JPH07120683A - Fluid pressure-driving type actuator - Google Patents

Fluid pressure-driving type actuator

Info

Publication number
JPH07120683A
JPH07120683A JP5266132A JP26613293A JPH07120683A JP H07120683 A JPH07120683 A JP H07120683A JP 5266132 A JP5266132 A JP 5266132A JP 26613293 A JP26613293 A JP 26613293A JP H07120683 A JPH07120683 A JP H07120683A
Authority
JP
Japan
Prior art keywords
fluid pressure
elastic
elastic member
microactuator
type actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5266132A
Other languages
Japanese (ja)
Other versions
JP3260933B2 (en
Inventor
Yasuhiro Ueda
康弘 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP26613293A priority Critical patent/JP3260933B2/en
Publication of JPH07120683A publication Critical patent/JPH07120683A/en
Application granted granted Critical
Publication of JP3260933B2 publication Critical patent/JP3260933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PURPOSE:To provide a fluid pressure-driving type actuator which is capable of having the more extra fine diameter or being micronized, and can be returned to the initial form by its own restoring force at non-pressurization because a regulating member has elastic restoring force to improve responsiveness. CONSTITUTION:In the fluid pressure driving type actuator having an elastic member having a pressure chamber and a regulating member 8 for regulating the expansion of the elastic member at pressurization in a specified direction, the regulating member 8 is formed from an elastic pipe, and a slit 9 laid along the axial direction or circumferential direction is formed on the elastic pipe. Thus, since the axial extension of the elastic member is regulated by the regulating member 8, when a fluid is supplied to the pressure chamber and pressurized, and the slit 9 formed along the axial or circumferential direction of the elastic pipe is radially opened and expanded, the elastic member is axially contracted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、内視鏡の挿入部、処
置具等に設けられる流体圧駆動型アクチュエータに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid pressure drive type actuator provided in an insertion portion of an endoscope, a treatment tool and the like.

【0002】[0002]

【従来の技術】加圧室を形成したゴムチューブに気体ま
たは液体を供給して加圧し、ゴムチューブを径方向に膨
張させ、軸方向に収縮させるようにした流体圧駆動型ア
クチュエータは、ラバチュエータ(ブリヂストン社商品
名)として知られている。
2. Description of the Related Art A fluid pressure drive type actuator in which gas or liquid is supplied to a rubber tube having a pressurizing chamber to pressurize the rubber tube to expand the rubber tube in a radial direction and to contract the rubber tube in an axial direction is known as a lavaator. (Bridgestone brand name).

【0003】これはゴムチューブの外周を網状管で被覆
し、加圧時に軸方向に伸長するのを網状管によって規制
し、径方向に膨張として軸方向に収縮するように構成し
たものである。
This is constructed such that the outer circumference of a rubber tube is covered with a mesh tube, and the expansion in the axial direction during pressurization is restricted by the mesh tube so as to expand in the radial direction and contract in the axial direction.

【0004】また、特開平4−197330号公報に示
すように、内視鏡の湾曲部に隔壁によって複数の圧力室
に分離した樹脂チューブからなる筒状弾性体を設け、こ
の樹脂チューブ内へ加圧時の膨張方向を規制する繊維を
埋め込み、前記圧力室に選択的に圧力を加え、湾曲部を
所望の方向に湾曲するように構成したものである。
Further, as disclosed in Japanese Patent Application Laid-Open No. 4-197330, a tubular elastic body made of a resin tube separated into a plurality of pressure chambers by partition walls is provided in a curved portion of an endoscope, and a tubular elastic body is added into the resin tube. Fibers that regulate the expansion direction under pressure are embedded, and pressure is selectively applied to the pressure chambers to bend the bending portion in a desired direction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
た従来のアクチュエータは、ゴムチューブの膨張を特定
方向に規制する規制部材を網状管で被覆したものであ
り、アクチュエータの極細径化を考えた場合、網状管の
製作が困難で、アクチュエータ全体の外周の細径化・マ
イクロ化が難しい。
However, in the conventional actuator described above, a restricting member for restricting the expansion of the rubber tube in a specific direction is covered with a mesh tube, and when considering the actuator to have an extremely small diameter, It is difficult to make a mesh tube, and it is difficult to make the outer diameter of the entire actuator smaller and smaller.

【0006】また、前述した内視鏡は、樹脂チューブ内
へ加圧時の膨張方向を規制する繊維を埋め込んだもので
あり、この場合も極細径化を考えた場合、繊維を埋め込
んでのチューブの製作が困難で、アクチュエータ全体の
外周の細径化・マイクロ化が難しいという事情がある。
Further, the above-mentioned endoscope is one in which fibers for controlling the expansion direction at the time of pressurization are embedded in the resin tube, and in this case also, in consideration of the ultrafine diameter, the tube in which the fibers are embedded is considered. Is difficult to manufacture, and it is difficult to make the outer circumference of the actuator thinner and smaller.

【0007】この発明は、前記事情に着目してなされた
もので、その目的とするところは、製作が容易で、極細
径化・マイクロ化が可能な流体圧駆動型アクチュエータ
を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a fluid pressure drive type actuator which is easy to manufacture and which can be made extremely small in diameter and micro. .

【0008】[0008]

【課題を解決するための手段及び作用】この発明は、前
記目的を達成するために、加圧室を有する弾性部材と、
加圧時の前記弾性部材の膨張を特定方向に規制する規制
部材を設けた流体圧駆動型アクチュエータにおいて、前
記規制部材を弾性パイプで形成し、この弾性パイプにそ
の軸方向または周方向に沿うスリットを形成したことに
ある。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention comprises an elastic member having a pressurizing chamber,
In a fluid pressure drive type actuator provided with a restriction member for restricting expansion of the elastic member at the time of pressurization in a specific direction, the restriction member is formed of an elastic pipe, and a slit along the axial direction or the circumferential direction is formed in the elastic pipe. Has been formed.

【0009】加圧室に流体を供給して加圧すると、規制
部材によって弾性部材の軸方向の伸長が規制され、径方
向は弾性パイプの軸方向または周方向に沿って形成され
たスリットが開いて膨張するため、弾性部材は軸方向に
収縮する。
When a fluid is supplied to the pressurizing chamber to pressurize it, the axial expansion of the elastic member is restricted by the restricting member, and a slit formed along the axial or circumferential direction of the elastic pipe is opened in the radial direction. As a result, the elastic member contracts in the axial direction.

【0010】[0010]

【実施例】以下、この発明の各実施例を図面に基づいて
説明する。図1〜図3は第1の実施例を示し、流体圧駆
動型アクチュエータとしての流体圧マイクロアクチュエ
ータ1を示す。この流体圧マイクロアクチュエータ1は
円筒状のゴムチューブからなる弾性部材2を有してお
り、この弾性部材2の前端開口と後端開口は前、後側口
金3,4によって気密に封止され、内部に圧力室5が形
成されている。後側口金4には通孔6が設けられ、この
通孔6は加圧管路7に接続されており、この加圧管路7
は流体圧力供給源(図示しない)に接続されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a first embodiment and show a fluid pressure microactuator 1 as a fluid pressure drive type actuator. This fluid pressure microactuator 1 has an elastic member 2 made of a cylindrical rubber tube, and the front end opening and the rear end opening of this elastic member 2 are hermetically sealed by front and rear mouthpieces 3 and 4, A pressure chamber 5 is formed inside. The rear mouthpiece 4 is provided with a through hole 6, which is connected to a pressurizing pipe line 7.
Is connected to a fluid pressure source (not shown).

【0011】さらに、前記弾性部材2の外周には規制部
材8が被嵌して設けられている。この規制部材8は、ス
テンレス等の極薄肉金属パイプによって形成された弾性
パイプであり、両端部が前、後側口金3,4に対して固
定されている。
Further, a regulating member 8 is provided so as to be fitted on the outer periphery of the elastic member 2. The regulating member 8 is an elastic pipe formed of an ultrathin metal pipe such as stainless steel, and both ends thereof are fixed to the front and rear mouthpieces 3, 4.

【0012】規制部材8の外周には放電加工、レーザ加
工等により軸方向に沿って複数のスリット9が設けられ
ている。すなわち、規制部材8は弾性部材2の軸方向に
伸長を規制し、スリット9の開きによって径方向の膨張
を許容する役目をしている。
A plurality of slits 9 are provided on the outer periphery of the regulating member 8 along the axial direction by electric discharge machining, laser machining or the like. That is, the regulating member 8 serves to regulate the expansion of the elastic member 2 in the axial direction and allow the radial expansion by the opening of the slit 9.

【0013】次に、前述のように構成された流体圧マイ
クロアクチュエータ1の作用について説明すると、流体
圧力供給源から加圧管路7を介して弾性部材2の圧力室
5に空気、液体等の加圧流体を供給すると、弾性部材2
は軸方向には規制部材8により伸長が規制されているた
め伸長しないが、規制部材8に設けられたスリット9が
弾性部材2によって押し広げられて径方向に膨張する。
Next, the operation of the fluid pressure microactuator 1 constructed as described above will be described. The fluid pressure supply source applies air, liquid or the like to the pressure chamber 5 of the elastic member 2 through the pressure pipe 7. When a pressurized fluid is supplied, the elastic member 2
Since the expansion is restricted in the axial direction by the restriction member 8, it does not expand, but the slit 9 provided in the restriction member 8 is expanded by the elastic member 2 and expanded in the radial direction.

【0014】したがって、弾性部材2は全長L0 に対
し、L1 となり、Δx収縮し、圧力室5に供給した加圧
流体を排出すると、弾性部材2は弾性復元力によって径
方向に収縮し、弾性部材2は全長L0 に復帰する。
Therefore, the elastic member 2 becomes L1 with respect to the entire length L0 and contracts by Δx, and when the pressurized fluid supplied to the pressure chamber 5 is discharged, the elastic member 2 contracts in the radial direction by the elastic restoring force, and the elastic member 2 returns to full length L0.

【0015】このように規制部材8を極薄肉金属パイプ
によって形成することにより、弾性部材2に対して密着
した構造となり、流体圧マイクロアクチュエータ1の極
細径化、マイクロ化を図ることができる。さらに、規制
部材8が弾性復元力を有するために、非加圧時には自ら
の復元力で初期形状に戻り、応答性向上が図れる。
By thus forming the regulating member 8 with an extremely thin metal pipe, the structure is brought into close contact with the elastic member 2, and the fluid pressure microactuator 1 can be made extremely thin and micro. Furthermore, since the regulating member 8 has an elastic restoring force, the restoring force of the restraining member 8 returns to the initial shape by itself to improve the responsiveness.

【0016】さらに、規制部材8が弾性部材2に密着で
きることから、無駄な膨張を抑えられ、駆動ストローク
の向上が図れるとともに、弾性部材2の初期加圧時の偏
膨張を抑えることができ、弾性部材2が均等に膨張し、
耐久性を向上できるという効果がある。
Further, since the regulating member 8 can be brought into close contact with the elastic member 2, useless expansion can be suppressed, the drive stroke can be improved, and partial expansion of the elastic member 2 at the time of initial pressurization can be suppressed. Member 2 expands evenly,
This has the effect of improving durability.

【0017】図4は第2の実施例を示し、第1の実施例
と同一構成部分は同一符号を付して説明を省略する。弾
性部材2の圧力室5内にはパラフィン、フロン、アルコ
ール等の加熱により体積が膨張する熱膨張部材10が充
填され、この熱膨張部材10にヒータ11が挿入されて
いる。ヒータ11は後側口金4の配線通路12を挿通す
るリード線13を介して外部に導出され、電源(図示し
ない)に接続されており、配線通路12は接着剤14で
シールされている。
FIG. 4 shows a second embodiment, and the same components as those of the first embodiment are designated by the same reference numerals and their description will be omitted. The pressure chamber 5 of the elastic member 2 is filled with a thermal expansion member 10 that expands in volume by heating paraffin, freon, alcohol or the like, and a heater 11 is inserted in the thermal expansion member 10. The heater 11 is led out to the outside through a lead wire 13 that passes through the wiring passage 12 of the rear base 4, is connected to a power source (not shown), and the wiring passage 12 is sealed with an adhesive 14.

【0018】次に、前述のように構成された流体圧マイ
クロアクチュエータ1の作用について説明すると、ヒー
タ11に通電されて加熱されると、熱膨張部材10の体
積が膨張するため、第1の実施例の作用と同様に動作す
る。
Next, the operation of the fluid pressure microactuator 1 having the above-described structure will be described. When the heater 11 is energized and heated, the volume of the thermal expansion member 10 expands. Works the same as the example.

【0019】したがって、第1の実施例の効果に加え、
加圧管路7が不要となり、後部側の構造の簡素化、細径
化を図ることができるとともに、長尺遠隔駆動がより容
易となる。
Therefore, in addition to the effects of the first embodiment,
The pressurizing pipe line 7 is not required, the structure on the rear side can be simplified and the diameter can be reduced, and the long remote drive becomes easier.

【0020】なお、規制部材8に設けるスリット9は、
前記加工方法に他にエッチングにより除去する方法でも
よく、メッキ製法により製作してもよい。また、素材と
しては、リン青銅、NiTi系合金等からなる超弾性合
金でもよい。
The slit 9 provided in the regulating member 8 is
In addition to the above processing method, a method of removing by etching may be used, or a plating method may be used. Further, the material may be a super elastic alloy such as phosphor bronze or NiTi alloy.

【0021】図5は第3の実施例を示し、第1の実施例
と同一構成部分は同一符号を付して説明を省略する。こ
の実施例は、流体圧マイクロアクチュエータ1を内視鏡
の湾曲機構に採用したものである。内視鏡15の挿入部
16は、先端構成部17、湾曲管部18、可撓管部19
とから構成されている。
FIG. 5 shows a third embodiment. The same components as those of the first embodiment are designated by the same reference numerals and their description will be omitted. In this embodiment, the fluid pressure microactuator 1 is adopted as a bending mechanism of an endoscope. The insertion section 16 of the endoscope 15 includes a distal end forming section 17, a bending tube section 18, and a flexible tube section 19.
It consists of and.

【0022】湾曲管部18の軸方向に沿って複数本のア
ングルワイヤ20が配索され、この先端は前記先端構成
部17に接続され、他端は流体圧マイクロアクチュエー
タ1の先端部に接続されている。流体圧マイクロアクチ
ュエータ1は、可撓管部19内の先端側に固定したコイ
ルシース21に収納され、流体圧マイクロアクチュエー
タ1の後側口金4はコイルシース21の後端に固定され
ている。
A plurality of angle wires 20 are arranged along the axial direction of the bending tube portion 18, the tip of which is connected to the tip forming portion 17 and the other end of which is connected to the tip of the fluid pressure microactuator 1. ing. The fluid pressure microactuator 1 is housed in a coil sheath 21 fixed to the tip end side in the flexible tube portion 19, and the rear base 4 of the fluid pressure microactuator 1 is fixed to the rear end of the coil sheath 21.

【0023】したがって、複数の流体圧マイクロアクチ
ュエータ1を選択的に第1の実施例と同様に加圧し、弾
性部材2を膨張することにより、アングルワイヤ20を
牽引することができ、挿入部16の湾曲管部18を所望
の方向へ湾曲できる。また、前述のように構成すること
により、内視鏡15の挿入部16を細径化でき、体腔内
への挿入が容易となり、患者の苦痛も軽減できるという
効果がある。
Therefore, the angle wires 20 can be pulled by selectively pressurizing the plurality of fluid pressure microactuators 1 in the same manner as in the first embodiment and expanding the elastic member 2, and the insertion portion 16 can be pulled. The bending tube portion 18 can be bent in a desired direction. In addition, with the above-described configuration, the insertion portion 16 of the endoscope 15 can be made smaller in diameter, the insertion into the body cavity can be facilitated, and the patient's pain can be reduced.

【0024】図6は第4の実施例を示し、第1の実施例
と同一構成部分は同一符号を付して説明を省略する。こ
の実施例は、流体圧マイクロアクチュエータ1を生検鉗
子22に採用したものである。
FIG. 6 shows a fourth embodiment. The same components as those of the first embodiment are designated by the same reference numerals and their description will be omitted. In this embodiment, the fluid pressure microactuator 1 is adopted for the biopsy forceps 22.

【0025】生検鉗子22のシース23の先端部にはカ
ップ部24が設けられ、このカップ部24には開閉用リ
ンク部25が設けられ、この開閉用リンク部25はワイ
ヤ26を介して流体圧マイクロアクチュエータ1の前端
口金3に連結され、流体圧マイクロアクチュエータ1の
後端口金4はシース23に連結されている。
A cup portion 24 is provided at the distal end portion of the sheath 23 of the biopsy forceps 22, and an opening / closing link portion 25 is provided in the cup portion 24. The opening / closing link portion 25 is fluidized via a wire 26. The front end cap 3 of the pressure microactuator 1 is connected, and the rear end cap 4 of the fluid pressure microactuator 1 is connected to the sheath 23.

【0026】したがって、流体圧マイクロアクチュエー
タ1を第1の実施例と同様に加圧し、弾性部材2を膨張
することにより、ワイヤ26を牽引することができ、開
閉用リンク部25を介してカップ部24を開き、また圧
力室2に供給した流体を排出することにより、開閉用リ
ンク部25を介してカップ部24を閉じることができ
る。
Therefore, by pressing the fluid pressure microactuator 1 in the same manner as in the first embodiment and expanding the elastic member 2, the wire 26 can be pulled, and the cup portion via the opening / closing link portion 25. The cup portion 24 can be closed via the opening / closing link portion 25 by opening 24 and discharging the fluid supplied to the pressure chamber 2.

【0027】図7は第5の実施例を示し、第1の実施例
と同一構成部分は同一符号を付して説明を省略する。こ
の実施例は、流体圧マイクロアクチュエータ1を側視型
の内視鏡27の鉗子起上台28の起上駆動に採用したも
のである。
FIG. 7 shows a fifth embodiment, and the same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, the fluid pressure microactuator 1 is adopted to drive the forceps raising base 28 of the side-view endoscope 27.

【0028】内視鏡27の挿入部29の先端構成部30
には側方に開口する切欠部31が設けられ、この切欠部
31には支軸32を支点として回動自在な鉗子起上台2
8が設けられている。この鉗子起上台28の自由端部に
はワイヤ33の一端が連結され、このワイヤ33の他端
は流体圧マイクロアクチュエータ1の前端口金3に連結
されているとともに、後端口金4は内視鏡27の先端構
成部30に連結されている。
A tip forming portion 30 of the insertion portion 29 of the endoscope 27.
A cutout portion 31 that opens to the side is provided in the cutout portion 31, and the cutout portion 31 is rotatable around a support shaft 32 as a fulcrum.
8 are provided. One end of a wire 33 is connected to the free end portion of the forceps raising base 28, the other end of the wire 33 is connected to the front end cap 3 of the fluid pressure microactuator 1, and the rear end cap 4 is seen inside. It is connected to the tip forming portion 30 of the mirror 27.

【0029】したがって、流体圧マイクロアクチュエー
タ1を第1の実施例と同様に加圧し、弾性部材2を膨張
することにより、ワイヤ33を牽引することができ、鉗
子起上台28を支軸32を支点として起上でき、また圧
力室2に供給した流体を排出することにより、鉗子起上
台28を倒伏させることができる。
Therefore, by pressing the fluid pressure microactuator 1 in the same manner as in the first embodiment and expanding the elastic member 2, the wire 33 can be pulled, and the forceps raising base 28 is supported by the support shaft 32. The forceps raising base 28 can be laid down by discharging the fluid supplied to the pressure chamber 2.

【0030】図8は第6の実施例を示し、第1の実施例
と同一構成部分は同一符号を付して説明を省略する。こ
の実施例は、流体圧マイクロアクチュエータ1を内視鏡
の先端部の観察光学系34のフォーカス、ズーム用等の
可動光学系35の駆動に採用したものである。
FIG. 8 shows a sixth embodiment. The same components as those of the first embodiment are designated by the same reference numerals and their description will be omitted. In this embodiment, the fluid pressure microactuator 1 is adopted to drive a movable optical system 35 for focusing, zooming, etc. of the observation optical system 34 at the tip of the endoscope.

【0031】観察光学系34は可動光学系35と固定光
学系36とから構成され、可動光学系35の枠35aに
は流体圧マイクロアクチュエータ1の前端口金3がロッ
ド37を介して連結され、後端口金4は固定光学系36
の枠36aまたは内視鏡本体に連結されている。
The observation optical system 34 is composed of a movable optical system 35 and a fixed optical system 36. The front end cap 3 of the fluid pressure microactuator 1 is connected to a frame 35a of the movable optical system 35 via a rod 37. The rear end cap 4 is a fixed optical system 36.
Is connected to the frame 36a or the endoscope body.

【0032】したがって、流体圧マイクロアクチュエー
タ1を第1の実施例と同様に加圧し、弾性部材2を膨張
することにより、ロッド37を介して可動光学系35を
後方へ移動することができ、また圧力室2に供給した流
体を排出することにより、可動光学系35を前方へ移動
させることができる。
Accordingly, the movable optical system 35 can be moved rearward via the rod 37 by pressurizing the fluid pressure microactuator 1 in the same manner as in the first embodiment and expanding the elastic member 2. The movable optical system 35 can be moved forward by discharging the fluid supplied to the pressure chamber 2.

【0033】図9〜図11は第7の実施例を示し、流体
圧マイクロアクチュエータ38を内視鏡39の湾曲機構
に採用したものである。内視鏡39の挿入部40は先端
構成部41、湾曲管部42および可撓管部43とから構
成され、挿入部40にはイメージガイドファイバ44
(またはCCDケーブル)、ライトガイドファイバ45
およびチャンネル46等が内挿されている。
9 to 11 show a seventh embodiment, in which the fluid pressure microactuator 38 is adopted in the bending mechanism of the endoscope 39. The insertion section 40 of the endoscope 39 is composed of a distal end forming section 41, a bending tube section 42 and a flexible tube section 43, and the insertion section 40 has an image guide fiber 44.
(Or CCD cable), light guide fiber 45
The channel 46 and the like are interpolated.

【0034】前記湾曲管部43は流体圧マイクロアクチ
ュエータ38は円筒状のゴムチューブからなる弾性部材
47を有しており、この弾性部材47の前端は先端構成
部41に、後端は可撓管部43に連結されている。弾性
部材47には円周を3等分した120゜の範囲に亘って
円弧状に切込みが形成され、この切込みによって内層4
7aと外層47bとに分離形成した圧力室48aが形成
されている。そして、これら圧力室48aは独立して設
けた加圧管路(図示しない)を介して流体圧力供給源
(図示しない)に接続されている。
The curved tube portion 43 has a fluid pressure microactuator 38 having an elastic member 47 made of a cylindrical rubber tube. The elastic member 47 has a front end on the tip forming portion 41 and a rear end on a flexible tube. It is connected to the portion 43. An arcuate cut is formed in the elastic member 47 over a range of 120 ° that divides the circumference into three equal parts, and the cut forms the inner layer 4
A pressure chamber 48a is formed separately in 7a and the outer layer 47b. The pressure chambers 48a are connected to a fluid pressure supply source (not shown) via an independently provided pressure pipe (not shown).

【0035】さらに、前記弾性部材47の外周には規制
部材49が被嵌して設けられている。この規制部材49
は、ステンレス等の極薄肉金属パイプによって形成され
た弾性パイプであり、前端は先端構成部41に、後端は
可撓管部43に連結されている。
Further, a regulating member 49 is fitted and provided on the outer periphery of the elastic member 47. This regulation member 49
Is an elastic pipe formed of an ultrathin metal pipe such as stainless steel, the front end of which is connected to the tip forming portion 41 and the rear end of which is connected to the flexible tube portion 43.

【0036】規制部材49の外周には前記圧力室48a
に対応して周方向に120゜の範囲に亘ってスリット5
0aが互い違いに設けられている。すなわち、規制部材
49は弾性部材47の径方向の膨張を規制し、スリット
50aの開きによって軸方向に伸長するのを許容して湾
曲管部43を湾曲させる役目をしている。
The pressure chamber 48a is provided on the outer periphery of the regulating member 49.
Corresponding to the slit 5 in the circumferential direction over a range of 120 °
0a are provided alternately. That is, the regulation member 49 serves to regulate the expansion of the elastic member 47 in the radial direction, allow the elastic member 47 to expand in the axial direction by opening the slit 50a, and bend the bending tube portion 43.

【0037】次に、前述のように構成された流体圧マイ
クロアクチュエータ38の作用について説明すると、流
体圧力供給源から加圧管路を介して弾性部材47の圧力
室48aに選択的に空気、液体等の加圧流体を供給する
と、加圧流体が供給された、例えば圧力室48aの部分
の弾性部材47は軸方向に伸長し、径方向は規制部材4
9により膨張が規制されているため、圧力室48aに対
応するスリット50aが押し広げられ、弾性部材47が
規制部材49とともに湾曲し、湾曲管部42が図11に
示すように湾曲する。
Next, the operation of the fluid pressure microactuator 38 constructed as described above will be explained. Air, liquid, etc. are selectively supplied from the fluid pressure supply source to the pressure chamber 48a of the elastic member 47 through the pressurizing conduit. When the pressurized fluid is supplied, the elastic member 47, for example, in the portion of the pressure chamber 48a to which the pressurized fluid is supplied extends in the axial direction and the regulating member 4 in the radial direction.
Since the expansion is regulated by 9, the slit 50a corresponding to the pressure chamber 48a is widened, the elastic member 47 is curved together with the regulation member 49, and the bending tube portion 42 is curved as shown in FIG.

【0038】したがって、圧力室48aに選択的に空
気、液体等の加圧流体を供給することにより、湾曲管部
42を任意の方向に湾曲させることができる。こように
構成することにより、内視鏡39の挿入部40を細径化
でき、体腔内への挿入が容易となり、患者の苦痛も軽減
できるという効果がある。
Therefore, the bending tube portion 42 can be bent in an arbitrary direction by selectively supplying a pressurized fluid such as air or liquid to the pressure chamber 48a. With such a configuration, the insertion portion 40 of the endoscope 39 can be made smaller in diameter, the insertion into the body cavity is facilitated, and the patient's pain can be reduced.

【0039】図12および図13は第8の実施例を示す
もので、第7の実施例のスリット50aは互い違いに配
置したが、この実施例はスリット50aを同一円周上の
配置したものであり、基本的構成は同一であるため、説
明を省略する。
12 and 13 show the eighth embodiment. The slits 50a of the seventh embodiment are arranged alternately, but in this embodiment, the slits 50a are arranged on the same circumference. Since the basic configuration is the same, the description is omitted.

【0040】図14は第9の実施例を示し、規制部材4
9に設けたスリット51に角度θを持たせ、湾曲管部に
柔軟性を持たせたものであり、図15は第10の実施例
を示し、前記スリット51の端部に丸み部51aを設
け、応力集中を避けるように構成したものである。
FIG. 14 shows a ninth embodiment, in which the regulating member 4
The slit 51 provided in 9 has an angle θ, and the bending tube portion has flexibility. FIG. 15 shows a tenth embodiment in which a rounded portion 51a is provided at the end of the slit 51. , Is configured to avoid stress concentration.

【0041】図16は第1の実施例のスリット9の変形
例であり、(a)は規制部材8に軸方向に沿う長孔から
なる複数の開口スリット52を千鳥状に配置したもので
あり、同図(b)は規制部材8に軸方向に沿って長い菱
形孔からなる複数の開口スリット53を配置したもので
ある。いずれの変形例においても、湾曲管部に柔軟性を
持たせることができるという効果があり、湾曲角を大き
くすることができるという効果がある。
FIG. 16 shows a modification of the slit 9 of the first embodiment, and FIG. 16A shows a plurality of opening slits 52, which are elongated holes along the axial direction and are arranged in a zigzag manner in the regulating member 8. (B) of the figure shows that the regulating member 8 is provided with a plurality of opening slits 53 formed of long rhombic holes along the axial direction. In any of the modified examples, there is an effect that the bending tube portion can have flexibility, and there is an effect that the bending angle can be increased.

【0042】[0042]

【発明の効果】以上説明したように、この発明によれ
ば、弾性部材の膨張を特定方向に規制する規制部材を弾
性パイプで形成し、この弾性パイプにその軸方向または
周方向に沿うスリットを形成したことにより、製作が容
易となり、また規制部材を弾性部材に対して密着した構
造となり、流体型アクチュエータの極細径化、マイクロ
化を図ることができる。さらに、規制部材が弾性復元力
を有するために、非加圧時には自らの復元力で初期形状
に戻り、応答性向上が図れるという効果がある。
As described above, according to the present invention, the restricting member for restricting the expansion of the elastic member in the specific direction is formed of the elastic pipe, and the elastic pipe is provided with the slit along the axial direction or the circumferential direction thereof. By forming the structure, the manufacturing is facilitated, and the restricting member is in close contact with the elastic member, so that the fluid actuator can be made extremely thin and micro. Further, since the regulating member has an elastic restoring force, there is an effect that the restoring force of the restraining member restores the initial shape to improve the responsiveness when the pressure is not applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す流体圧マイクロ
アクチュエータの斜視図。
FIG. 1 is a perspective view of a fluid pressure microactuator showing a first embodiment of the present invention.

【図2】同実施例の流体圧マイクロアクチュエータの縦
断側面図。
FIG. 2 is a vertical sectional side view of the fluid pressure microactuator according to the embodiment.

【図3】同実施例の流体圧マイクロアクチュエータの一
部を拡大した側面図。
FIG. 3 is an enlarged side view of a part of the fluid pressure microactuator of the same embodiment.

【図4】この発明の第2の実施例を示す流体圧マイクロ
アクチュエータの縦断側面図。
FIG. 4 is a vertical sectional side view of a fluid pressure microactuator showing a second embodiment of the present invention.

【図5】この発明の第3の実施例を示し、流体圧マイク
ロアクチュエータを内視鏡の湾曲機構に採用した構成
図。
FIG. 5 is a configuration diagram showing a third embodiment of the present invention, in which a fluid pressure microactuator is adopted in a bending mechanism of an endoscope.

【図6】この発明の第4の実施例を示し、流体圧マイク
ロアクチュエータを生検鉗子に採用した構成図。
FIG. 6 is a configuration diagram showing a fourth embodiment of the present invention in which a fluid pressure microactuator is used as biopsy forceps.

【図7】この発明の第5の実施例を示し、流体圧マイク
ロアクチュエータを鉗子起上台に採用した構成図。
FIG. 7 is a block diagram showing a fifth embodiment of the present invention, in which a fluid pressure microactuator is adopted in a forceps raising base.

【図8】この発明の第6の実施例を示し、流体圧マイク
ロアクチュエータを観察光学系に採用した斜視図。
FIG. 8 is a perspective view showing a sixth embodiment of the present invention in which a fluid pressure microactuator is used in an observation optical system.

【図9】この発明の第7の実施例を示し、流体圧マイク
ロアクチュエータを内視鏡の湾曲機構に採用した斜視
図。
FIG. 9 is a perspective view showing a seventh embodiment of the present invention in which a fluid pressure microactuator is used in a bending mechanism of an endoscope.

【図10】同実施例の湾曲管部の横断面図。FIG. 10 is a cross-sectional view of the bending tube portion of the same embodiment.

【図11】同実施例の湾曲管部を湾曲した状態の斜視
図。
FIG. 11 is a perspective view showing a state where the bending tube portion of the embodiment is bent.

【図12】この発明の第8の実施例を示し、流体圧マイ
クロアクチュエータを内視鏡の湾曲機構に採用した斜視
図。
FIG. 12 is a perspective view showing an eighth embodiment of the present invention in which a fluid pressure microactuator is adopted in a bending mechanism of an endoscope.

【図13】同実施例の湾曲管部の縦断側面図。FIG. 13 is a vertical sectional side view of the bending tube portion of the embodiment.

【図14】この発明の第9の実施例を示す規制部材の一
部を断面した側面図。
FIG. 14 is a side view, partly in section, of a regulating member showing a ninth embodiment of the present invention.

【図15】この発明の第10の実施例を示す規制部材の
一部を断面した側面図。
FIG. 15 is a side view in which a part of a regulating member is shown in section, showing a tenth embodiment of the present invention.

【図16】この発明の第1の実施例の規制部材の変形例
を示す側面図。
FIG. 16 is a side view showing a modified example of the regulating member according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…流体圧マイクロアクチュエータ 2…弾性部材 3…圧力室 8…規制部材 9…スリット 1 ... Fluid pressure microactuator 2 ... Elastic member 3 ... Pressure chamber 8 ... Regulator member 9 ... Slit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加圧室を有する弾性部材と、加圧時の前
記弾性部材の膨張を特定方向に規制する規制部材を設け
た流体圧駆動型アクチュエータにおいて、 前記規制部材を弾性パイプで形成し、この弾性パイプに
その軸方向または周方向に沿うスリットを形成したこと
を特徴とする流体圧駆動型アクチュエータ。
1. A fluid pressure drive type actuator having an elastic member having a pressurizing chamber and a restricting member for restricting expansion of the elastic member at the time of pressurization in a specific direction, wherein the restricting member is formed of an elastic pipe. A fluid pressure drive type actuator characterized in that a slit is formed in the elastic pipe along the axial direction or the circumferential direction thereof.
JP26613293A 1993-10-25 1993-10-25 Endoscope Expired - Fee Related JP3260933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26613293A JP3260933B2 (en) 1993-10-25 1993-10-25 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26613293A JP3260933B2 (en) 1993-10-25 1993-10-25 Endoscope

Publications (2)

Publication Number Publication Date
JPH07120683A true JPH07120683A (en) 1995-05-12
JP3260933B2 JP3260933B2 (en) 2002-02-25

Family

ID=17426778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26613293A Expired - Fee Related JP3260933B2 (en) 1993-10-25 1993-10-25 Endoscope

Country Status (1)

Country Link
JP (1) JP3260933B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093395A (en) * 2001-09-21 2003-04-02 Asahi Intecc Co Ltd Treating implement for medical treatment
JP2007061546A (en) * 2005-09-02 2007-03-15 Olympus Corp Endoscope apparatus
JP2008005888A (en) * 2006-06-27 2008-01-17 Fujifilm Corp Liquid actuator and endoscope
JP2008279099A (en) * 2007-05-11 2008-11-20 Olympus Corp Endoscope
JP2015049440A (en) * 2013-09-03 2015-03-16 オリンパス株式会社 Treatment instrument for endoscope
CN110507279A (en) * 2019-09-06 2019-11-29 上海澳华光电内窥镜有限公司 A kind of endoscope lift pincers device structure, drive control method and endoscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093395A (en) * 2001-09-21 2003-04-02 Asahi Intecc Co Ltd Treating implement for medical treatment
JP2007061546A (en) * 2005-09-02 2007-03-15 Olympus Corp Endoscope apparatus
JP2008005888A (en) * 2006-06-27 2008-01-17 Fujifilm Corp Liquid actuator and endoscope
JP2008279099A (en) * 2007-05-11 2008-11-20 Olympus Corp Endoscope
JP2015049440A (en) * 2013-09-03 2015-03-16 オリンパス株式会社 Treatment instrument for endoscope
CN110507279A (en) * 2019-09-06 2019-11-29 上海澳华光电内窥镜有限公司 A kind of endoscope lift pincers device structure, drive control method and endoscope

Also Published As

Publication number Publication date
JP3260933B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US7879004B2 (en) Catheter tip displacement mechanism
US5860914A (en) Bendable portion of endoscope
US5299562A (en) Endoscope having a controllable distal end piece
EP0549569B1 (en) Mechanism for bending elongated body
JP4891174B2 (en) Endoscopic flexible shaft
EP1955645A1 (en) Actuator apparatus, image pickup apparatus and endoscopic apparatus
JP2008023089A (en) Curve mechanism
JP2007289389A (en) Bending mechanism
JPH07120683A (en) Fluid pressure-driving type actuator
JP4231568B2 (en) Tubular insert
WO2008073126A1 (en) Catheter tip displacement mechanism
JPH04319365A (en) Bending device for flexible tube
JPH08206061A (en) Curving device
JP2000161543A (en) Flexible pipe
JPH0531067A (en) Bending device for flexible tube
JPH10258024A (en) Bending tube
JPH05207967A (en) Optical heating type manipulator
JPH05184528A (en) Bending mechanism of flexible tube
JP4406096B2 (en) Endoscopic high-frequency treatment instrument
JPH0663004A (en) Tube for medical treatment
JPH06319689A (en) Endoscope
JPH0531066A (en) Tubular insertion tool
JP3610994B2 (en) Endoscope insertion structure
JPH02246920A (en) Medical tube
JPH07148171A (en) Tube-shaped inserting instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees