A (en) Internal combustion engine
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JP3327663B2 (en) High temperature wear resistant sintered alloy
EP3162475B1 (en) Sintered valve seat and method for manufacturing same
JPH03194157A (en) Light metal pistion for pressure cast internal combustion engine
JP6386676B2 (en) Sintered valve seat
JPH05346166A (en) Light alloy piston
KR19980080139A (en) Metal porous body and light alloy composite member and manufacturing method thereof
JPH04263037A (en) Engine and structural member for vehicle
JPH10288085A (en) Piston for internal combustion engine
JP3897416B2 (en) Powder aluminum alloy cylinder liner
JP2923578B2 (en) Wear resistant aluminum alloy
JPH01230737A (en) Member made of composite material and its manufacture
JP3942136B2 (en) Iron-based sintered alloy
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP2826751B2 (en) Aluminum alloy composite members for internal combustion engines
JPS643934B2 (en)
KR0183227B1 (en) A metal sintered body composite material and method for producing the same
JP3883656B2 (en) Wear-resistant ring and piston equipped with it
JP2000080451A (en) Sintered body for wear resistant ring and wear resistant ring
JP2856286B2 (en) piston ring
JPH04314983A (en) Pump rotor made of high strength aluminum alloy
JP2790807B2 (en) Composite piston
JP2001132533A (en) Powder aluminum alloy cylinder liner and manufacturing method therefor and ingot aluminum alloy cylinder block
JPH0121163Y2 (en)