JPH07122116B2 - Magnetostrictive alloy - Google Patents

Magnetostrictive alloy

Info

Publication number
JPH07122116B2
JPH07122116B2 JP27600593A JP27600593A JPH07122116B2 JP H07122116 B2 JPH07122116 B2 JP H07122116B2 JP 27600593 A JP27600593 A JP 27600593A JP 27600593 A JP27600593 A JP 27600593A JP H07122116 B2 JPH07122116 B2 JP H07122116B2
Authority
JP
Japan
Prior art keywords
magnetostrictive
alloy
weight
magnetostriction
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27600593A
Other languages
Japanese (ja)
Other versions
JPH06316741A (en
Inventor
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP27600593A priority Critical patent/JPH07122116B2/en
Publication of JPH06316741A publication Critical patent/JPH06316741A/en
Publication of JPH07122116B2 publication Critical patent/JPH07122116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁歪合金,特に正の磁歪
を有し、低磁界磁歪特性に優れた磁歪合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive alloy, and more particularly to a magnetostrictive alloy having positive magnetostriction and excellent in low magnetic field magnetostrictive characteristics.

【0002】[0002]

【従来の技術】近年の機械工作における加工精度の向上
には目覚しいものがあり、ミクロンからサブミクロンの
時代に入りつつある。電子デバイスなどにおいてはサブ
ミクロンの加工精度が求められることはめずらしくない
昨今であるが、メカトロニクスの時代を迎え、電子工学
の分野だけでなく、機械工学の分野においても超微細加
工、微小変位制御の問題が重要になりつつある。光情報
処理、光記録機器などの発達と相まって、微小変位制御
素子はその必要性が増大する傾向にある。
2. Description of the Related Art In recent years, there have been remarkable improvements in machining accuracy in machining, and the era of micron to submicron is entering. It is not uncommon today that submicron processing accuracy is required for electronic devices, but in the era of mechatronics, ultra-fine processing and minute displacement control are being performed not only in the field of electronic engineering but also in the field of mechanical engineering. Problems are becoming important. Along with the development of optical information processing and optical recording equipment, the need for micro displacement control elements tends to increase.

【0003】各種の微小変位制御素子が提案される中
で、一方式として磁歪素子が有る。
Among various types of minute displacement control elements proposed, there is a magnetostrictive element as one method.

【0004】すなわち外部磁場の印加により変位を生じ
る磁歪材料を用いた変位発生素子である。
That is, it is a displacement generating element using a magnetostrictive material which is displaced by the application of an external magnetic field.

【0005】磁歪材料としてはNiなど各種の材料が知
られているが、なかでもTbFe系の合金は極めて大き
い磁歪を示すため有望な材料である(米国特許第437537
2 号,米国特許第4378258 号,米国特許第4308474 号,
米国特許第4152178 号,特公昭61-33892号公報,特開昭
49-2094 号公報など)。
Various materials such as Ni are known as magnetostrictive materials, but among them, TbFe alloys are promising materials because they exhibit extremely large magnetostriction (US Pat. No. 437537).
2, U.S. Pat. No. 4,378,258, U.S. Pat. No. 4,308,474,
U.S. Pat. No. 4152178, Japanese Patent Publication No. 61-33892, JP Sho
49-2094, etc.).

【0006】この様なR−Fe(R:希土類)合金系で
は大きい磁歪が得られるが、低磁場特性に問題が有っ
た。すなわち低い印加磁界での変位量が十分ではなかっ
た。
A large magnetostriction can be obtained in such an R-Fe (R: rare earth) alloy system, but there is a problem in low magnetic field characteristics. That is, the amount of displacement at a low applied magnetic field was not sufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明は以上の点を考
慮してなされたもので、R−Fe合金系の低磁場磁歪特
性の改善を目的とする。
The present invention has been made in consideration of the above points, and an object thereof is to improve the low magnetic field magnetostriction characteristics of the R-Fe alloy system.

【0008】[0008]

【課題を解決するための手段及び作用】本発明は、コバ
ルト(Co)0.01〜5重量%,鉄(Fe)25〜40重量
%,マンガン(Mn)1〜15重量%,テルビウム(Tb)0.
1〜25重量%及び残部が実質的にジスプロシウム(Dy)
の組成を有することを特徴とする磁歪合金である。
[Means and Action for Solving the Problems] The present invention comprises: 0.01 to 5% by weight of cobalt (Co), 25 to 40% by weight of iron (Fe), 1 to 15% by weight of manganese (Mn), and terbium (Tb). ) 0.
1 to 25% by weight and the balance substantially dysprosium (Dy)
It is a magnetostrictive alloy having the composition

【0009】この様な系の希土類−遷移金属合金系では
ラーベス型金属間化合物を形成し、室温以上で優れた磁
歪特性を発揮し、このTb−Dy−Fe−Mn系にCo
を微量添加することで更に大幅な低磁場磁歪特性の改善
効果を得ることができる。
In such a rare earth-transition metal alloy system of such a system, a Laves type intermetallic compound is formed and excellent magnetostriction characteristics are exhibited at room temperature or higher. Coation is made in this Tb-Dy-Fe-Mn system.
By adding a small amount of, it is possible to obtain a more significant effect of improving the low-field magnetostrictive characteristic.

【0010】本発明合金における各元素の組成範囲につ
いて以下に説明する。
The composition range of each element in the alloy of the present invention will be described below.

【0011】鉄(Fe):25重量%未満では十分な磁
歪特性が得られず、また40重量%を越える場合は靭性
が著しく低下する。
Iron (Fe): If it is less than 25% by weight, sufficient magnetostrictive properties cannot be obtained, and if it exceeds 40% by weight, the toughness is remarkably reduced.

【0012】マンガン(Mn):1重量%未満では十分
な磁歪特性が得られず、また15重量%を越える場合は
磁歪特性が低下してしまう。
Manganese (Mn): If it is less than 1% by weight, sufficient magnetostrictive properties cannot be obtained, and if it exceeds 15% by weight, the magnetostrictive properties deteriorate.

【0013】テルビウム(Tb):Tbの添加によりD
yのみの場合に比べ磁歪特性の改善が図れるが、0.1
重量%未満ではTb添加効果が得られず、また25重量
%を越える場合はかえって磁歪特性の低下につながる。
Terbium (Tb): D by addition of Tb
The magnetostriction characteristic can be improved as compared with the case of only y, but 0.1
If it is less than 25% by weight, the effect of adding Tb cannot be obtained, and if it exceeds 25% by weight, the magnetostrictive property is rather deteriorated.

【0014】なおDyは大きな磁歪を得るのに必須の元
素であり、Tbと相乗効果を発揮し優れた磁歪特性を発
現する合金を得ることができる。Tb,Dyは希土類
(ランタナイド)に属し、鉄,ニッケル等の3d遷移金
属と異なり、4f電子の強い軌道各運動量のため極めて
大きい結晶磁気異方性を有し、優れた磁歪特性を得るた
めの必須成分であると同時に優れた靭性を付与する合金
の主成分である。しかしながらTb,Dy単体若しくは
Tb−Dy合金では低温領域では優れた磁歪特性を示す
ものの、室温以上の温度領域では磁歪特性を示さない。
Tb−Dy−Fe−Mn系で室温以上の温度領域で優れ
た磁歪特性を得ることができる。
Dy is an essential element for obtaining a large magnetostriction, and it is possible to obtain an alloy that exhibits a synergistic effect with Tb and exhibits excellent magnetostriction characteristics. Tb and Dy belong to rare earths (lanthanides), and unlike 3d transition metals such as iron and nickel, Tf and Dy have extremely large magnetocrystalline anisotropy due to strong orbital momentum of 4f electrons to obtain excellent magnetostriction characteristics. It is an essential component as well as the main component of the alloy that imparts excellent toughness. However, Tb, Dy alone or a Tb-Dy alloy shows excellent magnetostriction characteristics in a low temperature region, but does not exhibit magnetostriction characteristics in a temperature region above room temperature.
With the Tb-Dy-Fe-Mn system, excellent magnetostrictive characteristics can be obtained in a temperature range of room temperature or higher.

【0015】ここでこのTb−Dy−Fe−Mnの低磁
場磁歪特性の改善のために添加するコバルト(Co)で
あるが、0.01重量%未満ではその添加効果が得られ
ず、また5重量%を越えると合金全体として磁歪特性が
低下してしまうため、0.01〜5重量%の範囲とし
た。なお過剰のCoの添加はキュリー温度の低下を招く
が、この範囲のCo添加は合金全体のキュリー温度の上
昇の効果があり、温度特性の改善にもつながる。
Here, cobalt (Co) is added to improve the low-field magnetostrictive property of Tb-Dy-Fe-Mn, but if it is less than 0.01% by weight, its effect cannot be obtained, and 5 If the content exceeds 10% by weight, the magnetostrictive properties of the alloy as a whole deteriorate, so the range was set to 0.01 to 5% by weight. It should be noted that addition of excessive Co causes a decrease in the Curie temperature, but addition of Co in this range has the effect of increasing the Curie temperature of the entire alloy, which also leads to improvement in temperature characteristics.

【0016】なお上記組成を基本とするが、特性を劣化
させない程度の不純物元素の含有を妨げるものではな
く、また本発明の効果を損なわない範囲でのTb,Dy
以外の希土類元素,その他の元素の添加を妨げるもので
もない。
Although the above composition is basically used, the inclusion of an impurity element to the extent that the characteristics are not deteriorated is not hindered, and Tb and Dy are contained within a range not impairing the effects of the present invention.
It does not hinder the addition of other rare earth elements and other elements.

【0017】また製造方法は特に限定されるものではな
く、所定の組成比の合金材料を真空,不活性ガス若しく
は還元性ガス雰囲気中で融点以上の温度で溶解した後、
鋳造しインゴットを得て、所望の形状に切り出して使用
すれば良い。なおインゴット状態で均質化のための熱処
理を施すことが好ましい。またブリッジマン法,フロー
ティングゾーンメルト法等を用いることもできる。
The manufacturing method is not particularly limited, and after melting an alloy material having a predetermined composition ratio in a vacuum, an inert gas or a reducing gas atmosphere at a temperature equal to or higher than the melting point,
It may be cast to obtain an ingot, which is cut out into a desired shape and used. It is preferable to perform heat treatment for homogenization in the ingot state. Alternatively, the Bridgman method, the floating zone melt method, or the like can be used.

【0018】この磁歪合金は正の大きな磁歪特性を示し
単独でも変位発生素子として使用することができるが、
負の磁歪特性を示す磁歪材(例えばNiなど)と一体化
することでバイメタルとして使用することもできる。
This magnetostrictive alloy exhibits a large positive magnetostrictive characteristic and can be used alone as a displacement generating element.
It can also be used as a bimetal by integrating with a magnetostrictive material exhibiting negative magnetostrictive characteristics (for example, Ni).

【0019】一般にバイメタルの湾曲特性は次式で表わ
される。
Generally, the bending characteristic of bimetal is expressed by the following equation.

【0020】[0020]

【数1】S=(3/4)(L)2 (1/t) ・Δd・H (S:絶対ストローク(mm),L:板の長さ(mm),t:板
の厚み(mm)) 従って絶対ストロークとしてS=1mmを得るために
は、L=30mm,t=0.2 mmの条件でΔd・H=2.
96×10-4となる。
[Equation 1] S = (3/4) (L) 2 (1 / t) ・ Δd ・ H (S: Absolute stroke (mm), L: Plate length (mm), t: Plate thickness (mm) )) Therefore, in order to obtain S = 1mm as an absolute stroke, Δd · H = 2. Under the conditions of L = 30mm and t = 0.2mm.
It becomes 96 × 10 -4 .

【0021】本発明者らが磁歪バイメタルの構成磁歪部
材について鋭意検討し、磁気歪係数(d=dε/dH,
歪量/印加磁場)の絶対値が1×10-6Oe-1以上でその
符号が正負反対の二種類の合金から構成され、Δd(=
|d1 −d2 |,d1 は正の磁歪合金の磁気歪係数,d
2 は負の磁歪合金の磁気歪係数)と印加磁場(H)との
積Δd・Hが2×10-4以上の磁歪バイメタルを試作
し、その特性を評価したところ、著しい絶対ストローク
の改善を実現できた。
The inventors of the present invention have diligently studied the magnetostrictive bimetal constituting magnetostrictive member and found that the magnetostrictive coefficient (d = dε / dH,
It is composed of two kinds of alloys whose absolute value of (strain amount / applied magnetic field) is 1 × 10 -6 Oe -1 or more and whose signs are opposite to each other, and Δd (=
| D 1 −d 2 |, d 1 is the magnetostriction coefficient of the positive magnetostrictive alloy, d
2 is a prototype of a magnetostrictive bimetal having a product Δd · H of the applied magnetic field (H) of the negative magnetostrictive alloy) of 2 × 10 −4 or more, and its characteristics were evaluated. It was realized.

【0022】この様なバイメタルに好適な負の磁歪合金
としては例えばCo−Fe−Sm−Dy系合金が挙げら
れる。
As a negative magnetostrictive alloy suitable for such a bimetal, for example, a Co-Fe-Sm-Dy type alloy can be cited.

【0023】組成としては例えばコバルト(Co)5〜40
重量%,鉄(Fe)2〜35重量%,サマリウム(Sm)0.0
1〜60重量%及び残部が実質的にジスプロシウム(Dy)
の組成である。
The composition is, for example, cobalt (Co) 5-40.
% By weight, iron (Fe) 2 to 35% by weight, samarium (Sm) 0.0
1-60% by weight and the balance substantially dysprosium (Dy)
The composition of

【0024】この様な系の希土類−遷移金属合金系もラ
ーベス型金属間化合物を形成し、室温以上で優れた磁歪
特性を発揮する。
The rare earth-transition metal alloy system of such a system also forms a Laves type intermetallic compound and exhibits excellent magnetostrictive properties at room temperature or higher.

【0025】この様な負の磁歪合金においては各組成範
囲は以下の理由による。
The composition ranges of such a negative magnetostrictive alloy are as follows.

【0026】コバルト(Co):5重量%未満では十分
な低磁界印加時の磁歪特性が得られず、また40重量%
を越える場合は磁気特性がかえって低下してしまう。
Cobalt (Co): If it is less than 5% by weight, sufficient magnetostrictive properties when a low magnetic field is applied cannot be obtained, and 40% by weight.
If it exceeds, the magnetic properties will rather deteriorate.

【0027】鉄(Fe):2重量%未満では十分な磁歪
特性が得られず、また35重量%を越える場合は磁気特
性がかえって低下してしまう。
Iron (Fe): If it is less than 2% by weight, sufficient magnetostrictive properties cannot be obtained, and if it exceeds 35% by weight, the magnetic properties are rather deteriorated.

【0028】サマリウム(Sm):Smの添加によりD
yのみの場合に比べ磁歪特性の改善が図れるが、0.0
1重量%未満ではSm添加効果が得られず、また60重
量%を越える場合はかえって磁歪特性の低下につなが
る。
Samarium (Sm): D by addition of Sm
The magnetostriction characteristic can be improved compared to the case of only y, but 0.0
If it is less than 1% by weight, the effect of adding Sm cannot be obtained, and if it exceeds 60% by weight, the magnetostrictive properties are rather deteriorated.

【0029】なおDyは大きな磁歪を得るのに必須の元
素であり、Smと相乗効果を発揮し優れた磁歪特性を発
現する合金を得ることができる。
Dy is an essential element for obtaining a large magnetostriction, and it is possible to obtain an alloy that exerts a synergistic effect with Sm and exhibits excellent magnetostriction characteristics.

【0030】また磁歪材間の接合には各種の方法を用い
ることができるが、Co3 Dy4 ,Co3 Dy4 などの
DyとFe,Coの共晶合金組成を有する粉末をフィラ
ーとして用い800〜1000℃程度の温度での拡散接
合を用いることができる。
Various methods can be used for joining the magnetostrictive materials, but powders having a eutectic alloy composition of Dy and Fe, Co such as Co 3 Dy 4 , Co 3 Dy 4, etc. are used as fillers. Diffusion bonding at a temperature of about 1000 ° C. can be used.

【0031】[0031]

【実施例】以下に本発明の実施例を説明する。 (実施例1)Co 1.2重量%,Mn 7.3重量%,Fe2
8.1重量%,Tb13重量%残部Dyの組成比の合金材料
を真空誘導溶解炉で溶解ののち鋳造しインゴットを得
た。
EXAMPLES Examples of the present invention will be described below. (Example 1) Co 1.2 wt%, Mn 7.3 wt%, Fe2
An alloy material having a composition ratio of 8.1 wt% and Tb 13 wt% balance Dy was melted in a vacuum induction melting furnace and then cast to obtain an ingot.

【0032】次いでこのインゴットより150μm厚×
3mm幅×30mm長の短冊状試料を切り出し、磁気歪
係数(d)が正の板状磁歪部材を得た。
Next, this ingot has a thickness of 150 μm ×
A strip sample having a width of 3 mm and a length of 30 mm was cut out to obtain a plate-shaped magnetostrictive member having a positive magnetostriction coefficient (d).

【0033】この磁歪部材の磁歪特性を調べたところ、
100Oe印加までの低磁界印加で最大5×10-6Oe-1と低
磁場での磁歪特性は非常に良好な特性を示した。
When the magnetostrictive characteristics of this magnetostrictive member were examined,
The maximum magnetostriction characteristic was 5 × 10 −6 Oe −1 when a low magnetic field was applied up to 100 Oe, and the magnetostrictive characteristic at a low magnetic field was very good.

【0034】比較のため上記組成でCoを含まない場合
についても同様の特性を調べたところ3×10-6Oe-1であ
った。
For comparison, when the same characteristics were examined for the above composition containing no Co, it was 3 × 10 -6 Oe -1 .

【0035】この様にCo添加により低磁場磁歪特性が
改善されることが分かる。
As described above, it is understood that the addition of Co improves the low magnetic field magnetostriction characteristic.

【0036】更に過剰のCo(15重量%)を含む場合
についても同様の特性を調べたところ0.7×10-6Oe-1
であり、過剰Co添加はかえって磁歪特性を低下させて
しまうことが分かる。
Further, when the same characteristics were investigated in the case of containing an excessive amount of Co (15% by weight), 0.7 × 10 -6 Oe -1 was obtained.
Therefore, it can be seen that the addition of excess Co rather deteriorates the magnetostrictive property.

【0037】この正磁歪材と負の磁歪材として100μ
m厚×3mm幅×30mm長のNi(0.33×10-6Oe-1
薄板を用い、Co3 Dy4 金属間化合物組成を有する粉
末フィラー材を介して重ね合わせ、100torrアルゴン
圧減圧下で800℃,2時間の拡散処理により接合し、
バイメタルを得た。
As the positive magnetostrictive material and the negative magnetostrictive material, 100 μ
m thickness x 3 mm width x 30 mm length Ni (0.33 x 10 -6 Oe -1 )
Using thin plates, they are superposed through a powder filler material having a Co 3 Dy 4 intermetallic compound composition, and joined by diffusion treatment at 800 ° C. for 2 hours under a reduced pressure of 100 torr argon pressure,
Got a bimetal.

【0038】この特性を調べたところ印加磁界H=100 Oe
の下でΔd・H=5×10-4であり、変位(ストローク)
特性は1.35mm、湾曲特性は13.5μmOe-1であった。 (実施例2)Co 0.5重量%,Mn 6.2重量%,Fe2
9.0重量%,Tb12.5重量%残部Dyの組成比の合金材
料を真空誘導溶解炉で溶解ののち鋳造しインゴットを得
た。
When this characteristic was examined, the applied magnetic field H = 100 Oe
Δd · H = 5 × 10 -4 under, displacement (stroke)
The characteristic was 1.35 mm, and the bending characteristic was 13.5 μm Oe −1 . (Example 2) Co 0.5 wt%, Mn 6.2 wt%, Fe2
An alloy material having a composition ratio of 9.0 wt% and Tb 12.5 wt% balance Dy was melted in a vacuum induction melting furnace and then cast to obtain an ingot.

【0039】次いでこのインゴットより100μm厚×
3mm幅×30mm長の短冊状試料を切り出し、磁気歪
係数(d)が正の板状磁歪部材を得た。
Next, this ingot has a thickness of 100 μm ×
A strip sample having a width of 3 mm and a length of 30 mm was cut out to obtain a plate-shaped magnetostrictive member having a positive magnetostriction coefficient (d).

【0040】この磁歪部材の磁歪特性を調べたところ、
低磁界磁歪特性は 6.2×10-6Oe-1と非常に良好な特性を
示した。 (実施例3)Co 2.2重量%,Mn 2.0重量%,Fe3
6.8重量%,Tb23.3重量%残部Dyの組成比の合金材
料を用い、実施例2と同様に磁歪部材を作成したとこ
ろ、低磁界磁歪特性は8×10-6Oe-1と非常に良好な特性
を示した。 (実施例4)実施例2で作成した正の磁歪合金を用いS
m−Dy−Fe−Co系合金を負の磁歪部材として用い
た磁歪バイメタルの例を説明する。
When the magnetostrictive characteristics of this magnetostrictive member were investigated,
The low magnetic field magnetostrictive property was 6.2 × 10 -6 Oe -1, which was very good. (Example 3) 2.2% by weight of Co, 2.0% by weight of Mn, Fe3
When a magnetostrictive member was prepared in the same manner as in Example 2 using an alloy material having a composition ratio of 6.8 wt% and Tb23.3 wt% balance Dy, the low magnetic field magnetostrictive property was 8 × 10 -6 Oe -1, which was very good. It showed various characteristics. (Example 4) Using the positive magnetostrictive alloy prepared in Example 2, S
An example of a magnetostrictive bimetal using an m-Dy-Fe-Co alloy as a negative magnetostrictive member will be described.

【0041】Co21.5重量%,Fe20.3重量%,Sm1
2.3重量%残部Dyの組成比の合金材料を真空誘導溶解
炉で溶解ののち鋳造しインゴットを得た。
Co21.5% by weight, Fe20.3% by weight, Sm1
An alloy material having a composition ratio of 2.3 wt% balance Dy was melted in a vacuum induction melting furnace and then cast to obtain an ingot.

【0042】次いでこのインゴットより100μm厚×
3mm幅×30mm長の短冊状試料を切り出し、磁気歪
係数(d)が負の板状磁歪部材を得た。
Next, this ingot has a thickness of 100 μm ×
A strip sample having a width of 3 mm and a length of 30 mm was cut out to obtain a plate-shaped magnetostrictive member having a negative magnetostriction coefficient (d).

【0043】この磁歪部材の低磁界磁歪特性は-3.1×10
-6Oe-1であった。
The low magnetic field magnetostrictive characteristic of this magnetostrictive member is -3.1 × 10
It was -6 Oe -1 .

【0044】次いでこの正負の磁歪部材を、Co3 Dy
4 金属間化合物組成を有する粉末フィラー材を介して重
ね合わせ、100torrアルゴン圧減圧下で800℃,2
時間の拡散処理により接合し、バイメタルを得た。
Next, the positive and negative magnetostrictive members are replaced with Co 3 Dy.
4 Overlay via a powder filler material having an intermetallic compound composition, 800 torr at 100 torr argon pressure reduction, 2
Bonding was performed by diffusion treatment for a time to obtain a bimetal.

【0045】印加磁界H=100Oeの下でΔd・H=9
×10-4であった。
Δd · H = 9 under applied magnetic field H = 100 Oe
It was × 10 -4 .

【0046】またこの構成で磁歪バイメタルの変位(ス
トローク)特性は、100Oe印加磁界で3mmであり、
湾曲特性は30μmOe-1であった。
With this structure, the displacement (stroke) characteristic of the magnetostrictive bimetal is 3 mm under an applied magnetic field of 100 Oe,
The bending property was 30 μm Oe −1 .

【0047】比較のためFe-Co-V 合金(Permendur,d1
=0.7 ×10-6Oe-1)を正磁歪部材として用い、負磁歪部
材としてNi(d2 =-0.33 ×10-6Oe-1)を用い、圧延
により作成したクラッド材から、3mm幅×30mm長
の短冊状試料を切り出した磁歪バイメタルを作成し、特
性を調べたところ印加磁界H=100 Oeの下でΔd・H=1
×10-4であり、変位(ストローク)特性は0.34mm、湾
曲特性は3μmOe-1であった。
For comparison, Fe-Co-V alloy (Permendur, d 1
= 0.7 × 10 −6 Oe −1 ) as a positive magnetostrictive member and Ni (d 2 = −0.33 × 10 −6 Oe −1 ) as a negative magnetostrictive member. A magnetostrictive bimetal was prepared by cutting a 30 mm long strip sample, and its characteristics were examined. Under an applied magnetic field H = 100 Oe, Δd · H = 1.
× is 10-4, the displacement (stroke) characteristic 0.34 mm, the curved characteristic was 3μmOe -1.

【0048】またこのように正負合金ともにCoを含有
する掲記組成の合金とするバイメタル構成を採ることに
より、絶対ストロークが大きく、線形性,変位履歴特性
に優れると共に、耐疲労強度,耐衝撃性などに優れたも
のとなる。
Further, by adopting the bimetal structure in which both the positive and negative alloys are alloys of the above-mentioned composition containing Co, the absolute stroke is large, the linearity and displacement history characteristics are excellent, and the fatigue strength, impact resistance, etc. Will be excellent.

【0049】より詳細に説明すると、正負磁歪合金とも
にCo含有の金属間化合物で構成されるため、金属と金
属間化合物を組み合わせた場合に比べヤング率などの諸
特性がほぼ同程度となり、変位発生時に一方の側にスト
レスなどが集中することがないので耐疲労強度,変位履
歴特性などのバイメタルとしての信頼性を向上すること
ができる。変位特性,すなわち磁歪係数のオーダーも同
程度となるため、正側への変位,負側への変位をともに
大きくすることができ、結果として絶対ストロークの増
大とともに線形性の向上という効果を奏することができ
る。
More specifically, since both the positive and negative magnetostrictive alloys are composed of an intermetallic compound containing Co, various characteristics such as Young's modulus are almost the same as those in the case of combining the metal and the intermetallic compound, and the displacement occurs. At times, stress does not concentrate on one side, so the reliability as a bimetal such as fatigue resistance and displacement history characteristics can be improved. Since the displacement characteristic, that is, the order of the magnetostriction coefficient is also about the same, it is possible to increase both the positive side displacement and the negative side displacement, and as a result, the effect of increasing the absolute stroke and improving the linearity is obtained. You can

【0050】[0050]

【発明の効果】以上説明したように本発明によれば希土
類−鉄系合金の大きな正磁歪特性を維持し、かつ低磁場
特性を改善することができる。従って磁歪を用いた変位
発生素子として本発明合金を用いることで低磁界で大き
な変位を得ることができ、工業上寄与するところ大であ
As described above, according to the present invention, it is possible to maintain the large positive magnetostriction characteristic of the rare earth-iron alloy and improve the low magnetic field characteristic. Therefore, by using the alloy of the present invention as a displacement generating element using magnetostriction, a large displacement can be obtained in a low magnetic field, which is a great contribution to the industry.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コバルト(Co)0.01〜5重量%,鉄(F
e)25〜40重量%,マンガン(Mn)1〜15重量%,テ
ルビウム(Tb)0.1〜25重量%及び残部が実質的にジ
スプロシウム(Dy)の組成を有することを特徴とする磁歪
合金。
1. Cobalt (Co) 0.01 to 5% by weight, iron (F)
e) Magnetostrictive alloy characterized by having a composition of 25-40% by weight, manganese (Mn) 1-15% by weight, terbium (Tb) 0.1-25% by weight and the balance substantially dysprosium (Dy). .
JP27600593A 1993-10-08 1993-10-08 Magnetostrictive alloy Expired - Lifetime JPH07122116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27600593A JPH07122116B2 (en) 1993-10-08 1993-10-08 Magnetostrictive alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27600593A JPH07122116B2 (en) 1993-10-08 1993-10-08 Magnetostrictive alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58110165A Division JPS602645A (en) 1983-06-21 1983-06-21 Magnetostrictive bimetal

Publications (2)

Publication Number Publication Date
JPH06316741A JPH06316741A (en) 1994-11-15
JPH07122116B2 true JPH07122116B2 (en) 1995-12-25

Family

ID=17563457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27600593A Expired - Lifetime JPH07122116B2 (en) 1993-10-08 1993-10-08 Magnetostrictive alloy

Country Status (1)

Country Link
JP (1) JPH07122116B2 (en)

Also Published As

Publication number Publication date
JPH06316741A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
US4975129A (en) Permanent magnet
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
US4859255A (en) Permanent magnets
EP0344018B1 (en) Rare earth permanent magnet
WO2004081954A1 (en) R-t-b sintered magnet and process for producing the same
EP0361969B1 (en) Super-magnetostrictive alloy
JPH08162312A (en) Permanent magnet material, permanent magnet and manufacture of permanent magnet
US3997371A (en) Permanent magnet
JP2513994B2 (en) permanent magnet
JPS63190138A (en) Rare-earth permanent magnet material
US6045751A (en) Method of manufacturing a permanent magnet on the basis of NdFeB
JPH07122116B2 (en) Magnetostrictive alloy
JPH07122117B2 (en) Magnetostrictive alloy
US3837844A (en) Wear resisting magnetic material having high permeability
JPH0472900B2 (en)
JPH0474426B2 (en)
JPH0630295B2 (en) permanent magnet
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
EP0583041B1 (en) Method of manufacturing a permanent magnet on the basis of NdFeB
JPS59219453A (en) Permanent magnet material and its production
JP3217665B2 (en) Improved RE-Fe-B-based magnet and method for producing the same
JP3105929B2 (en) Magnetostrictive material
JPH07106109A (en) R-tm-b permanent magnet of improved corrosion resistance, and its manufacture
AU720995B2 (en) Permanent magnet
JP2689544B2 (en) Method for manufacturing giant magnetostrictive alloy and giant magnetostrictive material