JPH07121369B2 - Particle charging device - Google Patents

Particle charging device

Info

Publication number
JPH07121369B2
JPH07121369B2 JP32241791A JP32241791A JPH07121369B2 JP H07121369 B2 JPH07121369 B2 JP H07121369B2 JP 32241791 A JP32241791 A JP 32241791A JP 32241791 A JP32241791 A JP 32241791A JP H07121369 B2 JPH07121369 B2 JP H07121369B2
Authority
JP
Japan
Prior art keywords
space
photoelectron emitting
fine particles
electrode
photoelectron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32241791A
Other languages
Japanese (ja)
Other versions
JPH05138070A (en
Inventor
敏昭 藤井
英友 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP32241791A priority Critical patent/JPH07121369B2/en
Publication of JPH05138070A publication Critical patent/JPH05138070A/en
Publication of JPH07121369B2 publication Critical patent/JPH07121369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空間中の微粒子の荷電
装置に係り、電場における光電効果により発生する光電
子による空間中の微粒子を荷電する装置に関する。そし
て、微粒子を荷電して利用する分野としては、(a)荷
電微粒子を捕集・除去して、清浄化気体あるいは清浄化
空間を得る分野、清浄化液体を得る分野、(b)荷電微
粒子により、空気あるいは排ガス等の気体中あるいは空
間中あるいは液体中の微粒子の濃度や粒径の測定を行う
分野、(c)微粒子の表面改質、荷電量の制御、微粒子
の分離、分級を行う分野等がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for charging particles in a space, and more particularly to a device for charging particles in a space by photoelectrons generated by a photoelectric effect in an electric field. In the field of charging and utilizing the fine particles, (a) a field of collecting and removing the charged fine particles to obtain a cleaning gas or a cleaning space, a field of obtaining a cleaning liquid, and (b) charging particles , The field of measuring the concentration and particle size of fine particles in gas or space such as air or exhaust gas, or liquid, (c) the surface modification of fine particles, control of charge amount, separation of fine particles, classification, etc. There is.

【0002】[0002]

【従来の技術】光電子放出材に、紫外線を照射すること
により発生する光電子による微粒子の荷電及びその利用
については、本発明者の多数の提案がある。本発明者が
気体清浄化関係において提案したものの内、本発明と特
に関連性を有するものは次の通りである。 (1)特開昭61−178050号(US Patent 4,
750,917号) (2)特開昭63−100955号 (3)特開平1−262954号 (4)特願平2−295422号 又、測定関係において提案したものには (1)特開昭62−242838号 (2)特開平2−47536号各公報 (3)特願平1−134781号がある。
2. Description of the Related Art A number of proposals have been made by the present inventor regarding charging and utilization of fine particles by photoelectrons generated by irradiating a photoelectron emitting material with ultraviolet rays. Among the things that the present inventor has proposed in the gas cleaning relationship, the ones that are particularly relevant to the present invention are as follows. (1) JP-A-61-178050 (US Patent 4,
750,917) (2) JP-A-63-100955 (3) JP-A-1-262954 (4) Japanese Patent Application No. 2-295422 No. 62-242838 (2) Japanese Patent Application Laid-Open No. 2-47536 (3) Japanese Patent Application No. 1-134781.

【0003】さら分離・分級関係において提案したもの
には、特願平1−177198号がある。その他、荷電
条件関係において提案したものには、(1)特願平1−
120563号、(2)特願平1−120564号、
(3)特願平3−105093号、(4)特願平3−1
31640号がある。さらに、光電子放出材関係におい
て提案したものに、(1)特願平1−155857号、
(2)特願平2−153335号、(3)特願平2−2
78123号、(4)特願平2−295423号があ
る。これらの方式は適用分野によっては有効であるが、
特定の分野の特定の用途においては改善の余地がある。
例えば、紫外線源として低波長紫外線を一部含む紫外線
ランプの使用においては、該紫外線が被処理空間中の空
気に照射された場合、空気中より微粒子(超微粒子)が
発生する場合がある。このような場合は、例えば微粒子
の荷電・捕集において、光電子による微粒子の荷電・捕
集の負荷が大きくなり問題であった。すなわち、荷電部
・捕集部の負担が大きくなり、改善の必要があった。
Further proposed in connection with separation / classification is Japanese Patent Application No. 1-177198. Other proposals regarding charging conditions include (1) Japanese Patent Application No. 1-
120563, (2) Japanese Patent Application No. 1-1205564,
(3) Japanese Patent Application No. 3-105093, (4) Japanese Patent Application No. 3-1
There is 31640 issue. In addition, the proposals related to photoelectron emitting materials include (1) Japanese Patent Application No. 1-155857.
(2) Japanese Patent Application No. 2-153335, (3) Japanese Patent Application 2-2
78123 and (4) Japanese Patent Application No. 2-295423. These methods are effective depending on the application field,
There is room for improvement in specific applications in specific areas.
For example, in the case of using an ultraviolet lamp containing a part of low-wavelength ultraviolet as an ultraviolet source, when the ultraviolet rays are applied to the air in the processing space, fine particles (ultrafine particles) may be generated from the air. In such a case, for example, in charging and collecting fine particles, the load of charging and collecting fine particles by photoelectrons becomes large, which is a problem. That is, the burden on the charging section / collecting section becomes large, and there is a need for improvement.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決するため、被処理空間部での紫外線の照
射による微粒子が発生しない微粒子の荷電装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION In order to solve the above problems, it is an object of the present invention to provide a fine particle charging device which does not generate fine particles due to the irradiation of ultraviolet rays in the space to be treated. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、紫外線源、紫外線の照射により光電子
を発生する光電子放出材、電場設定用電極を有する空間
中の微粒子の荷電装置において、前記光電子放出材と電
極とからなる光電子放出部が存在する空間部とそれ以外
の空間部(以下、被処理空間部という)とを紫外線の透
過を遮えぎる遮光材で区分したものである。そして、前
記遮光材は、光電子放出材を兼ねることができ、また、
前記荷電装置において、空間部を形成する壁面は、紫外
線の反射率の小さい材料で構成するのがよい。また、本
発明の微粒子の荷電装置においては、遮光材の位置は光
電子放出部と被処理空間部の間で、その形状は、被処理
空間部に存在する微粒子が光電子放出部(電極と光電子
放出材の間)に迅速に移動できるものであれば何れでも
良い。
In order to achieve the above object, in the present invention, an ultraviolet source, a photoelectron emitting material for generating photoelectrons by irradiation of ultraviolet rays, and a device for charging fine particles in a space having an electrode for setting an electric field are provided. A space portion in which a photoelectron emitting portion including the photoelectron emitting material and an electrode is present and a space portion other than the space (hereinafter, referred to as a treated space portion) are divided by a light shielding material that blocks transmission of ultraviolet rays. . The light shielding material can also serve as a photoelectron emitting material, and
In the charging device, it is preferable that the wall surface forming the space portion is made of a material having a low ultraviolet ray reflectance. Further, in the particle charging device of the present invention, the position of the light shielding member is between the photoelectron emitting portion and the space to be processed, and the shape is such that the particles present in the space to be processed are the photoelectron emitting portion (electrode and photoelectron emitting area). Any material may be used as long as it can be quickly moved between materials.

【0006】次に、本発明の夫々の構成を詳細に説明す
る。光電子放出材は、紫外線照射により光電子を放出す
るものであれば何れでも良く、光電的な仕事関数が小さ
なもの程好ましい、効果や経済性の面から、Ba,S
r,Ca,Y,Gd,La,Ce,Nd,Th,Pr,
Be,Zr,Fe,Ni,Zn,Cu,Ag,Pt,C
d,Pb,Al,C,Mg,Au,In,Bi,Nb,
Si,Ti,Ta,U,B,Eu,Sn,P,Wのいず
れか又はこれらの化合物又は合金又は混合物が好まし
く、これらは単独で又は二種以上を複合して用いられ
る。複合材としては、アマルガムの如く物理的な複合材
も用いうる。例えば、化合物としては酸化物、ほう化
物、炭化物があり、酸化物にはBaO,SrO,Ca
O,Y2 5 ,Gd2 3 ,Nd2 3 ,ThO2 ,Z
rO2 ,Fe2 3 ,ZnO,CuO,Ag2 O,La
2 3 ,PtO,PbO,Al2 3 ,MgO,In2
3 ,BiO,NbO,BeOなどがあり、またほう化
物にはYB6 ,GdB6 ,LaB5 ,NdB6 ,CeB
6 ,BuB6 ,PrB6 ,ZrB2 などがあり、さらに
炭化物としてはUC,ZrC,TaC,TiC,Nb
C,WCなどがある。
Next, each structure of the present invention will be described in detail. The photoelectron emitting material may be any material as long as it emits photoelectrons upon irradiation with ultraviolet light, and a material having a smaller photoelectric work function is more preferable.
r, Ca, Y, Gd, La, Ce, Nd, Th, Pr,
Be, Zr, Fe, Ni, Zn, Cu, Ag, Pt, C
d, Pb, Al, C, Mg, Au, In, Bi, Nb,
Any one of Si, Ti, Ta, U, B, Eu, Sn, P and W or a compound or alloy or mixture thereof is preferable, and these are used alone or in combination of two or more kinds. As the composite material, a physical composite material such as amalgam can also be used. For example, compounds include oxides, borides, and carbides, and oxides include BaO, SrO, and Ca.
O, Y 2 O 5 , Gd 2 O 3 , Nd 2 O 3 , ThO 2 , Z
rO 2 , Fe 2 O 3 , ZnO, CuO, Ag 2 O, La
2 O 3 , PtO, PbO, Al 2 O 3 , MgO, In 2
There are O 3 , BiO, NbO, BeO, etc., and boride includes YB 6 , GdB 6 , LaB 5 , NdB 6 , CeB.
6 , BuB 6 , PrB 6 , ZrB 2 and the like, and as carbides, UC, ZrC, TaC, TiC, Nb.
C, WC, etc.

【0007】また、合金としては黄銅、青銅、リン青
銅、AgとMgとの合金(Mgが2〜20wt%)、Cu
とBeとの合金(Beが1〜10wt%)及びBaとAl
との合金を用いることができ、上記AgとMgとの合
金、CuとBeとの合金及びBaとAlとの合金が好ま
しい。酸化物は金属表面のみを空気中で加熱したり、或
いは薬品で酸化することによっても得ることができる。
さらに他の方法としては使用前に加熱し、表面に酸化層
を形成して長期にわたって安定な酸化層を得ることもで
きる。この例としてはMgとAgとの合金を水蒸気中で
300〜400℃の温度の条件下でその表面に酸化膜を
形成させることができ、この酸化薄膜は長期間にわたっ
て安定なものである。
As the alloy, brass, bronze, phosphor bronze, an alloy of Ag and Mg (Mg is 2 to 20 wt%), Cu
Alloy of Be and Be (1-10 wt% Be) and Ba and Al
The alloy of Ag and Mg can be used, and the alloy of Ag and Mg, the alloy of Cu and Be, and the alloy of Ba and Al are preferable. The oxide can also be obtained by heating only the metal surface in air, or by oxidizing with a chemical.
As another method, it is also possible to heat before use to form an oxide layer on the surface to obtain a stable oxide layer for a long period of time. As an example of this, an alloy of Mg and Ag can form an oxide film on its surface in water vapor at a temperature of 300 to 400 ° C., and this oxide thin film is stable for a long period of time.

【0008】また、本発明者が、すでに提案したように
光電子放出材を多重構造としたものも好適に使用できる
(特願平1−155857号)。また、適宜の母材上に
薄膜状に光電子を放出し得る物質を付加し、使用するこ
ともできる(特願平2−278123号)。この例とし
て、紫外線透過性物質(母材)としての石英ガラス上に
光電子を放出し得る物質として、Auを薄膜状に付加し
たものがある(特願平2−295423号)。これらの
材料の使用形状は、棒状、綿状、格子状、板状、プリー
ツ状、曲面状、金網状等何れの形状でもよいが、紫外線
の照射面積及び処理空間との接触面積の大きな形状のも
のが良く、装置によっては被処理空間部(後述)に存在
する微粒子が光電子放出部に迅速に移動できるものが好
ましい。光電子放出材からの光電子放出のための照射源
は、照射による光電子を放出するものであればいずれで
も良い。本例で述べた紫外線の他に電磁波、レーザ、放
射線が適宜に適用分野、装置規模、形状、効果等で選択
し、使用できる。この内、効果、操作性の面で、紫外線
が通常好ましい。
Further, as the present inventor has proposed, a photoelectron emitting material having a multiple structure can be preferably used (Japanese Patent Application No. 1-155857). Also, a substance capable of emitting photoelectrons in a thin film form may be added to an appropriate base material and used (Japanese Patent Application No. 2-278123). As an example of this, there is a thin film of Au added as a substance capable of emitting photoelectrons on quartz glass as a UV transparent substance (base material) (Japanese Patent Application No. 2-295423). The shape of these materials to be used may be any shape such as a rod shape, a cotton shape, a lattice shape, a plate shape, a pleated shape, a curved surface shape, and a wire mesh shape, but a shape having a large irradiation area of ultraviolet rays and a large contact area with a processing space is used. It is preferable that the fine particles existing in the space to be processed (described later) can be rapidly moved to the photoelectron emitting portion depending on the device. The irradiation source for emitting photoelectrons from the photoelectron emitting material may be any one as long as it emits photoelectrons by irradiation. In addition to the ultraviolet rays described in this example, electromagnetic waves, lasers, and radiations can be appropriately selected and used according to application fields, device scales, shapes, effects, and the like. Of these, ultraviolet rays are usually preferred in terms of effects and operability.

【0009】紫外線の種類は、その照射により光電子放
出材が光電子を放出しうるものであれば何れでも良く、
適用分野によっては、殺菌(滅菌)作用を併せてもつも
のが好ましい。紫外線の種類は、適用分野、作業内容、
用途、経済性などにより適宜決めることができる。例え
ば、バイオロジカル分野においては、殺菌作用、効率の
面から遠紫外線を併用するのが好ましい。該紫外線源と
しては、紫外線を発するものであれば何れも使用でき、
適用分野、装置の形状、構造、効果、経済性等により適
宜選択し用いることができる。例えば、水銀灯、水素放
電管、キセノン放電管、ライマン放電管などを適宜使用
できる。バイオロジカル分野では、殺菌(滅菌)波長2
54nmを有する紫外線を用いると、殺菌(滅菌)効果が
併用でき好ましい。
Any kind of ultraviolet light may be used as long as the photoelectron emitting material can emit photoelectrons by its irradiation.
Depending on the field of application, those having a sterilizing action are also preferable. The type of UV light depends on the application field, work content,
It can be appropriately determined depending on the use, economy and the like. For example, in the biological field, it is preferable to use deep ultraviolet rays together from the viewpoint of bactericidal action and efficiency. As the ultraviolet ray source, any one can be used as long as it emits ultraviolet rays,
It can be appropriately selected and used depending on the application field, the shape of the device, the structure, the effect, the economical efficiency and the like. For example, a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, or the like can be used as appropriate. In the biological field, sterilization wavelength 2
It is preferable to use an ultraviolet ray having a wavelength of 54 nm because the sterilizing effect can be used together.

【0010】次に、光電子放出材及び電場用電極の位置
や形状について述べる。光電子放出材及び/又は電極
は、微粒子の存在する空間の適宜の位置の空間の1部分
に、電と光電子放出材の間に電場が形成できるように
設置され、光電子放出材(−)と電極(+)間に電場
(電界)を形成する。該電場により光電子放出材から光
電子が効率よく放出される(光電子放出部)。電極又は
光電子放出材の位置や形状は、微粒子の存在する空間に
より適宜に選択でき、電場のための印加電圧が低くでき
て光電子放出材からの光電子が空間中で微粒子に荷電を
与えることができれば何れでもよく、利用分野、装置規
模、形状、効果、経済性等を考慮して、適宜予備試験等
により決めることができる。電極材の材質は、導体であ
れば何れも使用でき、周知の荷電装置における各種電極
材が好適に使用できる。また、電極と光電子放出材の設
置位置と形状は、本発明者がすでに提案した(特願平3
−131640号)ように構成するのが好ましい。
Next, the positions and shapes of the photoelectron emitting material and the electric field electrode will be described. Photoelectron emitting material and / or the electrodes, in a portion of space suitable position in space in the presence of fine particles, the electric field between the electrodes and the photoelectron emitting material is disposed so as to form a photoelectron emitting member - and () An electric field (electric field) is formed between the electrodes (+). Due to the electric field, photoelectrons are efficiently emitted from the photoelectron emitting material (photoelectron emitting portion). The position or shape of the electrode or the photoelectron emitting material can be appropriately selected depending on the space in which the particles are present, and if the applied voltage for the electric field can be lowered and the photoelectrons from the photoelectron emitting material can charge the particles in the space. Any of them may be used, and can be appropriately determined by a preliminary test or the like in consideration of the field of use, device scale, shape, effect, economy, and the like. Any material can be used for the electrode material as long as it is a conductor, and various electrode materials in known charging devices can be preferably used. The inventor has already proposed the installation position and shape of the electrode and the photoelectron emitting material (Japanese Patent Application No.
It is preferable to configure as follows.

【0011】次に、本発明の特徴である遮光材について
述べる。遮光材は、紫外線源からの紫外線が被処理空間
部に直接照射されない様設置できるものであれば何れで
も良い。設置位置は光電子放出部(後述)と被処理空間
部の間である。形状は、被処理空間部に存在する微粒子
が光電子放出部に移動できるものであれば何れでも良
い。通常、板状、格子状、プリーツ状、網状、曲面状の
いずれか1種類又は2種以上を適宜に組合せて使用する
ことができる。図2に、遮光材形状の例(断面図)を示
す。また、遮光材に光電子放出材の機能を持たせること
ができる。また、遮光材を光電子放出材として利用でき
る。これらの利用は、本荷電装置の利用分野、装置形
状、規模、効果などにより適宜決めることができる。
Next, the light shielding material which is a feature of the present invention will be described. Any light-shielding material may be used as long as it can be installed so that the ultraviolet light from the ultraviolet light source is not directly irradiated to the space to be processed. The installation position is between the photoelectron emission unit (described later) and the space to be processed. The shape may be any shape as long as the particles existing in the space to be processed can move to the photoelectron emitting portion. Usually, any one of plate-like, lattice-like, pleat-like, net-like, and curved-surface-like ones or two or more kinds thereof can be appropriately combined and used. FIG. 2 shows an example (cross-sectional view) of the shape of the light shielding material. In addition, the light shielding material can have the function of a photoelectron emitting material. Further, the light shielding material can be used as a photoelectron emitting material. The use of these can be appropriately determined depending on the field of use, the shape of the device, the scale, the effect, etc. of the charging device.

【0012】また、荷電装置内の壁表面を紫外線の反射
率の小さい材料にすると、荷電装置内からの微粒子発生
が抑制され好ましい。例えば、被処理空間部の壁面を黒
色の材料にすると、被処理空間部に(一部)紫外線が入
った場合壁面からの反射が少くなり微粒子発生が抑制さ
れる。壁表面の紫外線の反射率を小さくする方法は、周
知の紫外線の反射率を小さくする方法が適宜に利用でき
る。
Further, it is preferable that the wall surface in the charging device is made of a material having a small reflectance of ultraviolet rays, because the generation of fine particles in the charging device is suppressed. For example, when the wall surface of the space to be processed is made of a black material, when (partly) ultraviolet rays enter the space to be processed, the reflection from the wall surface is reduced and the generation of fine particles is suppressed. As a method for reducing the reflectance of ultraviolet rays on the wall surface, a known method for reducing the reflectance of ultraviolet rays can be appropriately used.

【0013】本発明に用いる電場電圧は、0.1V/cm
〜2kV/cmである。好適な電場の強さは、利用分野、条
件、装置形状、規模、効果、経済性等で適宜予備試験や
検討を行い決めることが出来る。微粒子を荷電して利用
する分野における荷電微粒子の捕集材(集じん材)は、
荷電微粒子が捕集できるものであればいずれでも使用で
きる。通常の荷電装置における集じん板、集じん電極等
各種電極材や静電フィルター方式が一般的であるが、ス
チールウールで電極、タングステンウール電極のような
捕集部自体が電極を構成するウール状構造のものも有効
である。エレクトレック材も好適に使用できる。気体の
流動が少ないかもしくは無視できる密閉空間の清浄化へ
の利用では電場用電極材が、荷電微粒子捕集材と兼用又
は一体化していると装置がコンパクト化でき好ましい。
例えば、上述荷電微粒子捕集材の内、集じん板や集じん
電極あるいはスチールウール電極、タングステンウール
電極のようなウール状電極材等の各種電極材は、電場用
電極と、荷電微粒子の捕集を兼ねてできるので好まし
い。
The electric field voltage used in the present invention is 0.1 V / cm.
~ 2 kV / cm. The suitable strength of the electric field can be determined by carrying out preliminary tests and studies as appropriate depending on the field of use, conditions, device shape, scale, effect, economical efficiency and the like. In the field of charging and using fine particles, the collecting material (dust collecting material) for charged fine particles is
Any material can be used as long as it can collect charged fine particles. Various electrode materials such as a dust collecting plate and a dust collecting electrode in an ordinary charging device, and an electrostatic filter method are generally used, but the electrode is made of steel wool, and the collection part itself such as a tungsten wool electrode constitutes the electrode. Structured ones are also effective. Electrec material can also be preferably used. For use in cleaning a closed space where gas flow is small or negligible, it is preferable that the electric field electrode material also serves as or is integrated with the charged fine particle collecting material because the apparatus can be made compact.
For example, among the above-mentioned charged particulate matter collecting materials, various electrode materials such as a dust collecting plate, a dust collecting electrode, or a wool-like electrode material such as a steel wool electrode and a tungsten wool electrode are used as an electric field electrode and a collection of charged particulate matter. It is preferable because it can be combined with the above.

【0014】[0014]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 半導体工場のウェハ保管庫における空気清浄を、図1に
示した本発明の基本構成図を用いて説明する。密閉空間
(気体が流動せず、静止状態とみなせる空間)であるウ
ェハ保管庫1の空気清浄は、ウェハ保管庫1の側に設
置された紫外線ランプ2、紫外線の反射面5、光電子放
出材3、電場設置のための電極4及び荷電微粒子の捕集
材4(本構成では、電極が捕集材を兼用)にて実施され
る。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 Air cleaning in a wafer storage of a semiconductor factory will be described with reference to the basic configuration diagram of the present invention shown in FIG. Enclosed space air cleaning of a wafer stocker 1 is (gas does not flow, the space that can be regarded as stationary state), the ultraviolet lamp 2 is installed on one side of the wafer stocker 1, the reflecting surface 5 of the ultraviolet photoelectron emitting member 3, an electrode 4 for setting an electric field and a collector 4 for charged fine particles (in this configuration, the electrode also serves as a collector).

【0015】すなわち、ウェハ保管庫1中の微粒子(微
粒子状物質)6は、紫外線ランプ2が照射された光電子
放出材3から放出される光電子7により荷電され、荷電
微粒子8となり、該荷電微粒子8は荷電微粒子の捕集材
4に捕集され、ウェハの存在する被処理空間部(清浄化
空間部、A)は高清浄化される。ここで、遮光材9は被
処理空間部Aと光電子放出部Bの間に設置されている。
遮光材9は、複数の板状の金属板を相互に組合せたもの
で、被処理空間部Aに存在する微粒子6が、光電子放出
部Bに移動できるように上部、中央部、下部に被処理空
間部Aと光電子放出部B間に同通個所を有している。
That is, the fine particles (fine particle substances) 6 in the wafer storage 1 are charged by the photoelectrons 7 emitted from the photoelectron emitting material 3 irradiated by the ultraviolet lamp 2, and become charged fine particles 8 which are charged fine particles 8. Are collected by the collection member 4 of charged fine particles, and the to-be-processed space (cleaning space, A) where the wafer exists is highly cleaned. Here, the light shielding material 9 is installed between the processed space portion A and the photoelectron emission portion B.
The light shielding material 9 is a combination of a plurality of plate-shaped metal plates, and the particles 6 existing in the space A to be processed are processed on the upper, central, and lower portions so that they can move to the photoelectron emission area B. The same portion is provided between the space portion A and the photoelectron emitting portion B.

【0016】ここでの光電子放出材3は、ガラス材表面
にAuを薄膜状に付加したものであり、このような構成
の光電子放出材については、本発明者等の別の発明があ
る(特願平2−295423号)。このようにして、ウ
ェハ保管庫1中の微粒子(粒子状物質)6は捕集・除去
され、ウェハ保管庫は清浄空気となる。上記において、
光電子放出材への紫外線の照射は、曲面状の反射面5を
用い、紫外線ランプ2から紫外線を板状の光電子放出材
3に効率よく照射している。電極4は、光電子放出材3
からの光電子放出を電場で行うために設置している。す
なわち、光電子放出材3と電極4の間に電場を形成して
いる(光電子放出部、B)。微粒子の荷電は、電場にお
いて光電子放出材3に紫外線照射することにより発生す
る光電子7により効率よく実施される。ここでの電場の
電圧は、50V/cmである。
The photoelectron emitting material 3 here is a glass material on which Au is added in the form of a thin film, and there is another invention of the present inventors regarding the photoelectron emitting material having such a structure. Japanese Patent Application No. 2-295423). In this way, the fine particles (particulate matter) 6 in the wafer storage 1 are collected and removed, and the wafer storage becomes clean air. In the above,
For the irradiation of the photoelectron emitting material with ultraviolet rays, the curved reflecting surface 5 is used to efficiently irradiate the plate-shaped photoelectron emitting material 3 with ultraviolet rays from the ultraviolet lamp 2. The electrode 4 is the photoelectron emission material 3
It is installed to perform photoelectron emission from an electric field. That is, an electric field is formed between the photoelectron emitting material 3 and the electrode 4 (photoelectron emitting portion, B). The charging of the fine particles is efficiently performed by the photoelectrons 7 generated by irradiating the photoelectron emitting material 3 with ultraviolet rays in an electric field. The electric field voltage here is 50 V / cm.

【0017】また、荷電粒子の捕集は、電極4を用いて
行っている。電極材は金網状のCu−Zn材を金メッキ
して用い、光電子放出材より1cmの位置(全長A+Bの
距離1に対し0.03の位置)に設置している。10、
11は、夫々ウェハキャリャ、ウェハを示す。本例にお
いて、ウェハ保管庫内の1部に気流の攪拌部を設けると
微粒子除去速度が早くなることから好ましい。この方法
として、温度差をつけるための加温部、機械的な攪拌部
があり、適宜に使用できる。本例では、壁面を光電子放
出材3とし、微粒子の存在する空間部に電場用電極材4
及び遮光材9を設置しているが、遮光材9に光電子放出
(例えば、Cu−Zn材にAuを被覆して、(−)極と
する)の機能を持たせて使用することもできる。この場
合の光電子放出は、光電子放出材3と遮光材9の両方と
なり微粒子の荷電が効果的となる。
The electrode 4 is used to collect the charged particles. As the electrode material, a wire mesh Cu-Zn material is used after being plated with gold, and the electrode material is installed at a position 1 cm from the photoelectron emitting material (position 0.03 with respect to the distance 1 of the total length A + B). 10,
Reference numeral 11 denotes a wafer carrier and a wafer, respectively. In this example, it is preferable to provide an agitating part for the air flow in a part of the wafer storage because the particle removal rate is increased. As this method, there is a heating section for making a temperature difference and a mechanical stirring section, which can be appropriately used. In this example, the wall surface is the photoelectron emitting material 3, and the electric field electrode material 4 is provided in the space where the fine particles are present.
Although the light shielding material 9 is provided, the light shielding material 9 may be used with a function of emitting photoelectrons (for example, a Cu—Zn material is coated with Au to serve as a (−) pole). In this case, the photoelectron emission becomes both the photoelectron emitting material 3 and the light shielding material 9, and the fine particles are effectively charged.

【0018】実施例2 図1に示した構成の清浄器に下記試料ガスを入れ、遮光
材の有無の場合について紫外線照射を行い、粒子測定器
(パーティクルカウンター)を用い、清浄器内の微粒子
濃度を調べた。 清浄器大きさ; 30リットル 光電子放出材; 石英ガラスに薄膜状にAuを付加した
もの 電極材; 金網状Cu−Znを光電子放出材から1cmの
位置(光電子放出材と対向する壁面までの全長距離1対
し0.03の位置)に設置 遮光材; 板状ステンレスを図1のごとく電極材から1
cm、1.5cmの位置に交互に設置 荷電微粒子捕集材; 電極材で兼用 紫外線ランプ; 殺菌灯 電場電圧; 50V/cm 試料ガス(入口ガス); 媒体ガス・・・空気 濃度(クラス)・・・200 (クラス;1ft3 中の0.1μm以上の微粒子の個数) 照射時間; 3時間
Example 2 The following sample gas was put into the purifier having the construction shown in FIG. 1, and ultraviolet rays were radiated with and without a light-shielding material, and the particle concentration in the purifier was measured using a particle counter (particle counter). I checked. Purifier size: 30 liters Photoelectron emission material; Quartz glass with Au added in thin film form Electrode material: Wire mesh Cu-Zn at a position 1 cm from the photoelectron emission material (total distance to the wall surface facing the photoelectron emission material) Installed at the position of 0.03 for one) Light-shielding material: Plate stainless steel from the electrode material 1 as shown in FIG.
Alternately installed at positions of 1.5 cm and 1.5 cm Charged particle collector; UV lamp used as electrode material; Sterilization lamp Electric field voltage; 50 V / cm Sample gas (inlet gas); Medium gas ... Air concentration (class) ..200 (class; number of fine particles of 0.1 μm or more in 1 ft 3 ) Irradiation time: 3 hours

【0019】結 果 0.1μm以上の微粒子濃度を測定器で測定した。結果
をft3 中の微粒子の個数として表1に示す。
As a result, a fine particle concentration of 0.1 μm or more was measured with a measuring instrument. The results are shown in Table 1 as the number of fine particles in ft 3 .

【表1】 尚、ブランクとして、紫外線照射した場合の3時間放
置後の清浄器内の微粒子濃度を調べたところ、初期濃度
(入口濃度)に対し76%が認められた(測定され
た)。本例は、空気清浄の例を説明したが、微粒子状物
質を荷電して、利用する分野に何ら限定なく利用でき
る。
[Table 1] As a blank, when the particle concentration in the purifier after being left for 3 hours in the case of irradiation with ultraviolet rays was examined, 76% of the initial concentration (inlet concentration) was recognized (measured). In this example, the example of air cleaning has been described, but the particulate matter can be charged and used without any limitation in the field of use.

【0020】[0020]

【発明の効果】本発明によれば次の効果を奏することが
できた。 (1).電場下で光電子放出材に紫外線を照射するにお
いて、光電子放出部と被処理空間部の間の空間に遮光材
を設置することにより、 紫外線が被処理空間部に照射されなくなり、被処理空
間からの微粒子発生がなくなった。 (2).遮光材の形状を板状、格子状、プリーツ状、網
状、曲面状のいずれか1種類又は2種以上の組合せと
し、光電子放出部と被処理空間部の間に、両部分が同通
するように開口部を設けて遮光材を設置することによ
り、 微粒子の存在する被処理空間部(A)の微粒子が光
電子放出部(B)からの光電子により効果的に荷電され
た。(Aにおける微粒子は、迅速に開口部より光電子に
出合うため容易に荷電された。)
According to the present invention, the following effects can be obtained. (1). When irradiating the photoelectron emission material with ultraviolet rays under an electric field, by installing a light shielding material in the space between the photoelectron emission part and the space to be processed, the ultraviolet rays are not irradiated to the space to be processed and The generation of fine particles has disappeared. (2). The shape of the light-shielding material is plate-like, lattice-like, pleated, mesh-like, or curved-like, or a combination of two or more thereof, so that both parts pass through between the photoelectron emitting part and the processed space part. By providing the opening portion with the light shielding material, the fine particles in the processing target space portion (A) where the fine particles are present were effectively charged by the photoelectrons from the photoelectron emitting portion (B). (The fine particles in A were easily charged because they quickly met the photoelectrons through the opening.)

【0021】(3).遮光材の材質を光電子放出性物質
とすることにより、 遮光材からも光電子が放出され、微粒子の荷電が効
果的となった。 遮光材を光電子放出材とすることができるので、利
用分野によっては、簡易な構成・構造の荷電装置となっ
た。 (4).荷電装置の壁表面を紫外線の反射率の小さい材
料にすることにより、 紫外線の壁面反射による粒子発生が抑制された。
(3). By using a photoelectron-emitting substance as the material of the light-shielding material, photoelectrons were also emitted from the light-shielding material, and the charging of the fine particles became effective. Since the light shielding material can be a photoelectron emitting material, the charging device has a simple configuration and structure depending on the field of use. (4). By making the wall surface of the charging device a material with a low UV reflectance, particle generation due to UV wall reflection was suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の荷電装置を用いたウェハ保管庫におけ
る空気清浄器の基本構成図である。
FIG. 1 is a basic configuration diagram of an air purifier in a wafer storage using a charging device of the present invention.

【図2】遮光材の形状を示す断面図である。FIG. 2 is a cross-sectional view showing the shape of a light shielding material.

【符号の説明】[Explanation of symbols]

1:ウェハ保管庫、2:紫外線ランプ、3:光電子放出
材、4:電極、5:反射面、6:微粒子、7:光電子、
8:荷電微粒子、9:遮光材
1: Wafer storage, 2: Ultraviolet lamp, 3: Photoelectron emitting material, 4: Electrode, 5: Reflecting surface, 6: Fine particles, 7: Photoelectron,
8: charged fine particles, 9: light shielding material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 紫外線源、紫外線の照射により光電子を
発生する光電子放出材、電場設定用電極を有する空間中
の微粒子の荷電装置において、前記光電子放出材と電極
とからなる光電子放出部が存在する空間部とそれ以外の
空間部とを紫外線の透過を遮えぎる遮光材で区分したこ
とを特徴とする空間中の微粒子の荷電装置。
1. A charging device for particles in a space having an ultraviolet ray source, a photoelectron emitting material for generating photoelectrons by irradiation of ultraviolet rays, and an electric field setting electrode, and a photoelectron emitting portion including the photoelectron emitting material and the electrode. A device for charging fine particles in a space, characterized in that the space portion and the other space portion are divided by a light shielding material that blocks transmission of ultraviolet rays.
【請求項2】 前記遮光材が、光電子放出材を兼ねるこ
とを特徴とする請求項1記載の空間中の微粒子の荷電装
置。
2. The device for charging particles in a space according to claim 1, wherein the light shielding material also serves as a photoelectron emitting material.
JP32241791A 1991-11-12 1991-11-12 Particle charging device Expired - Fee Related JPH07121369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32241791A JPH07121369B2 (en) 1991-11-12 1991-11-12 Particle charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32241791A JPH07121369B2 (en) 1991-11-12 1991-11-12 Particle charging device

Publications (2)

Publication Number Publication Date
JPH05138070A JPH05138070A (en) 1993-06-01
JPH07121369B2 true JPH07121369B2 (en) 1995-12-25

Family

ID=18143434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32241791A Expired - Fee Related JPH07121369B2 (en) 1991-11-12 1991-11-12 Particle charging device

Country Status (1)

Country Link
JP (1) JPH07121369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1681550A1 (en) * 2005-01-13 2006-07-19 Matter Engineering AG Method and apparatus for measuring number concentration and average diameter of aerosol particles

Also Published As

Publication number Publication date
JPH05138070A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
JP3405439B2 (en) How to clean solid surfaces
JPH08211B2 (en) Method and device for cleaning closed space
JPH07121369B2 (en) Particle charging device
JPH05107178A (en) Method and device for charging fine particle
JPH06154650A (en) Method and device for charging fine particles in space by photoelectron
JP3570612B2 (en) Negative ion generation method and device, fine particle charging method and trapping device
JPH0568910A (en) Apparatus and method for charging and collecting fine particles
JP3434651B2 (en) Method and apparatus for charging fine particles
JPH0629373A (en) Stocker
JP3696038B2 (en) Particulate matter collection device and collection method
JP3139590B2 (en) Method and apparatus for cleaning enclosed space
JP3105445B2 (en) Vacuum space provided with method and apparatus for cleaning vacuum space
JPH0625731B2 (en) Method and apparatus for measuring the concentration of fine particles suspended in gas
JP3184080B2 (en) How to clean enclosed space
JP2670942B2 (en) Method and apparatus for electrically neutralizing charged fine particles in gas
JP3424778B2 (en) Method and apparatus for cleaning space
JP3139591B2 (en) Method and apparatus for generating negative ions, method for charging fine particles, apparatus for collecting fine particles in gas, and stocker
JP3424775B2 (en) Method and apparatus for cleaning space
JP3672077B2 (en) Method and apparatus for generating negative ions
JPH028638A (en) Method and apparatus for cleaning gas
JP3661835B2 (en) Method and apparatus for generating negative ions
JP3046085B2 (en) Photoemission device and method of charging fine particles using the same
JPH0793098B2 (en) Method for charging fine particles using photo-emissive material
JPH06296897A (en) Method and device for cleaning closed space
JP2000153179A (en) Method and apparatus for generating anion

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees