JPH07120598B2 - Multilayer capacitor - Google Patents

Multilayer capacitor

Info

Publication number
JPH07120598B2
JPH07120598B2 JP2004270A JP427090A JPH07120598B2 JP H07120598 B2 JPH07120598 B2 JP H07120598B2 JP 2004270 A JP2004270 A JP 2004270A JP 427090 A JP427090 A JP 427090A JP H07120598 B2 JPH07120598 B2 JP H07120598B2
Authority
JP
Japan
Prior art keywords
nickel
multilayer capacitor
ceramic
internal electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004270A
Other languages
Japanese (ja)
Other versions
JPH03208323A (en
Inventor
紀之 久保寺
芳明 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004270A priority Critical patent/JPH07120598B2/en
Publication of JPH03208323A publication Critical patent/JPH03208323A/en
Publication of JPH07120598B2 publication Critical patent/JPH07120598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、積層コンデンサの改良に関し、特に、内部電
極構造が改良された積層コンデンサに関する。
TECHNICAL FIELD The present invention relates to an improvement in a multilayer capacitor, and more particularly to a multilayer capacitor having an improved internal electrode structure.

〔従来の技術〕[Conventional technology]

周知のように、積層コンデンサは、内部電極材を間に介
して複数枚のセラミックグリーンシートを複数枚積層
し、一体焼成して得られた焼結体を利用して構成されて
いる。この周知の積層コンデンサの一例を第2図に断面
図で示す。積層コンデンサ1では、セラミック焼結体2
内に、内部電極3a〜3eがセラミック層4を介して重なり
合うように配置されている。そして、焼結体2の対向端
面に外部電極5a,5bが形成されており、外部電極5a,5b
は、それぞれ、内部電極3a,3c,3e及び3b,3dに電気的に
接続されている。
As is well known, a laminated capacitor is configured by using a sintered body obtained by laminating a plurality of ceramic green sheets with an internal electrode material interposed therebetween and integrally firing them. An example of this known multilayer capacitor is shown in a sectional view in FIG. In the multilayer capacitor 1, the ceramic sintered body 2
Internal electrodes 3a to 3e are arranged therein so as to overlap with each other with a ceramic layer 4 interposed therebetween. The external electrodes 5a, 5b are formed on the opposite end faces of the sintered body 2, and the external electrodes 5a, 5b are formed.
Are electrically connected to the internal electrodes 3a, 3c, 3e and 3b, 3d, respectively.

ところで、内部電極3a〜3eは、一般にはAgやAg−Pd等の
貴金属を用いて構成されている。これは、セラミック焼
結体2の焼成に際し高温の雰囲気にさらされるため、高
融点の材料を用いる必要があること、並びに焼成に際し
酸化され難いことが要求されるからである。
By the way, the internal electrodes 3a to 3e are generally composed of a noble metal such as Ag or Ag-Pd. This is because the firing of the ceramic sintered body 2 is exposed to a high temperature atmosphere, so that it is necessary to use a material having a high melting point and that it is difficult to be oxidized during firing.

もっとも、AgやAg−Pdはかなり高価な材料であるため、
近年、ニッケルや銅等の卑金属を内部電極材料として用
いた積層コンデンサが注目されている。
However, since Ag and Ag-Pd are fairly expensive materials,
In recent years, a multilayer capacitor using a base metal such as nickel or copper as an internal electrode material has been receiving attention.

〔発明が解決しようとする技術的課題〕[Technical problem to be solved by the invention]

現在のところ、内部電極材料として実際に用いられてい
る卑金属は、ニッケル及び銅である。
At present, the base metals actually used as the internal electrode materials are nickel and copper.

しかしながら、ニッケルを内部電極材料として用いた場
合には、内部電極とセラミックス層との接合強度が低
く、デラミネーションや層剥がれが生じ易いという問題
があった。
However, when nickel is used as the internal electrode material, there is a problem that the bonding strength between the internal electrode and the ceramics layer is low, and delamination and layer peeling easily occur.

他方、銅を内部電極材料として用いた場合には、焼成プ
ロファイルの制御が難しく、また低融点(1060℃)であ
るため、その温度以下で焼成可能な非還元性のセラミッ
ク材料を用いることが必要であり、用い得るセラミック
材料の種類が限定されるという問題があった。
On the other hand, when copper is used as the internal electrode material, it is difficult to control the firing profile and the melting point is low (1060 ° C), so it is necessary to use a non-reducing ceramic material that can be fired below that temperature. Therefore, there is a problem that the types of ceramic materials that can be used are limited.

本発明の目的は、卑金属を内部電極材として用いた積層
コンデンサにおける上記のような問題点を解消し、内部
電極材料としてニッケルまたはニッケル−銅合金を用い
ながら、内部電極とセラミックスとの接合強度が高く、
デラミネーション等が生じ難い積層コンデンサを提供す
ることにある。
The object of the present invention is to solve the above problems in a multilayer capacitor using a base metal as an internal electrode material, while using nickel or nickel-copper alloy as an internal electrode material, the bonding strength between the internal electrode and the ceramics is improved. high,
It is to provide a multilayer capacitor in which delamination or the like hardly occurs.

〔技術的課題を解決するための手段〕[Means for solving technical problems]

本発明は、セラミック焼結体内にセラミック層を介して
重なり合うように複数の内部電極が配置されており、内
部電極間の静電容量を取り出すために所定の内部電極に
接続されるように一対の外部電極が焼結体側面に設けら
れた積層コンデンサにおいて、下記の構成を備えること
を特徴とする。
According to the present invention, a plurality of internal electrodes are arranged in a ceramic sintered body so as to overlap with each other via a ceramic layer, and a pair of internal electrodes are connected so as to be connected to a predetermined internal electrode in order to extract a capacitance between the internal electrodes. A multilayer capacitor having external electrodes provided on the side surface of a sintered body is characterized by having the following configuration.

すなわち、内部電極が、ニッケルまたはニッケル合金よ
りなり、かつ該内部電極が、ニッケル−銅合金またはニ
ッケル−銅合金及び銅からなる中間層を間に介してセラ
ミック層に接合されていることを特徴とする。
That is, the internal electrode is made of nickel or a nickel alloy, and the internal electrode is joined to the ceramic layer via an intermediate layer made of a nickel-copper alloy or a nickel-copper alloy and copper. To do.

〔作用〕[Action]

ニッケルまたはニッケル合金からなる内部電極とセラミ
ック層との間に、ニッケルまたはニッケル合金に対して
強固に接合されるニッケル−銅合金またはニッケル−銅
合金及び銅からなる中間層が設けられている。このニッ
ケル−銅合金またはニッケル−銅合金及び銅からなる中
間層は、銅を含有するため、セラミック層に強固に接合
される。すなわち、ニッケルまたはニッケル合金からな
る内部電極は、セラミック層との接合強度に優れた中間
層を間に介して間接的にセラミックと接合され、それに
よってセラミックと内部電極との接合強度が高められて
いる。
An intermediate layer made of nickel-copper alloy or nickel-copper alloy and copper, which is firmly bonded to nickel or nickel alloy, is provided between the internal electrode made of nickel or nickel alloy and the ceramic layer. The nickel-copper alloy or the intermediate layer made of the nickel-copper alloy and copper contains copper and thus is firmly bonded to the ceramic layer. That is, the internal electrode made of nickel or a nickel alloy is indirectly bonded to the ceramic through the intermediate layer having excellent bonding strength with the ceramic layer, thereby increasing the bonding strength between the ceramic and the internal electrode. There is.

〔実施例の説明〕[Explanation of Examples]

以下、本発明の非限定的な実施例につき説明する。 Hereinafter, non-limiting examples of the present invention will be described.

実施例1 まず、セラミック焼結体を構成する非還元性の材料とし
て、純度99%以上のBaCO3、CaCO3、ZrO2及びTiO2を、組
成式 {(Ba0.90Ca0.10)0}1.01(Ti0.80Zr0.20)O2 となるように秤量した。秤量された原料粉末を混合・仮
焼し、誘電体セラミックス原料粉末を得た。
Example 1 First, BaCO 3 , CaCO 3 , ZrO 2 and TiO 2 having a purity of 99% or more were used as a non-reducing material constituting a ceramic sintered body, and a composition formula {(Ba 0.90 Ca 0.10 ) 0} 1.01 ( Ti 0.80 Zr 0.20 ) O 2 was weighed. The weighed raw material powder was mixed and calcined to obtain a dielectric ceramic raw material powder.

この誘電体セラミックス原料粉末に、有機バインダ、分
散剤及び消泡剤を含む混合水溶液を15重量%添加し、50
重量%の水をさらに加えボールミルで混合粉砕し、スラ
リーを調製した。
To this dielectric ceramic raw material powder, 15% by weight of a mixed aqueous solution containing an organic binder, a dispersant and an antifoaming agent was added,
Water was further added in an amount of wt% and mixed and pulverized with a ball mill to prepare a slurry.

次に、得られたスラリーをドクターブレード法によりシ
ート状に成形し、厚み35μmのグリーンシートを得た。
Next, the obtained slurry was formed into a sheet by a doctor blade method to obtain a green sheet having a thickness of 35 μm.

他方、第3図に示すように、キャリアフイルム11上に、
ニッケル−銅合金よりなる中間層12を0.05μmの厚み
に、該中間層12上にニッケルよりなる内部電極13を0.6
μmの厚みに、さらに内部電極13上に再度ニッケル−銅
合金よりなる中間層14を0.05μmの厚みに、蒸着により
積層形成し、電極パターンを得た。
On the other hand, as shown in FIG. 3, on the carrier film 11,
The intermediate layer 12 made of a nickel-copper alloy has a thickness of 0.05 μm, and the internal electrode 13 made of nickel has a thickness of 0.6 μm on the intermediate layer 12.
An intermediate layer 14 made of a nickel-copper alloy was again deposited on the internal electrode 13 to a thickness of 0.05 μm to a thickness of 0.05 μm by vapor deposition to obtain an electrode pattern.

上記のようにして作製された電極パターンを、前述した
グリーンシート上に熱転写した。
The electrode pattern produced as described above was thermally transferred onto the above-mentioned green sheet.

次に、電極パターンが転写された複数枚のグリーンシー
トを積層し、厚み方向に熱圧着し、積層体を得た。得ら
れた積層体の内部電極パターンが引出されている対向端
面に、ニッケル粉末とホウケイ酸亜鉛ガラスとが添加さ
れた外部電極形成用導電ペーストを塗布した。
Next, a plurality of green sheets to which the electrode patterns were transferred were laminated and thermocompression bonded in the thickness direction to obtain a laminated body. A conductive paste for forming an external electrode, to which nickel powder and zinc borosilicate glass were added, was applied to the opposite end surface of the obtained laminate from which the internal electrode pattern was drawn out.

次に、得られた積層体を、大気中において350度の温度
に加熱し、有機バインダを燃焼させた後、酸素分圧10-9
〜10-12MPaのH2−N2及びH2O混合ガスを用いた還元性雰
囲気下において1300℃で2時間焼成し、第1図に示す積
層コンデンサを得た。
Next, the obtained laminate was heated to a temperature of 350 ° C. in the atmosphere to burn the organic binder, and then the oxygen partial pressure was 10 −9.
The laminated capacitor shown in FIG. 1 was obtained by firing at 1300 ° C. for 2 hours in a reducing atmosphere using a mixed gas of H 2 —N 2 and H 2 O of up to 10 −12 MPa.

第1図から明らかなように、得られた積層コンデンサで
は、セラミック焼結体15内に、複数の内部電極13が間に
セラミック層16を介して重なり合うように配置されてい
る。各内部電極13は、中間層12,14を間に介在させて各
セラミックス層16に接合されている。なお、17a,17bは
外部電極を示す。
As is apparent from FIG. 1, in the obtained multilayer capacitor, the plurality of internal electrodes 13 are arranged in the ceramic sintered body 15 so as to overlap with each other with the ceramic layer 16 interposed therebetween. Each internal electrode 13 is joined to each ceramic layer 16 with intermediate layers 12 and 14 interposed therebetween. Note that 17a and 17b indicate external electrodes.

上記のようにして得られた積層コンデンサの仕様は以下
のとおりである。
The specifications of the multilayer capacitor obtained as described above are as follows.

外形寸法 幅:3.2mm 長さ:1.6mm 厚み:1.2mm セラミック単位厚さ:20μm 有効誘電体総数:19 一層当たりの対向電極面積:1.3mm2 上記のようにして得られた積層コンデンサ及び従来の積
層コンデンサを、下記の要領で評価した。
External dimensions Width: 3.2mm Length: 1.6mm Thickness: 1.2mm Ceramic unit thickness: 20μm Total number of effective dielectrics: 19 Counter electrode area per layer: 1.3mm 2 Multilayer capacitor obtained as above and conventional The multilayer capacitor was evaluated according to the following procedure.

まず、静電容量(C)及び誘電損失(tanδ)の測定
を、自動ブリッジ式測定器を用い、それぞれの試料の積
層コンデンサに、1kH2、1Vrmsの電圧を印加することに
より行った。次に、絶縁抵抗(R)を測定するために、
絶縁抵抗計を用い、50Vの電圧を2分間印加した。そし
て、静電容量(C)と絶縁抵抗(R)とのCR積を求め
た。
First, the capacitance (C) and the dielectric loss (tan δ) were measured by applying a voltage of 1 kH 2 and 1 Vrms to the multilayer capacitor of each sample using an automatic bridge type measuring device. Next, in order to measure the insulation resistance (R),
A voltage of 50 V was applied for 2 minutes using an insulation resistance meter. Then, the CR product of the electrostatic capacity (C) and the insulation resistance (R) was obtained.

比較のために、中間層を形成していない従来の積層コン
デンサを比較例として作製し、同様に電気的特性を測定
した。
For comparison, a conventional multilayer capacitor having no intermediate layer formed was prepared as a comparative example, and the electrical characteristics were measured in the same manner.

結果を、下記の第1表に示す。The results are shown in Table 1 below.

第1表から明らかなように、実施例1の積層コンデンサ
では、Ni−Cu合金からなる中間層が内部電極とセラミッ
ク層との間に設けられているため、誘電損失が改善さ
れ、また静電容量も0.16μFから0.19μFに増加したこ
とがわかる。
As is clear from Table 1, in the multilayer capacitor of Example 1, since the intermediate layer made of Ni-Cu alloy is provided between the internal electrode and the ceramic layer, the dielectric loss is improved and the electrostatic loss is improved. It can be seen that the capacitance also increased from 0.16 μF to 0.19 μF.

これらの試料の積層コンデンサの内部を観察したとこ
ろ、比較例の積層コンデンサでは、内部電極とセラミッ
ク層との間にデラミネーションが生じていたが、本実施
例の積層コンデンサでは層剥がれもデラミネーションも
生じておらず、中間層を設けることにより内部電極とセ
ラミックス層との接合強度が高められていることがわか
った。
When observing the inside of the multilayer capacitors of these samples, delamination occurred between the internal electrodes and the ceramic layers in the multilayer capacitor of the comparative example, but neither layer peeling nor delamination occurred in the multilayer capacitor of this example. It was found that the bonding strength between the internal electrode and the ceramics layer was increased by providing the intermediate layer.

実施例2 実施例1と同様にして、厚み35μmのグリーンシートを
成形した。
Example 2 In the same manner as in Example 1, a green sheet having a thickness of 35 μm was formed.

他方、第4図に示すように、キャリアフイルム11上に、
銅よりなる第1の中間層12aを0.03μmの厚みに、その
上にニッケル−銅合金よりなる第2の中間層12bを0.03
μmの厚みに、さらに中間層12b上にニッケルよりなる
内部電極13を0.5μmの厚みに、該内部電極13上に、再
度ニッケル−銅合金よりなる第2の中間層14bを0.03μ
mの厚みに、該中間層14b上に銅よりなる第1の中間層1
4aを0.03μmの厚みに蒸着し、電極パターンを形成し
た。
On the other hand, as shown in FIG. 4, on the carrier film 11,
The first intermediate layer 12a made of copper has a thickness of 0.03 μm, and the second intermediate layer 12b made of nickel-copper alloy has a thickness of 0.03 μm.
The inner electrode 13 made of nickel has a thickness of 0.5 μm, and the second intermediate layer 14b made of a nickel-copper alloy has a thickness of 0.03 μm on the inner electrode 13.
The first intermediate layer 1 made of copper on the intermediate layer 14b with a thickness of m.
4a was vapor-deposited to a thickness of 0.03 μm to form an electrode pattern.

得られた電極パターンを、実施例1と同様にしてグリー
ンシート上に熱転写した。しかる後、実施例1とまった
く同一の手順により積層コンデンサを得た。
The obtained electrode pattern was thermally transferred onto a green sheet in the same manner as in Example 1. Thereafter, a multilayer capacitor was obtained by the same procedure as in Example 1.

すなわち、本実施例で得られた積層コンデンサは、中間
層が、セラミックス側に配置された銅よりなる第1の中
間層12a,14aと、内部電極側に配置されたニッケル−銅
合金よりなる第2の中間層12b,14bとの複合体により構
成されていることを除いては、実施例1で用意した積層
コンデンサと同様の構造を有する。
That is, in the multilayer capacitor obtained in this example, the intermediate layers were the first intermediate layers 12a and 14a made of copper arranged on the ceramic side, and the first intermediate layers made of nickel-copper alloy arranged on the internal electrode side. The multilayer capacitor has the same structure as that of the multilayer capacitor prepared in Example 1 except that the multilayer capacitor is composed of a composite of the two intermediate layers 12b and 14b.

上記のようにして得た積層コンデンサの仕様は下記の通
りである。
The specifications of the multilayer capacitor obtained as described above are as follows.

外形寸法 幅:3.2mm 長さ:1.6mm 厚み:1.2mm セラミック層の単位厚さ:20μm 有効誘電体総数:19 一層当たりの対向電極面積:1.3mm2 上記のようにして得た実施例2の積層コンデンサの電気
的特性を、実施例1の場合と同様にして測定した。な
お、比較のために、中間層が設けられていない従来の積
層コンデンサを比較令として用意し、同一条件に基づい
て電気的特性を測定した。結果を、下記の第2表に示
す。
External dimensions Width: 3.2 mm Length: 1.6 mm Thickness: 1.2 mm Unit thickness of ceramic layer: 20 μm Total number of effective dielectrics: 19 Counter electrode area per layer: 1.3 mm 2 of Example 2 obtained as above The electrical characteristics of the multilayer capacitor were measured in the same manner as in Example 1. For comparison, a conventional multilayer capacitor provided with no intermediate layer was prepared as a comparative sample, and the electrical characteristics were measured under the same conditions. The results are shown in Table 2 below.

第2表から明らかなように、実施例2の積層コンデンサ
では、第1,第2の中間層が内部電極とセラミック層との
間に設けられているため、誘電損失が2.3%から0.2%に
改善され、また静電容量も0.16μFから0.20μFに増加
したことがわかる。CR積についても、5000ΩFから5800
ΩFに高められたことがわかる。
As is clear from Table 2, in the multilayer capacitor of Example 2, since the first and second intermediate layers are provided between the internal electrodes and the ceramic layer, the dielectric loss is reduced from 2.3% to 0.2%. It can be seen that this is improved and the capacitance is increased from 0.16 μF to 0.20 μF. As for CR product, 5000ΩF to 5800
It can be seen that it has been increased to ΩF.

また、実施例2及び比較例の積層コンデンサの内部を観
察したところ、比較例の積層コンデンサでは内部電極と
セラミック層との間に剥がれやデラミネーションが生じ
ていた。これに対して、実施例2の積層コンデンサで
は、剥がれてもデラミネーションもまったく生じておら
ず、従って第1,第2の中間層が内部電極とセラミック層
との間に介在されることにより、内部電極とセラミック
層との接合強度が高められていることがわかる。
Further, when the inside of the multilayer capacitor of Example 2 and the comparative example was observed, peeling and delamination occurred between the internal electrodes and the ceramic layer in the multilayer capacitor of the comparative example. On the other hand, in the multilayer capacitor of Example 2, delamination did not occur at all even if it was peeled off, so that the first and second intermediate layers were interposed between the internal electrode and the ceramic layer, It can be seen that the bonding strength between the internal electrodes and the ceramic layer is increased.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば、ニッケルまたはニッケ
ル合金よりなる内部電極とセラミック層との接合強度
が、内部電極とセラミック層との間に介在されたニッケ
ル−銅合金またはニッケル−銅合金及び銅からなる中間
層により効果的に高められる。従って、安価の卑金属材
料であるニッケルまたはニッケル合金を内部電極材料と
して用いた積層コンデンサにおいて層剥がれやデラミネ
ーションの発生を防止することができ、さらに静電容
量、誘電損失及びCR積等の特性も改善される。
As described above, according to the present invention, the bonding strength between the internal electrode made of nickel or a nickel alloy and the ceramic layer is the nickel-copper alloy or the nickel-copper alloy interposed between the internal electrode and the ceramic layer, and It is effectively enhanced by the copper intermediate layer. Therefore, it is possible to prevent the occurrence of layer peeling and delamination in a multilayer capacitor using nickel or nickel alloy, which is an inexpensive base metal material, as an internal electrode material, and further, characteristics such as capacitance, dielectric loss and CR product can be obtained. Be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1で用意された積層コンデンサの断面
図、第2図は従来の積層コンデンサの一例を示す断面
図、第3図は実施例1で用意される内部電極及び中間層
を説明するための側面図、第4図は実施例2で用意され
る内部電極及び中間層を説明するための側面図である。 図において、12,14は中間層、13は内部電極、15はセラ
ミック焼結体、16はセラミック層、17a,17bは外部電
極、12a,14aは第1の中間層、12b,12bは第2の中間層を
示す。
FIG. 1 is a cross-sectional view of a multilayer capacitor prepared in Example 1, FIG. 2 is a cross-sectional view showing an example of a conventional multilayer capacitor, and FIG. 3 illustrates internal electrodes and intermediate layers prepared in Example 1. FIG. 4 is a side view for explaining the internal electrodes and the intermediate layer prepared in the second embodiment. In the figure, 12 and 14 are intermediate layers, 13 is an internal electrode, 15 is a ceramic sintered body, 16 is a ceramic layer, 17a and 17b are external electrodes, 12a and 14a are first intermediate layers, and 12b and 12b are second electrodes. The intermediate layer of FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミック焼結体と、 前記セラミック焼結体内に、セラミック層を介して重な
り合うように配置された複数の内部電極と、 前記内部電極間で静電容量を取り出すために、所定の内
部電極に電気的に接続されるように前記焼結体の側面に
設けられた一対の外部電極とを備える積層コンデンサに
おいて、 前記内部電極が、ニッケルまたはニッケル合金からな
り、かつ該内部電極が、ニッケル−銅合金またはニッケ
ル−銅合金及び銅からなる中間層を間に介在されて前記
セラミックス層に接合されていることを特徴とする積層
コンデンサ。
1. A ceramic sintered body, a plurality of internal electrodes arranged in the ceramic sintered body so as to overlap with each other with a ceramic layer interposed therebetween, and a predetermined amount for extracting a capacitance between the internal electrodes. In a multilayer capacitor comprising a pair of external electrodes provided on the side surface of the sintered body so as to be electrically connected to the internal electrodes, the internal electrodes are made of nickel or nickel alloy, and the internal electrodes, A multilayer capacitor, which is joined to the ceramic layer with an intermediate layer made of nickel-copper alloy or nickel-copper alloy and copper interposed therebetween.
JP2004270A 1990-01-10 1990-01-10 Multilayer capacitor Expired - Lifetime JPH07120598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270A JPH07120598B2 (en) 1990-01-10 1990-01-10 Multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270A JPH07120598B2 (en) 1990-01-10 1990-01-10 Multilayer capacitor

Publications (2)

Publication Number Publication Date
JPH03208323A JPH03208323A (en) 1991-09-11
JPH07120598B2 true JPH07120598B2 (en) 1995-12-20

Family

ID=11579850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270A Expired - Lifetime JPH07120598B2 (en) 1990-01-10 1990-01-10 Multilayer capacitor

Country Status (1)

Country Link
JP (1) JPH07120598B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290315B2 (en) * 2004-10-21 2007-11-06 Intel Corporation Method for making a passive device structure
US7629269B2 (en) 2005-03-31 2009-12-08 Intel Corporation High-k thin film grain size control
US7375412B1 (en) 2005-03-31 2008-05-20 Intel Corporation iTFC with optimized C(T)
US7453144B2 (en) 2005-06-29 2008-11-18 Intel Corporation Thin film capacitors and methods of making the same
WO2011084502A2 (en) 2009-12-16 2011-07-14 Apricot Materials Technologies, LLC Capacitor with three-dimensional high surface area electrode and methods of manufacture
JP2013545291A (en) 2010-10-12 2013-12-19 アプリコット マテリアルズ テクノロジーズ,エル.エル.シー. Ceramic capacitor and manufacturing method
WO2012120913A1 (en) * 2011-03-10 2012-09-13 株式会社村田製作所 Multilayer ceramic electronic component and method for manufacturing same
KR20230117793A (en) * 2022-02-03 2023-08-10 삼성전기주식회사 Multilayered electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648463A (en) * 1979-09-29 1981-05-01 Matsushita Electric Works Ltd Vertical gutter stay
JPS56167318A (en) * 1980-05-27 1981-12-23 Taiyo Yuden Kk Porcelain capacitor
JPS60195915A (en) * 1984-03-19 1985-10-04 松下電器産業株式会社 Method of forming terminal electrode of laminated ceramic capacitor
JPS61144813A (en) * 1984-12-19 1986-07-02 松下電器産業株式会社 Laminated ceramic capacitor and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648463A (en) * 1979-09-29 1981-05-01 Matsushita Electric Works Ltd Vertical gutter stay
JPS56167318A (en) * 1980-05-27 1981-12-23 Taiyo Yuden Kk Porcelain capacitor
JPS60195915A (en) * 1984-03-19 1985-10-04 松下電器産業株式会社 Method of forming terminal electrode of laminated ceramic capacitor
JPS61144813A (en) * 1984-12-19 1986-07-02 松下電器産業株式会社 Laminated ceramic capacitor and manufacture thereof

Also Published As

Publication number Publication date
JPH03208323A (en) 1991-09-11

Similar Documents

Publication Publication Date Title
JP3039403B2 (en) Multilayer ceramic capacitors
KR100272424B1 (en) Monolithic ceramic capacitor and producing method thereof
JP3180690B2 (en) Multilayer ceramic capacitors
JP6274267B2 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP3282520B2 (en) Multilayer ceramic capacitors
JP3636123B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP3797281B2 (en) Conductive paste for terminal electrode of multilayer ceramic electronic component, method for manufacturing multilayer ceramic electronic component, multilayer ceramic electronic component
JP3039409B2 (en) Multilayer ceramic capacitors
JP2018117051A (en) Multilayer ceramic capacitor
KR20170127373A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2019140199A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2022075550A (en) Multilayer capacitor
JPH10247609A (en) Stacked ceramic capacitor
JPH07120598B2 (en) Multilayer capacitor
JP7421313B2 (en) Ceramic electronic components and their manufacturing method
JP3596743B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP5515979B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP3675076B2 (en) Multilayer ceramic capacitor
JP3667148B2 (en) Manufacturing method of ceramic multilayer electronic component
JP2803227B2 (en) Multilayer electronic components
JP2021015925A (en) Multilayer ceramic capacitor
JP3675077B2 (en) Multilayer ceramic capacitor
JP3316720B2 (en) Multilayer ceramic capacitors
JP2018107422A (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP3018934B2 (en) Multilayer ceramic capacitors

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 15