JPH07122117B2 - Magnetostrictive alloy - Google Patents

Magnetostrictive alloy

Info

Publication number
JPH07122117B2
JPH07122117B2 JP27600893A JP27600893A JPH07122117B2 JP H07122117 B2 JPH07122117 B2 JP H07122117B2 JP 27600893 A JP27600893 A JP 27600893A JP 27600893 A JP27600893 A JP 27600893A JP H07122117 B2 JPH07122117 B2 JP H07122117B2
Authority
JP
Japan
Prior art keywords
magnetostrictive
alloy
weight
magnetic field
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27600893A
Other languages
Japanese (ja)
Other versions
JPH06316742A (en
Inventor
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP27600893A priority Critical patent/JPH07122117B2/en
Publication of JPH06316742A publication Critical patent/JPH06316742A/en
Publication of JPH07122117B2 publication Critical patent/JPH07122117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁歪合金,特に負の磁歪
を有し、低磁界磁歪特性に優れた磁歪合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive alloy, and more particularly to a magnetostrictive alloy having negative magnetostriction and excellent in low magnetic field magnetostriction.

【0002】[0002]

【従来の技術】近年の機械工作における加工精度の向上
には目覚しいものがあり、ミクロンからサブミクロンの
時代に入りつつある。電子デバイスなどにおいてはサブ
ミクロンの加工精度が求められることはめずらしくない
昨今であるが、メカトロニクスの時代を迎え、電子工学
の分野だけでなく、機械工学の分野においても超微細加
工、微小変位制御の問題が重要になりつつある。光情報
処理、光記録機器などの発達と相まって、微小変位制御
素子はその必要性が増大する傾向にある。
2. Description of the Related Art In recent years, there have been remarkable improvements in machining accuracy in machining, and the era of micron to submicron is entering. It is not uncommon today that submicron processing accuracy is required for electronic devices, but in the era of mechatronics, ultra-fine processing and minute displacement control are being performed not only in the field of electronic engineering but also in the field of mechanical engineering. Problems are becoming important. Along with the development of optical information processing and optical recording equipment, the need for micro displacement control elements tends to increase.

【0003】各種の微小変位制御素子が提案される中
で、一方式として磁歪素子が有る。
Among various types of minute displacement control elements proposed, there is a magnetostrictive element as one method.

【0004】すなわち外部磁場の印加により変位を生じ
る磁歪材料を用いた変位発生素子である。
That is, it is a displacement generating element using a magnetostrictive material which is displaced by the application of an external magnetic field.

【0005】磁歪材料としてはNiなど各種の材料が知
られているが、なかでもTbFe系の合金は極めて大き
い磁歪を示すため有望な材料である(米国特許第437537
2 号,米国特許第4378258 号,米国特許第4308474 号,
米国特許第4152178 号,特公昭61-33892号公報,特開昭
49-2094 号公報など)。
Various materials such as Ni are known as magnetostrictive materials, but among them, TbFe alloys are promising materials because they exhibit extremely large magnetostriction (US Pat. No. 437537).
2, U.S. Pat. No. 4,378,258, U.S. Pat. No. 4,308,474,
U.S. Pat. No. 4152178, Japanese Patent Publication No. 61-33892, JP Sho
49-2094, etc.).

【0006】この様なR−Fe(R:希土類)合金系で
は大きい磁歪が得られるが、低磁場特性に問題が有っ
た。すなわち低い印加磁界での変位量が十分ではなかっ
た。
A large magnetostriction can be obtained in such an R-Fe (R: rare earth) alloy system, but there is a problem in low magnetic field characteristics. That is, the amount of displacement at a low applied magnetic field was not sufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明は以上の点を考
慮してなされたもので、R−Fe合金系の低磁場磁歪特
性の改善を目的とする。
The present invention has been made in consideration of the above points, and an object thereof is to improve the low magnetic field magnetostriction characteristics of the R-Fe alloy system.

【0008】[0008]

【課題を解決するための手段及び作用】本発明は、コバ
ルト(Co)5〜40重量%,鉄(Fe)2〜35重量%,サマ
リウム(Sm)0.01〜60重量%及び残部が実質的にジ
スプロシウム(Dy)の組成を有することを特徴とする磁歪
合金である。
According to the present invention, cobalt (Co) is 5 to 40% by weight, iron (Fe) is 2 to 35% by weight, samarium (Sm) is 0.01 to 60% by weight, and the balance is substantially. It is a magnetostrictive alloy characterized by having a composition of dysprosium (Dy).

【0009】この様な系の希土類−遷移金属合金系では
ラーベス型金属間化合物を形成し、優れた磁歪特性を発
揮し、このSm−Dy−Fe系にCoを添加することで
更に大幅な低磁場磁歪特性の改善効果を得ることができ
る。
In such a rare earth-transition metal alloy system of such a system, a Laves-type intermetallic compound is formed and excellent magnetostrictive properties are exhibited, and by adding Co to this Sm-Dy-Fe system, it is possible to further reduce the content significantly. It is possible to obtain the effect of improving the magnetostriction of the magnetic field.

【0010】本発明合金における各元素の組成範囲につ
いて以下に説明する。
The composition range of each element in the alloy of the present invention will be described below.

【0011】コバルト(Co):5重量%未満では十分
な低磁界印加時の磁歪特性が得られず、また40重量%
を越える場合は磁気特性がかえって低下してしまう。ま
た過剰の添加はキュリー温度の低下につながる。
Cobalt (Co): If the amount is less than 5% by weight, sufficient magnetostrictive properties cannot be obtained when a low magnetic field is applied.
If it exceeds, the magnetic properties will rather deteriorate. Moreover, excessive addition leads to a decrease in the Curie temperature.

【0012】鉄(Fe):2重量%未満では十分な磁歪
特性が得られず、また35重量%を越える場合は磁気特
性がかえって低下してしまう。
Iron (Fe): If it is less than 2% by weight, sufficient magnetostrictive properties cannot be obtained, and if it exceeds 35% by weight, the magnetic properties are rather deteriorated.

【0013】サマリウム(Sm):Smの添加によりD
yのみの場合に比べ磁歪特性の改善が図れるが、0.0
1重量%未満ではSm添加効果が得られず、また60重
量%を越える場合はかえって磁歪特性の低下につなが
る。
Samarium (Sm): D by addition of Sm
The magnetostriction characteristic can be improved compared to the case of only y, but 0.0
If it is less than 1% by weight, the effect of adding Sm cannot be obtained, and if it exceeds 60% by weight, the magnetostrictive properties are rather deteriorated.

【0014】なおDyは大きな磁歪を得るのに必須の元
素であり、Smと相乗効果を発揮し優れた磁歪特性を発
現する合金を得ることができる。Sm,Dyは希土類
(ランタナイド)に属し、鉄,ニッケル等の3d遷移金
属と異なり、4f電子の強い軌道各運動量のため極めて
大きい結晶磁気異方性を有し、優れた磁歪特性を得るた
めの必須成分であると同時に優れた靭性を付与する合金
の主成分である。
Dy is an essential element for obtaining a large magnetostriction, and it is possible to obtain an alloy that exerts a synergistic effect with Sm and exhibits excellent magnetostriction characteristics. Sm and Dy belong to rare earths (lanthanides), and unlike 3d transition metals such as iron and nickel, they have extremely large magnetocrystalline anisotropy due to strong orbital momentum of 4f electrons, and have excellent magnetostrictive properties. It is an essential component as well as the main component of the alloy that imparts excellent toughness.

【0015】なお上記組成を基本とするが、特性を劣化
させない程度の不純物元素の含有を妨げるものではな
く、また本発明の効果を損なわない範囲でのSm,Dy
以外の希土類元素,その他の元素の添加を妨げるもので
もない。
Although the above composition is basically used, Sm, Dy within a range that does not hinder the inclusion of an impurity element to the extent that characteristics are not deteriorated and does not impair the effects of the present invention.
It does not hinder the addition of other rare earth elements and other elements.

【0016】また製造方法は特に限定されるものではな
く、所定の組成比の合金材料を真空,不活性ガス若しく
は還元性ガス雰囲気中で融点以上の温度で溶解した後、
鋳造しインゴットを得て、所望の形状に切り出して使用
すれば良い。なおインゴット状態で均質化のための熱処
理を施すことが好ましい。またブリッジマン法,フロー
ティングゾーンメルト法等を用いることもできる。
The manufacturing method is not particularly limited, and after melting an alloy material having a predetermined composition ratio in a vacuum, an inert gas atmosphere or a reducing gas atmosphere at a temperature equal to or higher than the melting point,
It may be cast to obtain an ingot, which is cut out into a desired shape and used. It is preferable to perform heat treatment for homogenization in the ingot state. Alternatively, the Bridgman method, the floating zone melt method, or the like can be used.

【0017】この磁歪合金は負の大きな磁歪特性を示し
単独でも変位発生素子として使用することができるが、
正の磁歪特性を示す磁歪材と一体化することでバイメタ
ルとして使用することもできる。
This magnetostrictive alloy shows a large negative magnetostrictive characteristic and can be used alone as a displacement generating element.
It can also be used as a bimetal by integrating with a magnetostrictive material exhibiting positive magnetostrictive properties.

【0018】一般にバイメタルの湾曲特性は次式で表わ
される。
Generally, the bending characteristic of bimetal is expressed by the following equation.

【0019】[0019]

【数1】S=(3/4)(L)2 (1/t) ・Δd・H (S:絶対ストローク(mm),L:板の長さ(mm),t:板
の厚み(mm)) 従って絶対ストロークとしてS=1mmを得るために
は、L=30mm,t=0.2 mmの条件でΔd・H=2.
96×10-4となる。
[Equation 1] S = (3/4) (L) 2 (1 / t) ・ Δd ・ H (S: Absolute stroke (mm), L: Plate length (mm), t: Plate thickness (mm) )) Therefore, in order to obtain S = 1mm as an absolute stroke, Δd · H = 2. Under the conditions of L = 30mm and t = 0.2mm.
It becomes 96 × 10 -4 .

【0020】本発明者らが磁歪バイメタルの構成磁歪部
材について鋭意検討し、磁気歪係数(d=dε/dH,
歪量/印加磁場)の絶対値が1×10-6Oe-1以上でその
符号が正負反対の二種類の合金から構成され、Δd(=
|d1 −d2 |,d1 は正の磁歪合金の磁気歪係数,d
2 は負の磁歪合金の磁気歪係数)と印加磁場(H)との
積Δd・Hが2×10-4以上の磁歪バイメタルを試作
し、その特性を評価したところ、著しい絶対ストローク
の改善を実現できた。
The inventors of the present invention have diligently studied the magnetostrictive bimetal constituting magnetostrictive member and found that the magnetostrictive coefficient (d = dε / dH,
It is composed of two kinds of alloys whose absolute value of (strain amount / applied magnetic field) is 1 × 10 -6 Oe -1 or more and whose signs are opposite to each other, and Δd (=
| D 1 −d 2 |, d 1 is the magnetostriction coefficient of the positive magnetostrictive alloy, d
2 is a prototype of a magnetostrictive bimetal having a product Δd · H of the applied magnetic field (H) of the negative magnetostrictive alloy) of 2 × 10 −4 or more, and its characteristics were evaluated. It was realized.

【0021】この様なバイメタルに好適な正の磁歪合金
としては例えばTb−Dy−Fe−Mn−Co系合金が
挙げられる。
Examples of positive magnetostrictive alloys suitable for such bimetals include Tb-Dy-Fe-Mn-Co alloys.

【0022】組成としては例えばコバルト(Co)0.01
〜5重量%,鉄(Fe)25〜40重量%,マンガン(Mn)1
〜15重量,テルビウム(Tb)0.1〜25重量及び残部
が実質的にジスプロシウム(Dy)の組成である。
The composition is, for example, cobalt (Co) 0.01
~ 5 wt%, iron (Fe) 25-40 wt%, manganese (Mn) 1
.About.15 weight, terbium (Tb) 0.1 to 25 weight and the balance substantially dysprosium (Dy).

【0023】鉄(Fe):25重量%未満では十分な磁
歪特性が得られず、また40重量%を越える場合は靭性
が著しく低下する。
Iron (Fe): If it is less than 25% by weight, sufficient magnetostrictive properties cannot be obtained, and if it exceeds 40% by weight, the toughness is remarkably reduced.

【0024】マンガン(Mn):1重量%未満では十分
な磁歪特性が得られず、また15重量%を越える場合は
磁歪特性が低下してしまう。
Manganese (Mn): If it is less than 1% by weight, sufficient magnetostrictive properties cannot be obtained, and if it exceeds 15% by weight, the magnetostrictive properties deteriorate.

【0025】テルビウム(Tb):Tbの添加によりD
yのみの場合に比べ磁歪特性の改善が図れるが、0.1
重量%未満ではTb添加効果が得られず、また25重量
%を越える場合はかえって磁歪特性の低下につながる。
Terbium (Tb): D by addition of Tb
The magnetostriction characteristic can be improved as compared with the case of only y, but 0.1
If it is less than 25% by weight, the effect of adding Tb cannot be obtained, and if it exceeds 25% by weight, the magnetostrictive property is rather deteriorated.

【0026】なおDyは大きな磁歪を得るのに必須の元
素であり、Tbと相乗効果を発揮し優れた磁歪特性を発
現する合金を得ることができる。
Dy is an essential element for obtaining a large magnetostriction, and it is possible to obtain an alloy that exerts a synergistic effect with Tb and exhibits excellent magnetostriction characteristics.

【0027】ここでこのTb−Dy−Fe−Mnの低磁
場磁歪特性の改善のために添加するコバルト(Co)で
あるが、0.01重量%未満ではその添加効果が得られ
ず、また5重量%を越えると合金全体として磁歪特性が
低下してしまうため、0.01〜5重量%の範囲とし
た。なお過剰のCoの添加はキュリー温度の低下を招く
が、この範囲のCo添加は合金全体のキュリー温度の上
昇の効果があり、温度特性の改善にもつながる。
Here, cobalt (Co) is added to improve the low-field magnetostrictive property of Tb-Dy-Fe-Mn, but if it is less than 0.01% by weight, the effect of addition is not obtained, and 5 If the content exceeds 10% by weight, the magnetostrictive properties of the alloy as a whole deteriorate, so the range was set to 0.01-5% by weight. It should be noted that addition of excessive Co causes a decrease in the Curie temperature, but addition of Co in this range has the effect of increasing the Curie temperature of the entire alloy, which also leads to improvement in temperature characteristics.

【0028】この様な系の希土類−遷移金属合金系もラ
ーベス型金属間化合物を形成し、室温以上で優れた磁歪
特性を発揮する。
A rare earth-transition metal alloy system of such a system also forms a Laves type intermetallic compound and exhibits excellent magnetostrictive properties at room temperature or higher.

【0029】また磁歪材間の接合には各種の方法を用い
ることができるが、Co3 Dy4 ,Co3 Dy4 などの
DyとFe,Coの共晶合金組成を有する粉末をフィラ
ーとして用い800〜1000℃程度の温度での拡散接
合を用いることができる。
Various methods can be used to bond the magnetostrictive materials, but powders having a eutectic alloy composition of Dy and Fe, Co such as Co 3 Dy 4 , Co 3 Dy 4 are used as fillers. Diffusion bonding at a temperature of about 1000 ° C. can be used.

【0030】[0030]

【実施例】以下に本発明の実施例を説明する。 (実施例1)Co22.0重量%,Fe9.50重量%,Sm4
9.3重量%残部Dyの組成比の合金材料を真空誘導溶解
炉で溶解ののち鋳造しインゴットを得た。
EXAMPLES Examples of the present invention will be described below. (Example 1) Co2 2.0 wt%, Fe 9.50 wt%, Sm4
An alloy material having a composition ratio of 9.3 wt% balance Dy was melted in a vacuum induction melting furnace and then cast to obtain an ingot.

【0031】次いでこのインゴットより150μm厚×
3mm幅×30mm長の短冊状試料を切り出し、磁気歪
係数(d)が正の板状磁歪部材を得た。
Next, this ingot has a thickness of 150 μm ×
A strip sample having a width of 3 mm and a length of 30 mm was cut out to obtain a plate-shaped magnetostrictive member having a positive magnetostriction coefficient (d).

【0032】この磁歪部材の磁歪特性を調べたところ、
100Oe印加までの低磁界印加で最大-2.5×10-6Oe-1
低磁場での磁歪特性は非常に良好な特性を示した。
When the magnetostrictive characteristics of this magnetostrictive member were investigated,
The maximum magnetostrictive property of -2.5 × 10 -6 Oe -1 was shown in the low magnetic field application up to 100 Oe, and the magnetostrictive property in the low magnetic field was very good.

【0033】なおCo量をこの範囲外とした場合は少な
いときも過剰なときも低磁界磁歪特性は本実施例より劣
るものであった。
When the amount of Co was out of this range, the low magnetic field magnetostriction characteristics were inferior to those of this example both when it was small and when it was excessive.

【0034】この負の磁歪材と正の磁歪材として100
μm厚×3mm幅×30mm長のFe-Co-V 合金(Permend
ur,d1 =0.7 ×10-6Oe-1)を用い、Co3 Dy4 金属
間化合物組成を有する粉末フィラー材を介して重ね合わ
せ、100torrアルゴン圧減圧下で800℃,2時間の
拡散処理により接合し、バイメタルを得た。
As the negative magnetostrictive material and the positive magnetostrictive material, 100
μm thickness x 3mm width x 30mm length Fe-Co-V alloy (Permend
ur, d 1 = 0.7 × 10 −6 Oe −1 ) and superposed with a powder filler material having a Co 3 Dy 4 intermetallic compound composition, and subjected to diffusion treatment at 800 ° C. for 2 hours under a reduced pressure of 100 torr argon pressure. And joined to obtain a bimetal.

【0035】この特性を調べたところ印加磁界H=100 Oe
の下でΔd・H=3×10-4であり、変位(ストローク)
特性は0.8 mm、湾曲特性は8.0 μmOe-1であった。 (実施例2)Co21.5重量%,Fe20.3重量%,Sm1
2.3重量%残部Dyの組成比の合金材料を真空誘導溶解
炉で溶解ののち鋳造しインゴットを得た。
When this characteristic was examined, the applied magnetic field H = 100 Oe
Δd · H = 3 × 10 -4 under, displacement (stroke)
The characteristic was 0.8 mm, and the bending characteristic was 8.0 μmOe −1 . (Example 2) Co21.5 wt%, Fe20.3 wt%, Sm1
An alloy material having a composition ratio of 2.3 wt% balance Dy was melted in a vacuum induction melting furnace and then cast to obtain an ingot.

【0036】次いでこのインゴットより100μm厚×
3mm幅×30mm長の短冊状試料を切り出し、磁気歪
係数(d)が負の板状磁歪部材を得た。
Next, this ingot has a thickness of 100 μm ×
A strip sample having a width of 3 mm and a length of 30 mm was cut out to obtain a plate-shaped magnetostrictive member having a negative magnetostriction coefficient (d).

【0037】この磁歪部材の磁歪特性を調べたところ、
低磁界磁歪特性は-3.1×10-6Oe-1と非常に良好な特性を
示した。 (実施例3)Co8.6 重量%,Fe32.8重量%,Sm5
2.0重量%残部Dyの組成比の合金材料を用い、実施例
2と同様に磁歪部材を作成したところ、低磁界磁歪特性
は-5×10-6Oe-1と非常に良好な特性を示した。 (実施例4)実施例2で作成した負の磁歪合金を用いT
b−Dy−Fe−Mn−Co系合金を正の磁歪部材とし
て用いた磁歪バイメタルの例を説明する。
When the magnetostrictive characteristics of this magnetostrictive member were investigated,
The low magnetic field magnetostrictive property was -3.1 × 10 -6 Oe -1, which was very good. (Example 3) Co8.6% by weight, Fe32.8% by weight, Sm5
When a magnetostrictive member was prepared in the same manner as in Example 2 using an alloy material having a composition ratio of 2.0 wt% balance Dy, the low magnetic field magnetostrictive property was -5 × 10 -6 Oe -1, which was a very good property. . Example 4 Using the negative magnetostrictive alloy prepared in Example 2, T
An example of a magnetostrictive bimetal using a b-Dy-Fe-Mn-Co alloy as a positive magnetostrictive member will be described.

【0038】Co0.5 重量%,Mn6.2 重量%,Fe2
9.0重量%,Tb12.5重量%残部Dyの組成比の合金材
料を真空誘導溶解炉で溶解ののち鋳造しインゴットを得
た。
Co0.5 wt%, Mn6.2 wt%, Fe2
An alloy material having a composition ratio of 9.0 wt% and Tb 12.5 wt% balance Dy was melted in a vacuum induction melting furnace and then cast to obtain an ingot.

【0039】次いでこのインゴットより100μm厚×
3mm幅×30mm長の短冊状試料を切り出し、磁気歪
係数(d)が正の板状磁歪部材を得た。
Next, this ingot has a thickness of 100 μm ×
A strip sample having a width of 3 mm and a length of 30 mm was cut out to obtain a plate-shaped magnetostrictive member having a positive magnetostriction coefficient (d).

【0040】この磁歪部材の低磁界磁歪特性は 6.2×10
-6Oe-1であった。
The low magnetic field magnetostrictive characteristic of this magnetostrictive member is 6.2 × 10
It was -6 Oe -1 .

【0041】次いでこの正負の磁歪部材を、Co3 Dy
4 金属間化合物組成を有する粉末フィラー材を介して重
ね合わせ、100torrアルゴン圧減圧下で800℃,2
時間の拡散処理により接合し、バイメタルを得た。
Next, the positive and negative magnetostrictive members are replaced with Co 3 Dy.
4 Overlay via a powder filler material having an intermetallic compound composition, 800 torr at 100 torr argon pressure reduction, 2
Bonding was performed by diffusion treatment for a time to obtain a bimetal.

【0042】印加磁界H=100Oeの下でΔd・H=9
×10-4であった。
Under the applied magnetic field H = 100 Oe, Δd · H = 9
It was × 10 -4 .

【0043】またこの構成で磁歪バイメタルの変位(ス
トローク)特性は、100Oe印加磁界で3mmであり、
湾曲特性は30μmOe-1であった。
With this structure, the displacement (stroke) characteristic of the magnetostrictive bimetal is 3 mm under an applied magnetic field of 100 Oe,
The bending property was 30 μm Oe −1 .

【0044】比較のためFe-Co-V 合金を正磁歪部材とし
て用い、負磁歪部材としてNi(d2=-0.33 ×10-6O
e-1)を用い、圧延により作成したクラッド材から、3
mm幅×30mm長の短冊状試料を切り出した磁歪バイ
メタルを作成し、特性を調べたところ印加磁界H=100 Oe
の下でΔd・H=1×10-4であり、変位(ストローク)
特性は0.34mm、湾曲特性は3μmOe-1であった。
For comparison, Fe-Co-V alloy was used as a positive magnetostrictive member and Ni (d 2 = -0.33 × 10 -6 O) as a negative magnetostrictive member.
From the clad material produced by rolling using e -1 ), 3
A magnetostrictive bimetal was prepared by cutting a rectangular sample with a width of 30 mm and a length of 30 mm, and its characteristics were examined. Applied magnetic field H = 100 Oe
Δd · H = 1 × 10 -4 under, the displacement (stroke)
The characteristic was 0.34 mm, and the bending characteristic was 3 μmOe −1 .

【0045】またこのように正負合金ともにCoを含有
する掲記組成の合金とするバイメタル構成を採ることに
より、絶対ストロークが大きく、線形性,変位履歴特性
に優れると共に、耐疲労強度,耐衝撃性などに優れたも
のとなる。
Further, by adopting the bimetal constitution in which both the positive and negative alloys are alloys having the above-mentioned composition containing Co, the absolute stroke is large, the linearity and the displacement history characteristics are excellent, and the fatigue strength, impact resistance, etc. Will be excellent.

【0046】より詳細に説明すると、正負磁歪合金とも
にCo含有の金属間化合物で構成されるため、金属と金
属間化合物を組み合わせた場合に比べヤング率などの諸
特性がほぼ同程度となり、変位発生時に一方の側にスト
レスなどが集中することがないので耐疲労強度,変位履
歴特性などのバイメタルとしての信頼性を向上すること
ができる。変位特性,すなわち磁歪係数のオーダーも同
程度となるため、正側への変位,負側への変位をともに
大きくすることができ、結果として絶対ストロークの増
大とともに線形性の向上という効果を奏することができ
る。
More specifically, since both the positive and negative magnetostrictive alloys are composed of Co-containing intermetallic compounds, various characteristics such as Young's modulus are almost the same as in the case of combining the metal and the intermetallic compound, and displacement occurs. At times, stress does not concentrate on one side, so the reliability as a bimetal such as fatigue resistance and displacement history characteristics can be improved. Since the displacement characteristic, that is, the order of the magnetostriction coefficient is also about the same, it is possible to increase both the positive side displacement and the negative side displacement, and as a result, the effect of increasing the absolute stroke and improving the linearity is obtained. You can

【0047】[0047]

【発明の効果】以上説明したように本発明によれば希土
類−鉄系合金の大きな負磁歪特性を維持し、かつ低磁場
特性を改善することができる。従って磁歪を用いた変位
発生素子として本発明合金を用いることで低磁界で大き
な変位を得ることができ、工業上寄与するところ大であ
As described above, according to the present invention, it is possible to maintain the large negative magnetostriction characteristic of the rare earth-iron alloy and improve the low magnetic field characteristic. Therefore, by using the alloy of the present invention as a displacement generating element using magnetostriction, a large displacement can be obtained in a low magnetic field, which is a great contribution to the industry.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コバルト(Co)5〜40重量%,鉄(Fe)2
〜35重量%,サマリウム(Sm)0.01〜60重量%及
び残部が実質的にジスプロシウム(Dy)の組成を有するこ
とを特徴とする磁歪合金。
1. Cobalt (Co) 5-40% by weight, iron (Fe) 2
A magnetostrictive alloy having a composition of about 35 wt%, samarium (Sm) 0.01 to 60 wt% and the balance substantially dysprosium (Dy).
JP27600893A 1993-10-08 1993-10-08 Magnetostrictive alloy Expired - Lifetime JPH07122117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27600893A JPH07122117B2 (en) 1993-10-08 1993-10-08 Magnetostrictive alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27600893A JPH07122117B2 (en) 1993-10-08 1993-10-08 Magnetostrictive alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58110165A Division JPS602645A (en) 1983-06-21 1983-06-21 Magnetostrictive bimetal

Publications (2)

Publication Number Publication Date
JPH06316742A JPH06316742A (en) 1994-11-15
JPH07122117B2 true JPH07122117B2 (en) 1995-12-25

Family

ID=17563501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27600893A Expired - Lifetime JPH07122117B2 (en) 1993-10-08 1993-10-08 Magnetostrictive alloy

Country Status (1)

Country Link
JP (1) JPH07122117B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI652356B (en) * 2017-07-31 2019-03-01 台耀科技股份有限公司 Soft magnetic alloy

Also Published As

Publication number Publication date
JPH06316742A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
US4975129A (en) Permanent magnet
EP0344018B1 (en) Rare earth permanent magnet
EP0134304A1 (en) Permanent magnets
EP0361969B1 (en) Super-magnetostrictive alloy
WO2004081954A1 (en) R-t-b sintered magnet and process for producing the same
US6183571B1 (en) Permanent magnetic material and permanent magnet
JP3466481B2 (en) Giant magnetostrictive material
JP3452210B2 (en) Manufacturing method of magnetostrictive material
JPS63190138A (en) Rare-earth permanent magnet material
EP0416098A1 (en) Magnetically anisotropic sintered magnets.
JPH03183738A (en) Rare earth-cobalt series supermagnetostrictive alloy
JPH07122117B2 (en) Magnetostrictive alloy
US6045751A (en) Method of manufacturing a permanent magnet on the basis of NdFeB
US3837844A (en) Wear resisting magnetic material having high permeability
US5223046A (en) Super-magnetostrictive alloy
JPH0472900B2 (en)
JPH07122116B2 (en) Magnetostrictive alloy
JPH0630295B2 (en) permanent magnet
JPH0474426B2 (en)
JPH0754106A (en) Permanent magnet material
JP3217665B2 (en) Improved RE-Fe-B-based magnet and method for producing the same
EP0583041B1 (en) Method of manufacturing a permanent magnet on the basis of NdFeB
JPS59219453A (en) Permanent magnet material and its production
JP3105929B2 (en) Magnetostrictive material