JPH07120939A - Wafer positioning device - Google Patents

Wafer positioning device

Info

Publication number
JPH07120939A
JPH07120939A JP5269316A JP26931693A JPH07120939A JP H07120939 A JPH07120939 A JP H07120939A JP 5269316 A JP5269316 A JP 5269316A JP 26931693 A JP26931693 A JP 26931693A JP H07120939 A JPH07120939 A JP H07120939A
Authority
JP
Japan
Prior art keywords
alignment mark
wafer
light
optical system
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5269316A
Other languages
Japanese (ja)
Inventor
Takeshi Kinoshita
剛 木之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5269316A priority Critical patent/JPH07120939A/en
Publication of JPH07120939A publication Critical patent/JPH07120939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To directly and easily measure an alignment mark by installing a space filter for the alignment mark on a Fourier transform surface and removing the patterns exclusive of the alignment mark. CONSTITUTION:This wafer positioning device has the alignment mark 10 disposed on a wafer 8 to be positioned, a laser beam source 1 for radiating monochromatic light, a beam expander 2 for widening this monochromatic light to illuminating light of a prescribed size and a diaphragm window 3 disposed to irradiate only the prescribed range including the alignment mark 10 with this illuminating light. The device has also a half mirror 4 for irradiating a sample with the illuminating light past this diaphragm window 3 by changing the optical path of the illuminating light, a lens 5 for inspection for condensing and imaging the illuminating light reflected from the wafer 8, a space filter 6 for the alignment mark 10 arranged on the Fourier transform surface of this lens 5 for inspection and an image pickup element 7 existing in the imaging position of the lens 5 for inspection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はウェーハ位置決め装置に
関し、特にフーリエ変換面に位置決めマークの空間フィ
ルターを配置して位置決めをするウェーハ位置決め装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer positioning device, and more particularly to a wafer positioning device for positioning a positioning mark spatial filter on a Fourier transform plane.

【0002】[0002]

【従来の技術】図5は、例えば特開平4−196307
号公報に示される従来のウェーハ位置決め装置の一例を
示す構成図である。図5を参照すると、この従来のウェ
ーハ位置決め装置は、露光光源11、レチクル12、レ
チクル12上のパターンを縮小転写するための縮小レン
ズ13、ウェーハ8を吸着し移動するためのウェーハス
テージ9、ウェーハステージ9の位置を測長する測長器
15、ウェーハ8上のアライメントマーク10を検出す
るためのアライメント検出器17および装置全体の制御
を行うメイン制御系18とから構成される。
2. Description of the Related Art FIG. 5 shows, for example, Japanese Patent Laid-Open No. 4-196307.
It is a block diagram which shows an example of the conventional wafer positioning device shown by the publication. Referring to FIG. 5, the conventional wafer positioning apparatus includes an exposure light source 11, a reticle 12, a reduction lens 13 for reducing and transferring a pattern on the reticle 12, a wafer stage 9 for sucking and moving a wafer 8, and a wafer stage 9. It comprises a length measuring device 15 for measuring the position of the stage 9, an alignment detector 17 for detecting the alignment mark 10 on the wafer 8, and a main control system 18 for controlling the entire apparatus.

【0003】まず、アライメント検出の補正を行う。図
5(a)に示すようにレチクル12上の検出用パターン
16を露光光で照明することにより、縮小レンズ13を
介してウェーハステージ9上に設けた検出ユニット14
上にパターンを投影する。この投影像を検出ユニット1
4内の光量検出器で検出し、光量変化信号をメイン制御
系18に取り込み、パターン投影像の中心位置を求め
る。次に、アライメント検出器17により、検出ユニッ
ト14上に設けたアライメントマーク10の位置を検出
し、位置データをメイン制御系18に取り込む。ここで
メイン制御系18により、この検査用パターン投影像の
中心とアライメントマーク10の位置とのずれ量を求め
る。
First, the alignment detection is corrected. As shown in FIG. 5A, by illuminating the detection pattern 16 on the reticle 12 with exposure light, the detection unit 14 provided on the wafer stage 9 via the reduction lens 13 is illuminated.
Project the pattern on top. This projection image is detected by the detection unit 1
The light amount detector in 4 detects the light amount change signal, and the light amount change signal is taken into the main control system 18 to obtain the center position of the pattern projection image. Next, the alignment detector 17 detects the position of the alignment mark 10 provided on the detection unit 14, and takes the position data into the main control system 18. Here, the main control system 18 obtains the amount of deviation between the center of the inspection pattern projection image and the position of the alignment mark 10.

【0004】次に、図5(b)の位置にウェーハステー
ジ9を移動させ、ウェーハ8上のアライメントマーク1
0の位置をアライメント検出器17で検出し、メイン制
御系18に取り込み、上記ずれ量を補正値としてアライ
メント検出器17で検出したアライメントマーク10の
位置データに加えることにより、この補正値を加えられ
た位置データがレチクル12の投影像の位置となる。
Next, the wafer stage 9 is moved to the position shown in FIG.
This correction value can be added by detecting the position of 0 with the alignment detector 17, taking it into the main control system 18, and adding the above-mentioned deviation amount as the correction value to the position data of the alignment mark 10 detected by the alignment detector 17. The position data is the position of the projected image of the reticle 12.

【0005】[0005]

【発明が解決しようとする課題】この従来のウェーハ位
置決め装置は任意の間隔で複数個配置したアライメント
マークについて、微少量ずらしたパターンの重なり具合
を光量検出器等で見るため間接的にしかアライメントマ
ークをとらえていない。
This conventional wafer positioning apparatus is an indirect alignment mark because it is possible to see the degree of pattern overlap, which is shifted by a small amount, with respect to alignment marks arranged at arbitrary intervals by a light amount detector or the like. Do not catch.

【0006】[0006]

【課題を解決するための手段】本発明のウェーハ位置決
め装置は、位置決めする試料上に設けられている位置決
めマークと、単色光を照射する単色光源と、前記単色光
を所定の大きさの照明光に広げる第1の光学系と、この
照明光を前記位置決めマークを含む所定範囲にのみ照射
するために設けられる絞り窓と、この絞り窓を通過した
前記照明光の光路を変更して前記試料へ照射する第2の
光学系と、前記試料を反射した前記照明光を集光結像す
る第3の光学系と、この第3の光学系のフーリエ変換面
に配置する前記位置決めマークの空間フィルタと、前記
第3の光学系の結像位置にある撮像手段とを備える。
A wafer positioning apparatus of the present invention comprises a positioning mark provided on a sample to be positioned, a monochromatic light source for irradiating monochromatic light, and an illumination light of a predetermined size for the monochromatic light. To the sample by changing the optical path of the illumination light that has passed through the aperture window, which is provided to irradiate the illumination light only in a predetermined range including the positioning mark with the first optical system. A second optical system for irradiating, a third optical system for condensing and forming the illumination light reflected by the sample, and a spatial filter for the positioning mark arranged on the Fourier transform surface of the third optical system. And an image pickup unit at the image forming position of the third optical system.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。本発明の一実施例をブロックで示す図1を参照する
と、この実施例のウェーハ位置決め装置は、位置決めす
るウェーハ8上に設けられているアライメントマーク1
0と、単色光を照射するレーザ光源1と、この単色光を
所定の大きさの照明光に広げるビームエキスパンダ2
と、この照明光をアライメントマーク10を含む所定範
囲にのみ照射するために設けられる絞り窓3と、この絞
り窓3を通過した照明光の光路を変更して試料へ照射す
るハーフミラー4と、ウェーハ8を反射した照明光を集
光結像する検査用レンズ5と、この検査用レンズ5のフ
ーリエ変換面に配置するアライメントマーク10の空間
フィルタ6と、検査用レンズ5の結像位置にある撮像素
子7とから構成される。
The present invention will be described below with reference to the drawings. Referring to FIG. 1 which is a block diagram showing an embodiment of the present invention, a wafer positioning apparatus according to this embodiment includes an alignment mark 1 provided on a wafer 8 to be positioned.
0, a laser light source 1 that emits monochromatic light, and a beam expander 2 that expands the monochromatic light into illumination light of a predetermined size.
A diaphragm window 3 provided for irradiating the illumination light only on a predetermined range including the alignment mark 10, and a half mirror 4 for changing the optical path of the illumination light passing through the diaphragm window 3 and irradiating the sample. The inspection lens 5 that collects and forms an image of the illumination light reflected from the wafer 8, the spatial filter 6 of the alignment mark 10 that is arranged on the Fourier transform surface of the inspection lens 5, and the image formation position of the inspection lens 5 are provided. It is composed of an image sensor 7.

【0008】レーザ光源1からのレーザ光は、ビームエ
キスパンダ2でレーザ光径を拡大して照射される。この
拡大したレーザ光は絞り窓3で絞りこまれる。図2に撮
像素子7の視野に対して絞り窓3で絞られた照明範囲1
9を示す。図2の斜線の部分が絞り窓3で遮蔽されてい
る。試料ウェーハ8から反射したレーザ光は検査用レン
ズ5のフーリエ変換面で試料平面の空間周波数に即した
フーリエ変換像を結んでいる。図4のアライメントマー
ク10の空間フーリエ変換像が例えば図3のとき、図3
の像を空間フィルタ6としてフーリエ変換面に置くと撮
像素子7には絞り窓3の窓内にアライメントマーク10
が位置決めされると撮像素子7には何も像が現れない。
アライメントマーク10以外のパターン(マーク)が窓
内に現れると撮像素子7にこの像が出現する。そこで、
絞り窓3の大きさをアライメントマーク10のみを含む
大きさで位置決め精度の範囲内にすると撮像素子7に何
も映し出されないときに位置決めが行われたことにな
る。
The laser light from the laser light source 1 is emitted by the beam expander 2 with the laser light diameter enlarged. The expanded laser light is narrowed down by the diaphragm window 3. FIG. 2 shows an illumination range 1 narrowed down by the aperture window 3 with respect to the visual field of the image sensor 7.
9 is shown. The shaded area in FIG. 2 is shielded by the aperture window 3. The laser light reflected from the sample wafer 8 forms a Fourier transform image corresponding to the spatial frequency of the sample plane on the Fourier transform surface of the inspection lens 5. When the spatial Fourier transform image of the alignment mark 10 of FIG. 4 is, for example, FIG.
When the image of the image is placed on the Fourier transform plane as the spatial filter 6, the image sensor 7 has an alignment mark 10 in the aperture window 3.
When is positioned, no image appears on the image sensor 7.
When a pattern (mark) other than the alignment mark 10 appears in the window, this image appears on the image sensor 7. Therefore,
If the size of the aperture window 3 is a size including only the alignment mark 10 and is within the range of the positioning accuracy, it means that the positioning is performed when nothing is projected on the image sensor 7.

【0009】この実施例の空間フィルタ6の代りにフー
リエ変換像と明暗の逆転した像をフィルタとすると、絞
り窓3にアライメントマーク10が位置決めされたとき
のみ撮像素子7にアライメントマーク10が映し出さ
れ、周辺のノイズ成分を除去してアライメントマーク1
0のみの切り出しができる。
If the Fourier transform image and the image in which the lightness and darkness are reversed are used as the filter instead of the spatial filter 6 of this embodiment, the alignment mark 10 is displayed on the image pickup element 7 only when the alignment mark 10 is positioned on the aperture window 3. , The surrounding noise component is removed and the alignment mark 1
Only 0 can be cut out.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば、
単色光を所定の大きさに広げた照明光を位置決めする試
料上に設けられている位置決めマークを含む所定範囲に
のみ照射するために設けられる絞り窓と、試料を反射し
た照明光を集光結像する第3の光学系と、この第3の光
学系のフーリエ変換面に配置する位置決めマークの空間
フィルタとを備えることにより、試料上の位置決めマー
ク以外のパターンを取り除くとにより位置決めマークを
直接容易に計測ができる。
As described above, according to the present invention,
A diaphragm window provided for illuminating only the predetermined range including the positioning mark provided on the sample for positioning the illumination light that spreads the monochromatic light to a predetermined size, and the illumination light reflected from the sample By providing the third optical system for imaging and the spatial filter of the positioning mark arranged on the Fourier transform surface of the third optical system, the pattern other than the positioning mark on the sample can be removed to directly and easily perform the positioning mark. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】この実施例の撮像素子の視野に対して絞り窓で
絞られた照明範囲を示す図である。
FIG. 2 is a diagram showing an illumination range narrowed down by a diaphragm window with respect to the visual field of the image sensor of this embodiment.

【図3】この実施例の空間フィルタの一例を示す図であ
る。
FIG. 3 is a diagram showing an example of a spatial filter of this embodiment.

【図4】この実施例のアライメントマークの一例を示す
図である。
FIG. 4 is a diagram showing an example of an alignment mark of this embodiment.

【図5】従来例の構成を示すブロック図である。FIG. 5 is a block diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 ビームエキスパンダ 3 絞り窓 4 ハーフミラー 5 検査用レンズ 6 空間フィルタ 7 撮像素子 8 ウェーハ 9 ウェーハステージ 10 アライメントマーク 19 絞り窓で絞られた照明範囲 1 Laser Light Source 2 Beam Expander 3 Aperture Window 4 Half Mirror 5 Inspection Lens 6 Spatial Filter 7 Imaging Device 8 Wafer 9 Wafer Stage 10 Alignment Mark 19 Illumination Range Constricted by Aperture Window

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料上に設けられている位置決めマーク
と、単色光を照射する単色光源と、前記単色光を所定の
大きさの照明光に広げる第1の光学系と、この照明光を
前記位置決めマークを含む所定範囲にのみ照射するため
に設けられる絞り窓と、この絞り窓を通過した前記照明
光の光路を変更して前記試料へ照射する第2の光学系
と、前記試料を反射した前記照明光を集光結像する第3
の光学系と、この第3の光学系のフーリエ変換面に配置
する前記位置決めマークの空間フィルタと、前記第3の
光学系の結像位置にある撮像手段とを備えることを特徴
とするウェーハ位置決め装置。
1. A positioning mark provided on a sample, a monochromatic light source for irradiating monochromatic light, a first optical system for spreading the monochromatic light into illumination light of a predetermined size, and the illumination light A diaphragm window provided to irradiate only a predetermined range including the positioning mark, a second optical system that irradiates the sample by changing the optical path of the illumination light that has passed through the diaphragm window, and reflects the sample. A third for focusing and forming the illumination light
Wafer positioning system, a third optical system, a spatial filter for the positioning marks arranged on the Fourier transform surface of the third optical system, and an image pickup unit at the image forming position of the third optical system. apparatus.
【請求項2】 前記単色光がレーザ光であることを特徴
とする請求項1記載のウェーハ位置決め装置。
2. The wafer positioning apparatus according to claim 1, wherein the monochromatic light is laser light.
JP5269316A 1993-10-28 1993-10-28 Wafer positioning device Pending JPH07120939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5269316A JPH07120939A (en) 1993-10-28 1993-10-28 Wafer positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5269316A JPH07120939A (en) 1993-10-28 1993-10-28 Wafer positioning device

Publications (1)

Publication Number Publication Date
JPH07120939A true JPH07120939A (en) 1995-05-12

Family

ID=17470652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5269316A Pending JPH07120939A (en) 1993-10-28 1993-10-28 Wafer positioning device

Country Status (1)

Country Link
JP (1) JPH07120939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355139B2 (en) 2009-02-26 2013-01-15 Samsung Electronics Co., Ltd. Semiconductor apparatus including alignment tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432624A (en) * 1987-07-29 1989-02-02 Hitachi Ltd Aligner
JPH01198019A (en) * 1988-02-03 1989-08-09 Hitachi Ltd Aligner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432624A (en) * 1987-07-29 1989-02-02 Hitachi Ltd Aligner
JPH01198019A (en) * 1988-02-03 1989-08-09 Hitachi Ltd Aligner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355139B2 (en) 2009-02-26 2013-01-15 Samsung Electronics Co., Ltd. Semiconductor apparatus including alignment tool

Similar Documents

Publication Publication Date Title
US5721605A (en) Alignment device and method with focus detection system
JP3513842B2 (en) Projection exposure equipment
US20070171392A1 (en) Wavelength selecting method, position detecting method and apparatus, exposure method and apparatus, and device manufacturing method
JPH0810124B2 (en) Exposure equipment
KR19980024238A (en) Exposure device
JPH03211813A (en) Exposure aligner
JPH11251226A (en) X-ray projection aligner
US5838450A (en) Direct reticle to wafer alignment using fluorescence for integrated circuit lithography
JP2006337374A (en) Device and method for improving measurement precision when finding structural data
JP2004022797A (en) Device and method for detecting position of mark
WO2005004211A1 (en) Focus test mask, focus measureing method, and exposure device
JPH11295056A (en) Position detecting method, positioning method, and exposing method
JP3551570B2 (en) Scanning exposure apparatus and exposure method
JPH07120939A (en) Wafer positioning device
JPH04100045A (en) Photomask inspecting device
JPH10172900A (en) Exposure apparatus
JPH1140476A (en) Method for selecting exposing condition and inspection device used therefor
JP3201473B2 (en) Optimal focus position measuring method and focus position measuring mask
JPH10106937A (en) Position detecting method, its equipment and projection aligner
JP2787699B2 (en) Interference pattern intensity measurement method and exposure apparatus
JPH03295220A (en) Method and device for removal of thin film
JP3295244B2 (en) Positioning device
JP3118839B2 (en) Positioning method, projection exposure method, positioning apparatus, projection exposure apparatus
JP2634791B2 (en) Projection type alignment method and device
JPH11251230A (en) Position detecting device, aligner, and position detecting method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970520