JPH07120737A - Polymer dispersion type liquid crystal display device - Google Patents
Polymer dispersion type liquid crystal display deviceInfo
- Publication number
- JPH07120737A JPH07120737A JP28733293A JP28733293A JPH07120737A JP H07120737 A JPH07120737 A JP H07120737A JP 28733293 A JP28733293 A JP 28733293A JP 28733293 A JP28733293 A JP 28733293A JP H07120737 A JPH07120737 A JP H07120737A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- polymer
- display device
- adsorbent
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、液晶表示装置に関
し、特に、経時劣化の少ない高分子分散型液晶表示装置
(PDLC:Polymer Dispersed Liquid Crystal)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly, to a polymer dispersed liquid crystal (PDLC) liquid crystal display device with little deterioration over time.
【0002】[0002]
【従来の技術】高分子分散型液晶表示装置は、透明電極
を設けた一対の透明基板を枠状のシール材を介して接合
したセル内に、高分子樹脂中に液晶を分散させた高分子
分散液晶層を設けたものである。前記液晶としては、例
えば誘電異方性が正のネマティック液晶が用いられてい
る。2. Description of the Related Art A polymer dispersion type liquid crystal display device is a polymer in which a liquid crystal is dispersed in a polymer resin in a cell in which a pair of transparent substrates provided with transparent electrodes are joined via a frame-shaped sealing material. A dispersed liquid crystal layer is provided. As the liquid crystal, for example, nematic liquid crystal having positive dielectric anisotropy is used.
【0003】この高分子分散型液晶表示装置は、両基板
の透明電極間に電圧を印加して表示駆動される。高分子
分散液晶層中の液晶分子は電圧(電界)が印加されてい
ない状態ではさまざまな方向を向いており、高分子分散
液晶層による光散乱作用により入射光は散乱される。こ
のため、画面は曇(暗)状態となる。また、透明電極間
にしきい値電圧以上の電圧を印加すると、液晶分子が基
板面に対して垂直に一様に配列し、液晶のダイレクタの
方向に進む光に対する屈折率、即ち、常光屈折率と高分
子樹脂の屈折率がほぼ等しくなり、入射光は光散乱作用
をほとんど受けずに高分子分散液晶層を透過する。従っ
て、画面は透明(明)状態となる。This polymer-dispersed liquid crystal display device is driven for display by applying a voltage between the transparent electrodes of both substrates. The liquid crystal molecules in the polymer dispersed liquid crystal layer are oriented in various directions when no voltage (electric field) is applied, and the incident light is scattered by the light scattering action of the polymer dispersed liquid crystal layer. Therefore, the screen becomes cloudy (dark). When a voltage equal to or higher than the threshold voltage is applied between the transparent electrodes, the liquid crystal molecules are evenly arranged perpendicularly to the substrate surface, and the refractive index for light traveling in the direction of the director of the liquid crystal, that is, the ordinary light refractive index The refractive index of the polymer resin becomes almost equal, and the incident light is transmitted through the polymer dispersed liquid crystal layer with almost no light scattering effect. Therefore, the screen becomes transparent (bright).
【0004】即ち、高分子分散型液晶表示装置は、透過
光量と散乱光量を制御して表示を実現するもので、偏光
板が不要であり、一般に用いられているTN型の液晶表
示装置等に比べて画面が明るいという長所を持ってい
る。That is, the polymer-dispersed liquid crystal display device realizes a display by controlling the amount of transmitted light and the amount of scattered light, does not require a polarizing plate, and is commonly used in TN type liquid crystal display devices and the like. Compared with this, it has the advantage that the screen is bright.
【0005】[0005]
【発明が解決しようとする課題】高分子分散型液晶表示
装置は、従来、一対の基板を接合してセルを組立て、セ
ル内に真空注入法によって液晶と重合材料の混合溶液を
注入した後、重合材料を光重合させて高分子分散液晶層
を形成する方法で製造されている。A polymer-dispersed liquid crystal display device is conventionally assembled by joining a pair of substrates to assemble a cell and injecting a mixed solution of a liquid crystal and a polymer material into the cell by a vacuum injection method. It is manufactured by a method of photopolymerizing a polymer material to form a polymer dispersed liquid crystal layer.
【0006】高分子分散型液晶表示装置の製造段階で、
セル内に水分、イオン性物質等の不純物が混入した場
合、装置の使用段階で、高分子分散液晶層内にイオンが
生成され、液晶層の比抵抗が低下し、電極間に漏れ電流
が流れる虞がある。この問題は、水分やその他の不純物
が基板やシール材を介してセル内に浸透したり、セル内
の高分子樹脂が光、熱等により分解した場合等も同様で
ある。液晶層の比抵抗が低下すると、液晶層に印加され
る電圧が低下し、表示品質が劣化する。また、漏れ電流
が液晶や高分子樹脂を化学分解し、劣化を促進するとい
う悪循環を招く。At the production stage of the polymer dispersion type liquid crystal display device,
When impurities such as water and ionic substances are mixed in the cell, ions are generated in the polymer dispersed liquid crystal layer at the time of using the device, the specific resistance of the liquid crystal layer is lowered, and leakage current flows between the electrodes. There is a risk. This problem is also the same as when moisture or other impurities permeate into the cell through the substrate or the sealing material, or when the polymer resin in the cell is decomposed by light, heat, or the like. When the specific resistance of the liquid crystal layer is reduced, the voltage applied to the liquid crystal layer is reduced and the display quality is degraded. In addition, the leakage current chemically decomposes the liquid crystal and the polymer resin, which causes a vicious cycle of promoting deterioration.
【0007】この発明は上記実状に鑑みてなされたもの
で、経時劣化の少ない高分子分散型液晶表示装置を提供
することを目的とする。また、この発明は、高分子分散
液晶層内の水分やイオン等の不純物の影響の小さい高分
子分散型液晶表示装置を提供することを目的とする。さ
らに、この発明は、信頼性の高い高分子分散型液晶表示
装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object thereof is to provide a polymer dispersion type liquid crystal display device which is less deteriorated with time. Another object of the present invention is to provide a polymer-dispersed liquid crystal display device that is less affected by impurities such as water and ions in the polymer-dispersed liquid crystal layer. A further object of the present invention is to provide a highly reliable polymer dispersion type liquid crystal display device.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、この発明にかかる高分子分散型液晶表示装置は、そ
れぞれに電極を設けた一対の基板間に樹脂と液晶の複合
膜からなる高分子分散液晶層を設けた高分子分散型液晶
表示装置において、樹脂又は液晶の少なくとも一方に吸
着材を添加したことを特徴とする。吸着材はその平均径
が0.65μm以下であり、添加量は液晶及び/又は樹
脂の重量の1%以下の重量であることが望ましい。吸着
材としては、シリカゲル、ゼオライト等を使用できる。In order to achieve the above object, a polymer dispersion type liquid crystal display device according to the present invention comprises a polymer composed of a composite film of a resin and a liquid crystal between a pair of substrates each having an electrode. A polymer dispersed liquid crystal display device provided with a dispersed liquid crystal layer is characterized in that an adsorbent is added to at least one of a resin and a liquid crystal. The adsorbent preferably has an average diameter of 0.65 μm or less, and the addition amount is 1% or less by weight of the liquid crystal and / or the resin. As the adsorbent, silica gel, zeolite or the like can be used.
【0009】[0009]
【作用】上記構成の高分子分散型液晶表示装置によれ
ば、製造段階で高分子分散液晶層に混入した或いは使用
中に発生或いは浸透した不純物が吸着材に吸着される。
従って、液晶及び樹脂の比抵抗が高い値に維持される。
これにより、漏れ電流等が小さく抑えられ、装置の信頼
性が高まると共に装置の寿命が長くなる。また、液晶の
比抵抗を高い値に維持することにより、液晶の印加電圧
(電界)を高い値に維持できるので、装置の動作速度を
高速化することができる。また、上述した吸着材の平均
径の値を小さくすることにより、不必要な光の散乱を防
止できる。According to the polymer-dispersed liquid crystal display device having the above structure, impurities admixed in the polymer-dispersed liquid crystal layer at the manufacturing stage or generated or permeated during use are adsorbed by the adsorbent.
Therefore, the specific resistance of the liquid crystal and the resin is maintained at a high value.
As a result, leakage current and the like are suppressed to be small, the reliability of the device is improved, and the life of the device is extended. Further, since the applied voltage (electric field) of the liquid crystal can be maintained at a high value by maintaining the specific resistance of the liquid crystal at a high value, the operating speed of the device can be increased. In addition, unnecessary scattering of light can be prevented by reducing the value of the average diameter of the adsorbent described above.
【0010】[0010]
【実施例】以下、この発明の一実施例を図面を参照して
説明する。図1はこの実施例の高分子分散型液晶表示装
置の断面図である。図示するように、この実施例の高分
子分散型液晶表示装置は、透明電極(例えば、ITO電
極)13、14を設けた一対の透明基板(例えばガラス
基板)11、12を枠状のシール材15を介して接合し
て形成したセル10内に高分子分散液晶層(高分子樹脂
と液晶との複合膜)16を設けた構成となっている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of the polymer dispersed liquid crystal display device of this embodiment. As shown in the figure, in the polymer dispersed liquid crystal display device of this embodiment, a pair of transparent substrates (for example, glass substrates) 11 and 12 provided with transparent electrodes (for example, ITO electrodes) 13 and 14 are formed into a frame-shaped sealing material. The structure is such that a polymer dispersed liquid crystal layer (composite film of polymer resin and liquid crystal) 16 is provided in a cell 10 formed by bonding via 15.
【0011】図2(A)、(B)は高分子分散液晶層1
6の拡大断面図である。高分子分散液晶層16は、図2
(A)に示すような液晶19のカプセルからなる液晶溜
まり18を高分子樹脂17中に分散させた複合膜でもよ
く、或いは、図2(B)に示すような網目状の高分子樹
脂17の中に液晶19の溜まり(液晶溜まり)18を分
散させ、液晶19が連続相を形成する複合膜でもよい。
図2(A),(B)に示す高分子分散液晶16は、例え
ば、エマルジョン法又は重合相分離法により製造され
る。2A and 2B show a polymer dispersed liquid crystal layer 1.
6 is an enlarged sectional view of FIG. The polymer dispersed liquid crystal layer 16 is shown in FIG.
A composite film in which a liquid crystal pool 18 composed of capsules of liquid crystal 19 as shown in FIG. 2A is dispersed in a polymer resin 17, or a mesh-like polymer resin 17 as shown in FIG. A composite film in which a pool 18 of liquid crystal 19 (liquid crystal pool) is dispersed and the liquid crystal 19 forms a continuous phase may be used.
The polymer-dispersed liquid crystal 16 shown in FIGS. 2A and 2B is manufactured by, for example, an emulsion method or a polymer phase separation method.
【0012】液晶溜まり18及び高分子樹脂17内に
は、吸着材20が混入している。吸着材20としては、
例えば、水分を固定するシリカゲルの微粒、イオンを吸
着する合成ゼオライトの微粒を使用できる。吸着材20
はその径の平均値dが0.65μm以下であり、望まし
くは0.5μm以下、さらに望ましくは0.45μm以
下である。また、その添加量はセル10内の液晶19の
重量に対し、1重量%以下であるが、高分子分散液晶層
16の重量に対し1重量%以下でもよい。An adsorbent 20 is mixed in the liquid crystal reservoir 18 and the polymer resin 17. As the adsorbent 20,
For example, fine particles of silica gel for fixing water and fine particles of synthetic zeolite for adsorbing ions can be used. Adsorbent 20
Has an average diameter d of 0.65 μm or less, preferably 0.5 μm or less, and more preferably 0.45 μm or less. Further, the addition amount thereof is 1% by weight or less with respect to the weight of the liquid crystal 19 in the cell 10, but may be 1% by weight or less with respect to the weight of the polymer dispersed liquid crystal layer 16.
【0013】上記構成の高分子分散型液晶表示装置にお
いては、透明電極13、14間に電圧を印加していない
状態では、図3(A)に示すように、液晶分子22がさ
まざまな方向を向き、その平均屈折率は1.7程度とな
る。液晶19の光の進行方向に対する屈折率と高分子樹
脂17の屈折率(約1.5)の差により、両者の界面で
入射光が反射し、散乱する。このため、表示は曇(暗)
状態となる。また、電極13、14間にしきい値電圧以
上の電圧を印加すると、図3(B)に示すように、液晶
分子22は基板面に対して垂直に一様に配列する。この
ため、液晶19の光の進行方向に対する屈折率と高分子
樹脂17の屈折率がほぼ等しくなり、透過光が光散乱作
用をほとんど受けずに高分子分散液晶層16を透過し、
画面は透明(明)状態となる。In the polymer-dispersed liquid crystal display device having the above structure, when no voltage is applied between the transparent electrodes 13 and 14, the liquid crystal molecules 22 have various directions as shown in FIG. 3 (A). Orientation, and its average refractive index is about 1.7. Due to the difference between the refractive index of the liquid crystal 19 in the light traveling direction and the refractive index of the polymer resin 17 (about 1.5), incident light is reflected and scattered at the interface between the two. Therefore, the display is cloudy (dark).
It becomes a state. Further, when a voltage equal to or higher than the threshold voltage is applied between the electrodes 13 and 14, the liquid crystal molecules 22 are uniformly arranged perpendicular to the substrate surface, as shown in FIG. Therefore, the refractive index of the liquid crystal 19 with respect to the traveling direction of the light and the refractive index of the polymer resin 17 become substantially equal, and the transmitted light passes through the polymer dispersed liquid crystal layer 16 with almost no light scattering effect.
The screen becomes transparent (bright).
【0014】この実施例によれば、高分子分散型液晶表
示装置の製造時に液晶19内に不純物(イオン性物質や
水分)が混入したり、経時変化に伴い液晶19内に水分
が混入したり、液晶19や高分子樹脂17が電流、熱、
光等により化学分解した場合でも、図4に模式的に示す
ように、これらが吸着材20に吸着される。従って、不
純物が高分子分散型液晶表示装置の動作に悪影響を与え
ることがなく、装置の経時劣化を低減し、安定した動作
を確保できる。According to this embodiment, impurities (ionic substances and water) are mixed in the liquid crystal 19 during manufacturing of the polymer dispersion type liquid crystal display device, or water is mixed in the liquid crystal 19 with the lapse of time. , Liquid crystal 19 and polymer resin 17
Even when chemically decomposed by light or the like, these are adsorbed by the adsorbent 20 as schematically shown in FIG. Therefore, the impurities do not adversely affect the operation of the polymer-dispersed liquid crystal display device, the deterioration of the device over time can be reduced, and stable operation can be ensured.
【0015】また、吸着材20はその平均粒径dが0.
65μm以下であり、赤(中心波長が約6.1μm)よ
り波長の長い光を散乱させることがない。従って、不必
要な光の散乱を防止できる。また、吸着材20の平均粒
径dを0.5μm以下、0.45μm以下とすることに
より、緑及び青の光の散乱も防ぐことができ、多色表示
に対応できる。The adsorbent 20 has an average particle size d of 0.
It is 65 μm or less, and does not scatter light having a wavelength longer than that of red (center wavelength is about 6.1 μm). Therefore, unnecessary scattering of light can be prevented. Further, by setting the average particle diameter d of the adsorbent 20 to 0.5 μm or less and 0.45 μm or less, it is possible to prevent scattering of green and blue light, and it is possible to support multicolor display.
【0016】不純物を吸着する能力は吸着材20の分量
を多くするに従って増加する。しかし、それに伴い液晶
の量が相対的に減少し、所望の表示を得るためのに要求
される印加電圧が高くなってしまう。この実施例では、
吸着材20の添加量を液晶の重量の約1重量%以下(望
ましくは0.5%〜0.8%)としたので、トレードオ
フの関係にある両者の調整を適切に行うことができる。The ability to adsorb impurities increases as the amount of adsorbent 20 increases. However, as a result, the amount of liquid crystal relatively decreases, and the applied voltage required to obtain a desired display becomes high. In this example,
Since the amount of the adsorbent 20 added is set to about 1% by weight or less (preferably 0.5% to 0.8%) of the weight of the liquid crystal, it is possible to appropriately adjust the two in a trade-off relationship.
【0017】次に、上記構成の高分子分散型液晶表示装
置の製造方法を説明する。 (1) 初めに、図2(A)に示すような液晶のカプセ
ルを用いる高分子分散型液晶表示装置の製造方法を説明
する。まず、例えば、粒径が0.5μmで0.7重量%
程度の吸着材20を液晶19に添加する。次に、これを
かくはんし、吸着材20が液晶19中でほぼ均等に分散
した状態で、通常知られた手法を用いて(特公平3−5
2843等参照)、液晶19のマイクロカプセル18を
形成する。Next, a method of manufacturing the polymer dispersion type liquid crystal display device having the above structure will be described. (1) First, a method of manufacturing a polymer dispersion type liquid crystal display device using a liquid crystal capsule as shown in FIG. 2A will be described. First, for example, 0.7 wt% with a particle size of 0.5 μm
A certain amount of adsorbent 20 is added to the liquid crystal 19. Next, this is agitated, and in a state where the adsorbent 20 is almost evenly dispersed in the liquid crystal 19, a commonly known method is used (Japanese Patent Publication No. 3-5).
2843), the microcapsules 18 of the liquid crystal 19 are formed.
【0018】次に、この液晶のマイクロカプセル18を
吸着材20を添加したポリビニルアルコール(PVA)
等を重合により得る重合材料の水溶液(モノマー、オリ
ゴマー、調整材等の混合液)中に分散し、これを一方の
基板に塗布し、その後、他方の基板をスペーサ及びシー
ル材15を介して張り合わせる。さらに、この液晶装置
に光を照射し又は熱を加えて重合材料を重合させる。こ
れにより、図2(A)に示すようにマイクロカプセル化
された液晶溜まり18に吸着材20を含む高分子分散型
液晶表示装置が完成する。なお、PVA内に吸着材20
を添加しなければ、液晶溜まり18内のみに吸着材20
が散在する構成が得られる。Next, polyvinyl alcohol (PVA) to which the adsorbent 20 is added is added to the liquid crystal microcapsules 18.
Etc. are dispersed in an aqueous solution of a polymerization material (mixture of monomers, oligomers, adjusting materials, etc.) obtained by polymerization, this is applied to one substrate, and then the other substrate is bonded via a spacer and a sealing material 15. It Further, the liquid crystal device is irradiated with light or heated to polymerize the polymerized material. As a result, as shown in FIG. 2A, the polymer dispersion type liquid crystal display device including the adsorbent 20 in the microcapsulated liquid crystal reservoir 18 is completed. In addition, the adsorbent 20 in the PVA
Without addition of the adsorbent 20 only inside the liquid crystal pool 18.
Can be obtained.
【0019】(2) 一方、図2(B)に示すネットワ
ーク状の高分子樹脂構造を有する高分子分散型液晶表示
装置は例えば以下のように構成される。まず、図5
(A)に示すように一対の透明基板11、12をシール
材15を介して接合してセル10を組み立てる。シール
材15は注入口15aを備える。(2) On the other hand, the polymer-dispersed liquid crystal display device having the network-shaped polymer resin structure shown in FIG. 2B is constructed as follows, for example. First, FIG.
As shown in (A), the cell 10 is assembled by joining a pair of transparent substrates 11 and 12 with a sealant 15 interposed therebetween. The sealing material 15 has an injection port 15a.
【0020】誘電異方性が正のネマティック液晶等の液
晶19(高分子分散液晶層全体に対し60〜80重量
%)と重合材料を相溶した混合液に0.8重量%程度の
吸着材20を加え、かくはんし、均一に混ぜる。この状
態で、セル10内に真空注入法により液晶19、重合材
料、吸着材20からなる混合溶液Aを注入する。混合溶
液Aの注入は従来の真空注入法と同様に、図示しない真
空槽内にセル10をセットして槽内を真空状態に減圧し
た後、セル10の注入口15aを溶液皿28内の混合溶
液Aに浸漬し、この後、真空槽内を大気圧又はそれより
若干高い気圧に昇圧させることによって行う。Liquid crystal 19 such as nematic liquid crystal having positive dielectric anisotropy (60 to 80% by weight with respect to the entire polymer dispersed liquid crystal layer) and a polymer material are mixed with each other in a mixed solution of about 0.8% by weight of an adsorbent. Add 20, stir and mix evenly. In this state, the mixed solution A including the liquid crystal 19, the polymer material, and the adsorbent 20 is injected into the cell 10 by the vacuum injection method. As in the conventional vacuum injection method, the mixed solution A is injected by setting the cell 10 in a vacuum tank (not shown) to reduce the pressure in the tank to a vacuum state, and then the injection port 15a of the cell 10 is mixed in the solution dish 28. It is immersed in the solution A, and thereafter, the pressure in the vacuum chamber is raised to atmospheric pressure or slightly higher than atmospheric pressure.
【0021】混合溶液Aをセル10に注入すると、注入
された溶液Aの圧力が下がってその液晶溶解度が低くな
る。この際、低下した溶解度を越えた分の液晶19が析
出し、図5(B)に示すように、混合溶液A中に過剰液
晶aが散在する状態になる。When the mixed solution A is injected into the cell 10, the pressure of the injected solution A is lowered and its liquid crystal solubility is lowered. At this time, the liquid crystal 19 in an amount exceeding the lowered solubility is deposited, and as shown in FIG. 5B, the excess liquid crystal a is scattered in the mixed solution A.
【0022】次に、混合溶液Aを注入したセル10を真
空槽から取りだし、セル10を加熱してその内部の混合
溶液Aを所定の温度に上昇する。混合溶液Aの温度を上
昇すると、液晶溶解度も上昇し、図5(C)に示すよう
に過剰液晶aが再溶解する。Next, the cell 10 into which the mixed solution A has been injected is taken out of the vacuum chamber, and the cell 10 is heated to raise the mixed solution A therein to a predetermined temperature. When the temperature of the mixed solution A is increased, the liquid crystal solubility is also increased, and the excess liquid crystal a is redissolved as shown in FIG.
【0023】混合溶液Aの温度は、析出した液晶が再溶
解する温度以上であればよいが、この再溶解温度より
も、液晶のN−I点温度が高い場合は、N−I点温度以
上に上昇させるのが望ましい。その後、液晶19が再析
出しないように混合溶液Aの温度を保持しておき、その
状態で図5(D)に示すように光源30からセル10に
紫外線を照射し、セル10内の重合材料を光重合させる
ことにより、光硬化性樹脂17と液晶19とを相分離し
て、図2(B)に示した構成の高分子分散液晶層16が
形成される。なお、液晶19の量を60〜80重量%と
したが、液晶19の量を少なくすることにより図2
(A)と同様の構成も形成できる。The temperature of the mixed solution A may be higher than the temperature at which the precipitated liquid crystal re-dissolves. If the temperature of the liquid crystal NI point is higher than the re-dissolving temperature, it may be higher than the NI point temperature. It is desirable to raise to. After that, the temperature of the mixed solution A is kept so that the liquid crystal 19 is not re-precipitated, and in that state, the cell 10 is irradiated with ultraviolet rays from the light source 30 as shown in FIG. By photopolymerizing, the photocurable resin 17 and the liquid crystal 19 are phase-separated, and the polymer dispersed liquid crystal layer 16 having the structure shown in FIG. 2B is formed. Although the amount of the liquid crystal 19 is set to 60 to 80% by weight, it is possible to reduce the amount of the liquid crystal 19 as shown in FIG.
A structure similar to that of (A) can also be formed.
【0024】光重合は、液晶19が十分に溶解し得る範
囲で、混合溶液Aの温度をできるだけ低くして行う。こ
れは、混合溶液Aの温度が高いほど、光重合に必要とな
る紫外線の光量が多くなるためである。紫外線を多く照
射すると液晶19及び高分子樹脂17の劣化が速まるた
め、光重合はできるだけ温度を下げて少ない紫外線量で
行うのが望ましい。ただし、この実施例においては、液
晶19や高分子樹脂17が紫外線により分解されても、
それらが吸着材20により固定されるので、劣化による
悪影響は低減される。The photopolymerization is carried out by keeping the temperature of the mixed solution A as low as possible within a range in which the liquid crystal 19 can be sufficiently dissolved. This is because the higher the temperature of the mixed solution A, the greater the amount of ultraviolet light required for photopolymerization. Since the deterioration of the liquid crystal 19 and the polymer resin 17 is accelerated when a large amount of ultraviolet rays are irradiated, it is desirable to carry out photopolymerization with a small amount of ultraviolet rays by lowering the temperature as much as possible. However, in this embodiment, even if the liquid crystal 19 and the polymer resin 17 are decomposed by ultraviolet rays,
Since they are fixed by the adsorbent 20, adverse effects due to deterioration are reduced.
【0025】また、液晶がI相にある状態のまま重合材
料を光重合させて高分子分散液晶層16を形成すると、
透明電極13、14間に印加する駆動電圧が高くなって
しまうため、光重合は混合溶液Aの温度を液晶がN相に
戻る温度まで降下させてから行うのが望ましい。ただ
し、液晶のN−I点温度が混合液晶Aの液晶溶解温度よ
り低い場合は、セル温度をN−I点温度以下に降下させ
ると、混合溶液A中の液晶19が再度析出してしまうた
め、この場合は、混合溶液Aの温度を液晶19が溶解し
かつ液晶19がI相にある状態のまま光重合を行う。When the polymer material is photopolymerized while the liquid crystal is in the I phase to form the polymer dispersed liquid crystal layer 16,
Since the driving voltage applied between the transparent electrodes 13 and 14 becomes high, it is desirable to perform the photopolymerization after lowering the temperature of the mixed solution A to a temperature at which the liquid crystal returns to the N phase. However, when the NI temperature of the liquid crystal is lower than the liquid crystal melting temperature of the mixed liquid crystal A, if the cell temperature is lowered to the NI temperature or less, the liquid crystal 19 in the mixed solution A will be precipitated again. In this case, the photopolymerization is performed while the liquid crystal 19 is dissolved at the temperature of the mixed solution A and the liquid crystal 19 is in the I phase.
【0026】このようにして、高分子分散液晶層16を
形成した後は、セル10の注入口15aを光硬化性樹脂
等によって封止し、図1に示した高分子分散型液晶表示
装置を完成する。After the polymer dispersed liquid crystal layer 16 is formed in this manner, the injection port 15a of the cell 10 is sealed with a photo-curable resin or the like, and the polymer dispersed liquid crystal display device shown in FIG. 1 is obtained. Complete.
【0027】なお、液晶カプセルを用いるタイプの高分
子分散型液晶装置を製造する際に、液晶カプセルを含む
溶液をセル内に真空注入してもよい。また、相分離タイ
プの高分子分散型液晶装置を製造する際にゲル状の混合
溶液Aをスピンコーターを用いて一方の基板上に塗布
し、それにスペーサー、シール材を介して他方の基板を
接合するようにしてもよい。また、高分子樹脂として
は、熱重合性の樹脂を使用してもよい。When manufacturing a polymer dispersion type liquid crystal device of the type using a liquid crystal capsule, a solution containing the liquid crystal capsule may be vacuum-injected into the cell. Further, when manufacturing a phase separation type polymer dispersion type liquid crystal device, a gel-like mixed solution A is applied onto one substrate by using a spin coater, and the other substrate is bonded thereto via a spacer and a sealing material. You may do it. Further, a thermopolymerizable resin may be used as the polymer resin.
【0028】吸着材を用いない高分子分散型液晶表示装
置と1重量%の吸着材を使用した高分子分散型液晶表示
装置について紫外線照射下でプレッシャークッカーテス
トを行い、劣化による漏れ電流の大きさ測定した。テス
ト条件は、圧力2気圧、温度100℃、湿度100%、
である。この実験結果を図6に示す。A polymer cooker using no adsorbent and a polymer dispenser using 1% by weight of adsorbent were subjected to a pressure cooker test under UV irradiation, and the leakage current due to deterioration was measured. It was measured. The test conditions are pressure 2 atm, temperature 100 ° C, humidity 100%,
Is. The results of this experiment are shown in FIG.
【0029】図6から明らかなように、吸着材を用いな
い高分子分散型液晶表示装置では、漏れ電流が比較的速
く発生している。これに対し、吸着材を用いた高分子分
散型液晶表示装置では、漏れ電流の発生が遅れ、また、
漏れ電流の電流値自体が小さい。これは、紫外線や高圧
・高温・高湿度下で高分子樹脂の劣化や水分の浸透等が
発生し、装置内にイオンが発生し、従来の高分子分散型
液晶表示装置では漏れ電流が発生するが、本実施例の高
分子分散型液晶表示装置では、これらの不純物が吸着材
により固定され、イオン等の移動がなくなるために漏れ
電流が小さい値に抑えられるためと推測される。As is apparent from FIG. 6, in the polymer dispersion type liquid crystal display device which does not use the adsorbent, the leakage current occurs relatively quickly. On the other hand, in the polymer dispersion type liquid crystal display device using the adsorbent, the generation of leakage current is delayed,
The leakage current value itself is small. This is because deterioration of the polymer resin and permeation of water occur under ultraviolet light, high pressure, high temperature and high humidity, and ions are generated in the device, and leakage current occurs in the conventional polymer dispersion type liquid crystal display device. However, in the polymer dispersed liquid crystal display device of the present embodiment, it is presumed that these impurities are fixed by the adsorbent and the movement of ions and the like is eliminated, so that the leakage current is suppressed to a small value.
【0030】なお、吸着材20の平均粒径dが大きすぎ
ると、吸着材20が入射光を散乱させるため、表示が常
時濁った状態となり好ましくない。このため、吸着材2
0の平均粒径dを表示に必要とする光の波長以下とする
ことが望ましい。例えば、フルカラー表示の液晶表示装
置の場合には、粒径は青の光の中心波長である0.43
5μmより小さいことが望ましい、また、単色表示の場
合には、赤の光の中心波長である0.61μmより小さ
いことが望ましい。また、吸着材20の機能はその表面
積に影響され、同一の重量%に対しては、粒径が小さい
ほど表面積が大きくなる。この観点からも、粒径は小さ
いことが望ましく、この観点からは平均粒径dが0.5
μm以下であることが望ましい。If the average particle diameter d of the adsorbent 20 is too large, the adsorbent 20 scatters incident light, and the display is always turbid, which is not preferable. Therefore, the adsorbent 2
It is desirable that the average particle diameter d of 0 be equal to or less than the wavelength of light required for display. For example, in the case of a full-color liquid crystal display device, the particle size is 0.43, which is the center wavelength of blue light.
It is desirable that it is smaller than 5 μm, and in the case of monochromatic display, it is desirable that it is smaller than 0.61 μm which is the center wavelength of red light. Further, the function of the adsorbent 20 is influenced by its surface area, and for the same weight%, the smaller the particle size, the larger the surface area. From this viewpoint as well, it is desirable that the particle diameter is small, and from this viewpoint, the average particle diameter d is 0.5.
It is desirable that the thickness is μm or less.
【0031】液晶19と重合材料の溶液の比重と吸着材
20の比重が大きく異なると、混合溶液Aをセル10に
注入する際に、吸着材20が混合溶液中で均一に分散し
ない虞がある。そこで、吸着材20はこれらと比重がほ
ぼ等しいものを選択することが望ましい。また、かくは
んを行いながら、注入するようにしてもよい。また、こ
の発明にかかる高分子分散型液晶表示装置の製造方法は
上記実施例に限定されない。例えば、セル10を組み立
てる段階で、吸着材20をセル10内に散布し、その
後、真空注入法等を用いて液晶19と重合材料の混合溶
液をセル10に注入するようにしてもよい。When the specific gravity of the solution of the liquid crystal 19 and the specific gravity of the solution of the polymerization material are greatly different from the specific gravity of the adsorbent 20, the adsorbent 20 may not be uniformly dispersed in the mixed solution when the mixed solution A is injected into the cell 10. . Therefore, it is desirable to select the adsorbent 20 that has substantially the same specific gravity as these. Moreover, you may make it inject while agitating. Further, the method of manufacturing the polymer dispersed liquid crystal display device according to the present invention is not limited to the above embodiment. For example, at the stage of assembling the cell 10, the adsorbent 20 may be dispersed in the cell 10, and then the mixed solution of the liquid crystal 19 and the polymer material may be injected into the cell 10 by using a vacuum injection method or the like.
【0032】また、吸着材20としては、シリカゲルや
合成ゼオライト等の1種類の吸着材を使用してもよく、
また、複数種類の吸着材を混合て使用してもよい。ま
た、他の通常知られた吸着材を使用してもよい。また、
液晶としては、通常のTN、STN、強誘電性、反強誘
電性液晶等に用いられる液晶を使用してもよい。この発
明は単純マトリクスタイプの高分子分散型液晶表示装置
及びTFT(薄膜トランジスタ)高分子分散型液晶表示
装置等のアクティブマトリクスタイプの高分子分散型液
晶表示装置のいずれにも適用可能である。また、液晶1
9はネマティック液晶に限らず、コレステリック液晶、
スメクテック液晶、強誘電性を有する液晶、染料を含む
ゲストホストタイプの液晶等でもよい。As the adsorbent 20, one kind of adsorbent such as silica gel or synthetic zeolite may be used.
Also, a plurality of types of adsorbents may be mixed and used. Also, other commonly known adsorbents may be used. Also,
As the liquid crystal, a liquid crystal used for ordinary TN, STN, ferroelectric, antiferroelectric liquid crystal or the like may be used. The present invention can be applied to both a simple matrix type polymer dispersed liquid crystal display device and an active matrix type polymer dispersed liquid crystal display device such as a TFT (thin film transistor) polymer dispersed liquid crystal display device. Also, liquid crystal 1
9 is not limited to nematic liquid crystal, cholesteric liquid crystal,
A smectic liquid crystal, a liquid crystal having ferroelectricity, a guest-host type liquid crystal containing a dye, or the like may be used.
【0033】[0033]
【発明の効果】以上説明したように、この発明によれ
ば、製造時に混入していた或いは経時劣化により発生或
いは外部より侵入した水分や不純物イオンを吸着材が吸
着するので、漏れ電流等の発生を押さえることができる
と共に液晶層の比抵抗を高い値に維持することができ
る。従って、高分子分散型液晶装置の寿命をのばすこと
ができると共に信頼性を高めることができる。As described above, according to the present invention, the adsorbent adsorbs moisture or impurity ions that are mixed in during manufacture or that are generated due to deterioration over time or that have entered from the outside, so that leakage current is generated. Can be suppressed and the specific resistance of the liquid crystal layer can be maintained at a high value. Therefore, the life of the polymer-dispersed liquid crystal device can be extended and reliability can be improved.
【図1】この発明の一実施例にかかる高分子分散型液晶
表示装置の構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of a polymer dispersed liquid crystal display device according to an embodiment of the present invention.
【図2】高分子分散液晶層の構成の一例を示す断面図で
あり、(A)は液晶のマイクロカプセルを用いるタイプ
のもの、(B)は網目状の高分子樹脂中に液晶を充填し
たタイプのものを示す。FIG. 2 is a cross-sectional view showing an example of the structure of a polymer-dispersed liquid crystal layer, in which (A) is a type that uses liquid crystal microcapsules, and (B) is a network polymer resin filled with liquid crystal. Indicates the type.
【図3】図1、図2に示す高分子分散型液晶表示装置の
動作を示す図であり、(A)は電極間に電圧を印加して
いない状態を示す図、(B)は電極間に電圧を印加して
いる状態を示す図である。3A and 3B are diagrams showing an operation of the polymer-dispersed liquid crystal display device shown in FIGS. 1 and 2, where FIG. 3A is a diagram showing a state in which a voltage is not applied between electrodes, and FIG. It is a figure which shows the state which is applying the voltage to.
【図4】不純物が吸着材に吸着される様子を示す図であ
る。FIG. 4 is a diagram showing how impurities are adsorbed by an adsorbent.
【図5】この発明の一実施例にかかる高分子分散型液晶
表示装置の製造方法を説明する図である。FIG. 5 is a diagram illustrating a method for manufacturing a polymer-dispersed liquid crystal display device according to an embodiment of the present invention.
【図6】この発明の一実施例にかかる高分子分散型液晶
表示装置と従来の高分子分散型液晶表示装置の特性を比
較して示す図である。FIG. 6 is a diagram showing characteristics of a polymer-dispersed liquid crystal display device according to an embodiment of the present invention and a conventional polymer-dispersed liquid crystal display device for comparison.
10・・・セル、11、12・・・透明基板、13、14・・・
透明電極、15・・・シール材、16・・・高分子分散液晶層
(高分子樹脂と液晶の複合層)、17・・・高分子樹脂、
18・・・液晶溜まり(ドメイン)、19・・・液晶、20・・
・吸着材、22・・・液晶分子、28・・・溶液皿、30・・・光
源10 ... Cell, 11, 12 ... Transparent substrate, 13, 14 ...
Transparent electrode, 15 ... Sealing material, 16 ... Polymer dispersed liquid crystal layer (composite layer of polymer resin and liquid crystal), 17 ... Polymer resin,
18 ... Liquid crystal pool (domain), 19 ... Liquid crystal, 20 ...
・ Adsorbent, 22 ... Liquid crystal molecule, 28 ... Solution dish, 30 ... Light source
Claims (5)
脂と液晶との複合膜からなる高分子分散液晶層を設けた
高分子分散型液晶表示装置において、 前記高分子分散液晶層を構成する前記樹脂又は前記液晶
の少なくとも一方は吸着材を含むことを特徴とする高分
子分散型液晶表示装置。1. A polymer-dispersed liquid crystal display device comprising a polymer-dispersed liquid crystal layer comprising a composite film of resin and liquid crystal between a pair of substrates each having electrodes, wherein the polymer-dispersed liquid crystal layer is constituted. At least one of the resin or the liquid crystal that contains an adsorbent is a polymer-dispersed liquid crystal display device.
下であり、その添加量が前記液晶及び/又は樹脂の重量
の1%以下の重量であることを特徴とする請求項1記載
の高分子分散型液晶表示装置。2. The adsorbent according to claim 1, wherein the adsorbent has an average diameter of 0.65 μm or less, and an amount of addition is 1% or less by weight of the liquid crystal and / or resin. Polymer dispersed liquid crystal display device.
なくとも一方を含むことを特徴とする請求項1又は2記
載の高分子分散型液晶表示装置。3. The polymer dispersed liquid crystal display device according to claim 1, wherein the adsorbent contains at least one of silica gel and zeolite.
は層内で発生した不純物を固定する微小粒子とを備え、
経時劣化を低減することを特徴とする液晶表示装置。4. A pair of substrates, electrodes formed on opposing surfaces of the pair of substrates, a layer disposed between the pair of substrates and containing a resin and a liquid crystal, and disposed in the resin and / or the liquid crystal. And fine particles that permeate the layer or fix impurities generated in the layer,
A liquid crystal display device characterized by reducing deterioration over time.
収する吸着材であり、その平均径が0.65μm以下で
あることを特徴とする請求項4記載の液晶表示装置。5. The liquid crystal display device according to claim 4, wherein the fine particles are an adsorbent that absorbs moisture and / or ions, and has an average diameter of 0.65 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28733293A JPH07120737A (en) | 1993-10-25 | 1993-10-25 | Polymer dispersion type liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28733293A JPH07120737A (en) | 1993-10-25 | 1993-10-25 | Polymer dispersion type liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07120737A true JPH07120737A (en) | 1995-05-12 |
Family
ID=17716001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28733293A Pending JPH07120737A (en) | 1993-10-25 | 1993-10-25 | Polymer dispersion type liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07120737A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003091013A (en) * | 2001-09-18 | 2003-03-28 | Ricoh Co Ltd | Liquid crystal device, optical deflection element, picture display device using the optical deflection element, method for manufacturing optical deflection element and method for driving the optical deflection element |
-
1993
- 1993-10-25 JP JP28733293A patent/JPH07120737A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003091013A (en) * | 2001-09-18 | 2003-03-28 | Ricoh Co Ltd | Liquid crystal device, optical deflection element, picture display device using the optical deflection element, method for manufacturing optical deflection element and method for driving the optical deflection element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3060656B2 (en) | Liquid crystal display device | |
JPH0973075A (en) | Production of liquid crystal display element and apparatus for producing liquid crystal display element | |
JPH0713138A (en) | Polymer dispersion type liquid crystal display element | |
KR0157739B1 (en) | Liquid crystal display device with a polymer between liquid crystal regions made by a heating and cooling process | |
JP2000321562A (en) | Liquid crystal optical device having reverse mode optical switching function and its production | |
JPH03164713A (en) | Ferrodielectric liquid crystal electrooptical device and its production | |
KR100321256B1 (en) | Method for fabricating liquid crystal optical device and liquid crystal optical device obtained by the same | |
JPH04240614A (en) | Liquid crystal electrooptical element | |
JPH07120737A (en) | Polymer dispersion type liquid crystal display device | |
JP3344642B2 (en) | Liquid crystal display device and method of manufacturing the same | |
JP3298522B2 (en) | Liquid crystal display device | |
JPH11125808A (en) | Liquid crystal optical element and its production | |
JPH05341268A (en) | Liquid crystal electrooptical device and its production | |
JPH075444A (en) | Display element and its production | |
JPH07181454A (en) | Polymer dispersion type liquid crystal element and its production | |
KR100319925B1 (en) | LCD and its manufacturing method | |
JP6246256B2 (en) | Liquid crystal molecular alignment substrate and liquid crystal display element | |
JP2001033767A (en) | Liquid crystal display device and its production | |
JPH095723A (en) | Production of high polymer dispersion type liquid crystal display device | |
JPH07120727A (en) | Polymer dispersion type liquid crystal display device | |
KR100408495B1 (en) | Method for fabricating liquid crystal display | |
KR100387230B1 (en) | Method for manufacturing liquid crystal display panel | |
JPH07306414A (en) | Liquid crystal display element and production thereof | |
JP4048619B2 (en) | Liquid crystal optical element and manufacturing method thereof | |
JPH07270762A (en) | Production of polymer dispersion type liquid crystal display element |