JPH07120526B2 - Sheet-shaped hydrogen storage alloy electrode and method for manufacturing the same - Google Patents

Sheet-shaped hydrogen storage alloy electrode and method for manufacturing the same

Info

Publication number
JPH07120526B2
JPH07120526B2 JP2059397A JP5939790A JPH07120526B2 JP H07120526 B2 JPH07120526 B2 JP H07120526B2 JP 2059397 A JP2059397 A JP 2059397A JP 5939790 A JP5939790 A JP 5939790A JP H07120526 B2 JPH07120526 B2 JP H07120526B2
Authority
JP
Japan
Prior art keywords
sheet
hydrogen storage
storage alloy
electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2059397A
Other languages
Japanese (ja)
Other versions
JPH03261070A (en
Inventor
哲正 梅本
伸浩 柳沢
裕久 内田
義人 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Tokai University Educational Systems
Original Assignee
Sharp Corp
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Tokai University Educational Systems filed Critical Sharp Corp
Priority to JP2059397A priority Critical patent/JPH07120526B2/en
Publication of JPH03261070A publication Critical patent/JPH03261070A/en
Publication of JPH07120526B2 publication Critical patent/JPH07120526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、シート状水素吸蔵合金電極及びその製造方
法に関する。ことに電池の製造に用いられる。
TECHNICAL FIELD The present invention relates to a sheet-shaped hydrogen storage alloy electrode and a method for producing the same. Especially used in the manufacture of batteries.

(ロ)従来の技術 水素吸蔵合金は、電気化学的に水素を吸蔵・放出する性
質を利用して、アルカリ二次電池負極材料への応用が研
究されてきた。
(B) Conventional technology Hydrogen storage alloys have been studied for application to the negative electrode material of alkaline secondary batteries by utilizing the property of storing and releasing hydrogen electrochemically.

水素吸蔵合金の粉末を電極に成形する技術しては、従
来、結着剤にポリテトラフルオロエチレン、ポリエチレ
ン等の熱可塑性樹脂粉末を用いて、水素吸蔵合金粉末と
混合し、溶剤を用いてペースト化し、シート状に加熱成
形する方法がある(例えば特開昭63−147801)。
Conventionally, as a technique for forming a hydrogen storage alloy powder into an electrode, a thermoplastic resin powder such as polytetrafluoroethylene or polyethylene is used as a binder, mixed with the hydrogen storage alloy powder, and then paste using a solvent. There is a method of heat-molding into a sheet (for example, JP-A-63-147801).

シート状の電極を用いて電池を構成する場合、従来、電
極の上に積層するセパレータは外力により電極面に密着
させて構成されている。
In the case of forming a battery using a sheet-shaped electrode, conventionally, a separator laminated on the electrode is configured to be in close contact with the electrode surface by an external force.

(ハ)発明が解決しようとする課題 水素吸蔵合金は、水素の吸蔵・放出に伴う結晶格子の膨
張・収縮により微粉化を起こす。そのためアルカリ二次
電池負極に水素吸蔵合金を用いた前述した従来のシート
状電極は、充放電の繰り返しにより、集電性の低下や集
電体よりの脱落のため電極容量の減少を起こしたり、微
粉末化した合金が正極側に移動し内部短絡を起こしたり
することがある。
(C) Problem to be Solved by the Invention A hydrogen storage alloy causes pulverization due to expansion and contraction of a crystal lattice accompanying storage and release of hydrogen. Therefore, the above-mentioned conventional sheet-like electrode using a hydrogen storage alloy for the alkaline secondary battery negative electrode, due to repeated charging and discharging, causes a decrease in the electrode capacity due to a decrease in the current collecting property or a drop from the current collector, The finely powdered alloy may move to the positive electrode side and cause an internal short circuit.

また、電池組立の際に電極−セパレータ間の密着不良が
発生することがあり、密着不良の場合には電池の内部抵
抗が増大したり、電極の部分放電等が発生し、容量不足
等の不良の原因となっている。
In addition, when the battery is assembled, poor adhesion between the electrode and the separator may occur, and in the case of poor adhesion, the internal resistance of the battery increases, partial discharge of the electrodes occurs, and the capacity is insufficient. Is the cause.

この発明は、上記問題を解決するためになされたもので
あって、隣接するセパレータ層との密着性に優れ、内部
抵抗の増大、内部短絡電極の部分放電の故障がなく、容
量の大きい電池を構成することのできるシート状水素吸
蔵合金電極及びその製造方法を提供するものである。
The present invention has been made to solve the above problems, excellent adhesion to the adjacent separator layer, increase in internal resistance, failure of partial discharge of the internal short-circuit electrode, a large capacity battery. A sheet-shaped hydrogen storage alloy electrode that can be configured and a method for manufacturing the same are provided.

(ニ)課題を解決するための手段 この発明によれば、シート状導電性基体上に、水素吸蔵
合金粉末を含有する合成樹脂層とセパレータ用絶縁層と
が順に積層一体化されてなるシート状水素吸蔵合金電極
が提供される。
(D) Means for Solving the Problems According to the present invention, a sheet-like conductive substrate is formed by sequentially stacking and integrating a synthetic resin layer containing hydrogen-absorbing alloy powder and an insulating layer for a separator. A hydrogen storage alloy electrode is provided.

この発明におけるシート状導電性基体は、電極の集電体
を構成するためのものであって、例えばニッケル、ステ
ンレス等を用い、その形態を、例えばネット、箔、板状
体等として用いることができる。
The sheet-like conductive substrate in the present invention is for constituting a current collector of an electrode, and is made of, for example, nickel, stainless steel or the like, and its form is used as, for example, a net, a foil, a plate-shaped body or the like. it can.

この発明における合成樹脂層は、水素吸蔵合金粉末を把
持し下層のシート状導電性基体及び上層のセパレータ用
絶縁層に密着させるためのものであって、合成樹脂とこ
の合成樹脂中に分散された水素吸蔵合金粉末から構成す
ることができる。
The synthetic resin layer in the present invention is for holding the hydrogen-absorbing alloy powder and adhering it to the lower sheet-like conductive substrate and the upper insulating layer for the separator, and is dispersed in the synthetic resin and the synthetic resin. It can be composed of hydrogen storage alloy powder.

この水素吸蔵合金粉末は、負極電気化学反応を起こすた
めのものであって、電池の動作温度域で適当な水素平衡
解離圧を有する合金を用いることができ、例えばLaNi5,
MmNi5或はこの合金に他の元素(Al,Co,Mn等)を添加し
た稀土類系合金、TiNi,Ti2Ni,TiNi2等のチタン系合金、
ZrNi2等のジルコニウム系合金等を挙げることができ
る。上記合成樹脂は、上記水素吸蔵合金粉末を結着しシ
ート状導電性基体及びセパレータ用絶縁層に密着するた
めのものであって、接着力の耐アルカリ性を呈するもの
がよく、例えばシリコーン系樹脂等を用いることができ
る。
This hydrogen storage alloy powder is for causing a negative electrode electrochemical reaction, and an alloy having an appropriate hydrogen equilibrium dissociation pressure in the operating temperature range of the battery can be used, for example, LaNi 5 ,
Rare earth alloys such as MmNi 5 or other alloys (Al, Co, Mn, etc.) added to this alloy, titanium alloys such as TiNi, Ti 2 Ni, TiNi 2 ,
Examples thereof include zirconium alloys such as ZrNi 2 . The synthetic resin is for binding the hydrogen-absorbing alloy powder and adhering to the sheet-shaped conductive substrate and the insulating layer for the separator, and preferably exhibits alkali resistance of adhesive force, such as a silicone resin. Can be used.

この発明におけるセパレータ用絶縁層は、電解液を保持
し、負極を構成する水素吸蔵合金粉末が正極側に移動す
るのを防ぐためのものであって、例えばナイロン不織
布、プロピレン不織布等を用いることができる。
The insulating layer for a separator in the present invention is for holding the electrolytic solution and for preventing the hydrogen storage alloy powder constituting the negative electrode from moving to the positive electrode side, and for example, nylon non-woven fabric, propylene non-woven fabric or the like may be used. it can.

この発明のシート状水素吸蔵合金電極は、具体的には次
のようにして製造することができる。
Specifically, the sheet-shaped hydrogen storage alloy electrode of the present invention can be manufactured as follows.

シート状導電性基体上に、水素吸蔵合金粉末と高分子前
駆体物質との混合物を塗布し、この上にセパレータ用絶
縁層を積層し、この後に上記混合物を高分子前駆体物質
の重合条件に付すことによって硬化させてシート状導電
性基体、水素吸蔵合金粉末を含有する合成樹脂層及びセ
パレータ用絶縁層とを積層一体化する。
On the sheet-shaped conductive substrate, a mixture of hydrogen storage alloy powder and a polymer precursor substance is applied, and an insulating layer for a separator is laminated on this, and then the mixture is subjected to polymerization conditions of the polymer precursor substance. Then, the sheet-shaped conductive substrate, the synthetic resin layer containing the hydrogen-absorbing alloy powder and the insulating layer for the separator are laminated and integrated.

上記高分子前駆体物質は、水素吸蔵合金粉末と混合して
塗布液を作製するためのものであって、液状のプレポリ
マー及び/又はモノマーを用いるのが好ましく、例えば
室温硬化型1液型シリコーン樹脂、室温硬化型2液型シ
リコーン樹脂等を挙げることができる。また、塗布液を
作製する際の高分子前駆体物質の混合割合は、水素吸蔵
合金粉末100重量部に対し、通常23〜30重量部が好まし
い。
The polymer precursor substance is used for preparing a coating liquid by mixing with the hydrogen storage alloy powder, and it is preferable to use a liquid prepolymer and / or a monomer, for example, room temperature curable one-pack type silicone. Examples thereof include resins and room temperature curable two-component silicone resins. Further, the mixing ratio of the polymer precursor substance in preparing the coating liquid is usually preferably 23 to 30 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder.

上記混合物は、例えばブレードコータ法、ナイロンコー
タ法等によってシート状導電性基体上に塗布することが
できる。塗布量は、シート状導電体基体表面積10cm2
り、通常2.5〜3.0gが好ましい。
The above mixture can be applied onto a sheet-shaped conductive substrate by, for example, a blade coater method, a nylon coater method or the like. The coating amount is usually preferably 2.5 to 3.0 g per 10 cm 2 of surface area of the sheet-shaped conductor substrate.

上記混合物の塗布面上へのセパレータ用絶縁層の積層
は、塗布面が粘着性を有する状態で行われる。この積層
は、セパレータ用絶縁層を塗布面へ密着させるために加
圧して行うのが好ましい。
Lamination of the separator insulating layer on the coated surface of the mixture is performed in a state where the coated surface has adhesiveness. This lamination is preferably performed by applying pressure to bring the insulating layer for a separator into close contact with the coated surface.

この後上記混合物の塗膜を硬化させる。この硬化は、上
記高分子前駆体物質の重合条件に付すことによって行わ
れ、室温で重合反応を進めてもよいが、用いる高分子前
駆体物質の種類によって適宜加熱して行ってもよい。
After this, the coating film of the above mixture is cured. This curing is performed by subjecting the polymer precursor substance to the polymerization conditions, and the polymerization reaction may be allowed to proceed at room temperature, but it may be appropriately heated depending on the type of the polymer precursor substance used.

この硬化によってシート状導電性基体、水素吸蔵合金粉
末を含有する合成樹脂層及びセパレータ用絶縁層が一体
化されシート状水素吸蔵合金電極を製造することができ
る。
By this curing, the sheet-shaped conductive substrate, the synthetic resin layer containing the hydrogen-absorbing alloy powder, and the insulating layer for the separator are integrated to produce the sheet-shaped hydrogen-absorbing alloy electrode.

(ホ)作用 この発明のシート状水素吸蔵合金電極は、水素吸蔵合金
粉末を高分子により結着、コーティングしているため、
充放電に伴う微粉末化による合金粉末の電極よりの脱落
を防止でき、更にシート状電極とセパレータとを一体化
して成形することができるため、電極とセパレータとの
密着性が向上して内部抵抗の小さい電池を容易に作製す
ることができる。そのため、スパイラル型の円筒電池に
用いた場合、電池要素の巻取り工程が簡略化される。
(E) Action Since the sheet-shaped hydrogen storage alloy electrode of the present invention binds and coats the hydrogen storage alloy powder with a polymer,
It is possible to prevent the alloy powder from falling off from the electrode due to pulverization due to charge / discharge, and since the sheet-shaped electrode and the separator can be integrated and molded, the adhesion between the electrode and the separator is improved and the internal resistance is improved. It is possible to easily manufacture a battery having a small size. Therefore, when used in a spiral type cylindrical battery, the winding process of the battery element is simplified.

(ヘ)実施例 実施例1 この発明の実施例を図面を用いて説明する。水素吸蔵合
金としてLaNi4.5Al0.5で表される粉末(粒径44μm以
下)10重量部、高分子結着剤として1液型RTVシリコン
ポリマー(信越シリコーン社製、KE−45)2.8重量部を
混合混練し電極合剤ペーストとする。
(F) Embodiments Embodiment 1 Embodiments of the present invention will be described with reference to the drawings. Mix 10 parts by weight of powder represented by LaNi 4.5 Al 0.5 (particle size 44 μm or less) as hydrogen storage alloy, and 2.8 parts by weight of one-pack type RTV silicone polymer (KE-45 by Shin-Etsu Silicone Co., Ltd.) as polymer binder. Knead to make an electrode mixture paste.

次に第1図に示すようにアルミ箔(厚さ15μm)1上に
集電体のニッケル金網(50メッシュ)2を載置し、上記
電極合剤ペースト3を10cm2当り2.9g塗布する。その上
にセパレータのナイロン不織布(厚さ 200μm)4を
載せ、不織布側から2Kg/cm2の圧力で加圧しながらシリ
コーンポリマーを室温にて硬化させる。ポリマーの硬化
後0.1M KOH水溶液中に浸漬して、アルミ箔を除去し、水
洗し、シート厚1280μmのセパレータと一体化したシー
ト状水素吸蔵合金電極を得た。次にこの電極を直径15mm
の大きさに打ち抜いて負極とし、正極にニッケル電極
(直径15mm,厚さ1080μm)を用い電極液に7.2M KOH水
溶液を用いてこれらを缶に収納してコイン型のニッケル
−水素電池を製作した。ただし、負極容量は正極容量の
2倍とした。得られたニッケル−水素電池を120mA充電
し、i=2.5mA(1.0V cut)で放電した。充放電は25℃
で行った。放電曲線は、第2図のAに示すように後述の
比較例に比べ充電容量が向上していた。
Next, as shown in FIG. 1, a nickel wire mesh (50 mesh) 2 as a current collector is placed on an aluminum foil (thickness 15 μm) 1 and the electrode mixture paste 3 is applied in an amount of 2.9 g per 10 cm 2 . A nylon non-woven fabric (thickness: 200 μm) 4 as a separator is placed thereon, and the silicone polymer is cured at room temperature while applying pressure of 2 Kg / cm 2 from the non-woven fabric side. After the polymer was cured, it was immersed in a 0.1 M KOH aqueous solution to remove the aluminum foil and washed with water to obtain a sheet-shaped hydrogen storage alloy electrode integrated with a separator having a sheet thickness of 1280 μm. Next, this electrode is 15mm in diameter
A nickel electrode (nickel electrode (diameter: 15 mm, thickness: 1080 μm)) was used for the positive electrode, and 7.2 M KOH aqueous solution was used for the electrode solution. . However, the negative electrode capacity was twice the positive electrode capacity. The obtained nickel-hydrogen battery was charged at 120 mA and discharged at i = 2.5 mA (1.0 V cut). Charge / discharge is 25 ℃
I went there. As for the discharge curve, as shown in A of FIG. 2, the charge capacity was improved as compared with the comparative example described later.

比較例1 実施例1と同様の電極合剤、集電体を用いてアルミ箔上
にシート電極を作製し、セパレータを載置せず硬化さ
せ、実施例1と同様にアルミ箔を除去し水素吸蔵合金電
極を得た。この電極の上に実施例1と同様のセパレータ
を載置し更にこの上に正極を載置し、缶に収納して、電
解液に7.2M KOH水溶液を用いてコイン型電池を製作し
た。充放電条件は実施例と同じにした。得られた電池の
放電曲線は、第2図のBに示す。
Comparative Example 1 A sheet electrode was prepared on an aluminum foil using the same electrode mixture and current collector as in Example 1, cured without placing a separator, and the aluminum foil was removed in the same manner as in Example 1 to remove hydrogen. An occlusion alloy electrode was obtained. The same separator as in Example 1 was placed on this electrode, the positive electrode was placed thereon, and the resultant was housed in a can, and a coin-type battery was manufactured by using a 7.2 M KOH aqueous solution as an electrolytic solution. The charge / discharge conditions were the same as in the example. The discharge curve of the obtained battery is shown in B of FIG.

この結果実施例1に示すように水素吸蔵合金電極とセパ
レータを一体化することにより、電池特性の向上が得ら
れた。
As a result, as shown in Example 1, the battery characteristics were improved by integrating the hydrogen storage alloy electrode and the separator.

(ト)発明の効果 以上のように、本発明によれば、水素吸蔵合金電極の充
放電に伴う容量低下を抑制すると共に、水素吸蔵合金電
極とセパレータとを一体化して電極とセパレータの密着
性を向上させることにより、電池特性が向上し、更に電
池製作工程を簡略化することができる。
(G) Effect of the Invention As described above, according to the present invention, the capacity decrease due to charge / discharge of the hydrogen storage alloy electrode is suppressed, and the hydrogen storage alloy electrode and the separator are integrated to form the adhesion between the electrode and the separator. By improving the battery characteristics, the battery characteristics are improved, and the battery manufacturing process can be further simplified.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例で作製したシート状水素吸蔵
合金電極の説明図、第2図は同じく実施例及び比較例で
作製した電池の放電曲線である。 1……アルミ箔、2……集電ネット、3……電極合剤、
4……セパレータ。
FIG. 1 is an explanatory view of a sheet-shaped hydrogen storage alloy electrode produced in an example of the present invention, and FIG. 2 is a discharge curve of the battery similarly produced in an example and a comparative example. 1 ... Aluminum foil, 2 ... Current collecting net, 3 ... Electrode mixture,
4 ... Separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 裕久 東京都渋谷区富ケ谷2丁目28番4号 学校 法人東海大学内 (72)発明者 松村 義人 東京都渋谷区富ケ谷2丁目28番4号 学校 法人東海大学内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hirohisa Uchida 2-28-4 Tomigaya, Shibuya-ku, Tokyo School corporation Tokai University (72) Inventor Yoshito Matsumura 2-28-4 Tomigaya, Shibuya-ku, Tokyo School corporation Tokai University

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シート状導電性基体上に、水素吸蔵合金粉
末を含有する合成樹脂層とセパレータ用絶縁層とが順に
積層一体化されてなるシート状水素吸蔵合金電極。
1. A sheet-shaped hydrogen storage alloy electrode in which a synthetic resin layer containing hydrogen storage alloy powder and an insulating layer for a separator are sequentially laminated and integrated on a sheet-shaped conductive substrate.
【請求項2】シート状導電性基体上に、水素吸蔵合金粉
末と高分子前駆体物質との混合物を塗布し、この上にセ
パレータ用絶縁層を積層し、この後に上記混合物を高分
子前駆体物質の重合条件に付すことにより硬化させ請求
項1のシート状水素吸蔵合金電極を構成することを特徴
とする水素吸蔵合金電極の製造方法。
2. A sheet-shaped conductive substrate is coated with a mixture of hydrogen storage alloy powder and a polymer precursor substance, an insulating layer for a separator is laminated thereon, and then the mixture is mixed with the polymer precursor. A method for producing a hydrogen storage alloy electrode, comprising: curing the sheet by subjecting it to polymerization conditions to form the sheet-shaped hydrogen storage alloy electrode of claim 1.
JP2059397A 1990-03-09 1990-03-09 Sheet-shaped hydrogen storage alloy electrode and method for manufacturing the same Expired - Fee Related JPH07120526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059397A JPH07120526B2 (en) 1990-03-09 1990-03-09 Sheet-shaped hydrogen storage alloy electrode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059397A JPH07120526B2 (en) 1990-03-09 1990-03-09 Sheet-shaped hydrogen storage alloy electrode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03261070A JPH03261070A (en) 1991-11-20
JPH07120526B2 true JPH07120526B2 (en) 1995-12-20

Family

ID=13112111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059397A Expired - Fee Related JPH07120526B2 (en) 1990-03-09 1990-03-09 Sheet-shaped hydrogen storage alloy electrode and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH07120526B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620606B1 (en) * 1993-03-16 1999-06-09 Furukawa Denchi Kabushiki Kaisha Electrode for rechargeable battery with nonaqueous electrolyte and process for producing the same
CN110061281B (en) * 2019-05-05 2021-03-30 深圳新源柔性科技有限公司 Thin film battery and preparation method thereof

Also Published As

Publication number Publication date
JPH03261070A (en) 1991-11-20

Similar Documents

Publication Publication Date Title
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
KR101174572B1 (en) Electrode and method for producing electrode
WO1998033227A1 (en) Organic electrolytic battery
JP3805876B2 (en) Nickel metal hydride battery
WO2007004703A1 (en) Nickel-hydrogen battery
CN111063860A (en) Electrode plate, preparation method thereof and battery
JPH07120526B2 (en) Sheet-shaped hydrogen storage alloy electrode and method for manufacturing the same
JPS5937667A (en) Metal oxide-hydrogen battery
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JP3567021B2 (en) Alkaline secondary battery
JP2004214046A (en) Electrode for lithium-ion secondary battery and lithium-ion secondary battery using the same
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JP3094033B2 (en) Nickel hydride rechargeable battery
JP2012174554A (en) Method for manufacturing battery
JPH07123053B2 (en) Organic solid electrolyte secondary battery
JP3614567B2 (en) Sealed nickel metal hydride battery
JPS6048868B2 (en) Manufacturing method of electrode substrate
JP3004241B2 (en) Hydrogen battery
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JPH0233853A (en) Manufacture of nickel positive plate for alkaline storage battery
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2005038730A (en) Non-sintered nickel electrode and alkaline storage battery
JPS63158745A (en) Nonaqueous secondary battery
KR20190043086A (en) Positive electrode and alkaline secondary battery including the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees