JPH07120420A - Evaluation method for characteristic of hydrogen storage alloy - Google Patents

Evaluation method for characteristic of hydrogen storage alloy

Info

Publication number
JPH07120420A
JPH07120420A JP5263222A JP26322293A JPH07120420A JP H07120420 A JPH07120420 A JP H07120420A JP 5263222 A JP5263222 A JP 5263222A JP 26322293 A JP26322293 A JP 26322293A JP H07120420 A JPH07120420 A JP H07120420A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
temperature
sample
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5263222A
Other languages
Japanese (ja)
Other versions
JP3238995B2 (en
Inventor
Shin Fujitani
伸 藤谷
Hiroshi Nakamura
宏 中村
Yumiko Nakamura
優美子 中村
Hiroshi Watanabe
浩志 渡辺
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26322293A priority Critical patent/JP3238995B2/en
Publication of JPH07120420A publication Critical patent/JPH07120420A/en
Application granted granted Critical
Publication of JP3238995B2 publication Critical patent/JP3238995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To omit opening/closing operation of a valve so as to facilitate automation of measurement, and improve reproducibility of measuring result even in case of a low equilibrium hydrogen pressure, in a characteristic evaluation method of hydrogen storage allay by the use of Sivert's device. CONSTITUTION:In a system constituted of a vessel 3 receiving the sample 2 of hydrogen storage alloy and pipings, the pressure in the system is measured by means of a pressure sensor 6 while varying the sample temperature by means of a heater 8, and the characteristic of the sample is evaluated based on the pressure-temperature curve in this process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸収、
放出することが可能な水素吸蔵合金に関し、特にジーベ
ルツ装置を用いて水素吸蔵合金の特性を評価する方法に
関するものである。
The present invention relates to the reversible absorption of hydrogen,
The present invention relates to a hydrogen storage alloy that can be released, and more particularly to a method for evaluating the characteristics of the hydrogen storage alloy using a Sibelts apparatus.

【0002】[0002]

【従来の技術】水素吸蔵合金は、化石燃料の代替となる
新たなエネルギー源として注目を浴びており、特に、エ
ネルギー変換機能等の優秀性から、種々の応用システム
が研究されている。ところで、水素吸蔵合金と水素の平
衡反応は、水素圧力−組成(水素吸収量)等温曲線で評価
される。水素圧力−組成等温線(P−C−T曲線)は、図
9に示す如く、勾配の急な水素固溶領域(α相)及び金属
水素化合物領域(β相)を有すると共に、両者の間に挟ま
れた平坦なプラトー領域を有している。このP−C−T
曲線を測定することによって、個々の水素吸蔵合金の特
性を把握することが出来る(特開昭60-251238、化学技術
研究所報告第80巻第11号,35〜45頁)。
2. Description of the Related Art Hydrogen storage alloys have been attracting attention as a new energy source to replace fossil fuels, and various application systems have been studied because of their excellent energy conversion function. By the way, the equilibrium reaction between the hydrogen storage alloy and hydrogen is evaluated by a hydrogen pressure-composition (hydrogen absorption amount) isotherm curve. As shown in FIG. 9, the hydrogen pressure-composition isotherm (P-C-T curve) has a steeply sloped hydrogen solid solution region (α phase) and a metal hydride compound region (β phase), and between them. It has a flat plateau region sandwiched between. This P-C-T
By measuring the curve, the characteristics of the individual hydrogen storage alloys can be grasped (Japanese Patent Laid-Open No. 60-251238, Report 80, No. 11, No. 11, pp. 35-45, Institute of Chemical Research).

【0003】P−C−T曲線の測定は、従来より図8に
示す如きジーベルツ装置を用いて行なわれている。試料
(2)が充填された試料容器(3)は恒温槽(7)に収容され
ており、該試料容器(3)はバルブ(4)を介してガスホル
ダー(1)と連結されている。又、ガスホルダー(1)とバ
ルブ(4)を連結する配管には、バルブ(5)を介して水素
導入・排気管(13)が連結され、ガスホルダー(1)内の圧
力は圧力センサー(6)によって測定される。
Conventionally, the P-C-T curve has been measured by using a Sibelts apparatus as shown in FIG. sample
A sample container (3) filled with (2) is housed in a constant temperature bath (7), and the sample container (3) is connected to a gas holder (1) via a valve (4). Further, the pipe for connecting the gas holder (1) and the valve (4) is connected to the hydrogen introduction / exhaust pipe (13) through the valve (5), and the pressure inside the gas holder (1) is measured by the pressure sensor ( 6).

【0004】上記ジーベルツ装置を用いたP−C−T曲
線の測定は次の工程〜の実行によって行なわれる。 工程 両バルブ(4)(5)を開いて水素導入・排気管(1
3)からガスを排出し、系内を真空とする。 工程 バルブ(4)を閉じて水素導入・排気管(13)から
ガスホルダー(1)へ水度ガスを導入した後、バルブ(5)
を閉じる。 工程 バルブ(4)を開き、ガスホルダー(1)内の水素
ガスを試料(2)に吸収せしめる。これに伴って、ガスホ
ルダー(1)内のガス圧は徐々に低下する。 工程 充分な時間が経過して、ガス圧が一定、即ち平
衡状態となった後、バルブ(4)を閉じて、工程へ戻
る。
The measurement of the P-C-T curve using the above-mentioned Sibelts apparatus is performed by executing the following steps. Open both valves (4) and (5) to open the hydrogen introduction / exhaust pipe (1
The gas is discharged from 3) and the system is evacuated. Process After closing the valve (4) and introducing the water gas from the hydrogen introduction / exhaust pipe (13) to the gas holder (1), the valve (5)
Close. The process valve (4) is opened to allow the sample (2) to absorb the hydrogen gas in the gas holder (1). Along with this, the gas pressure in the gas holder (1) gradually decreases. After a sufficient time has passed and the gas pressure becomes constant, that is, equilibrium is reached, the valve (4) is closed and the process returns to the process.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ジーベ
ルツ装置を用いた従来のP−C−T曲線の測定による特
性評価方法においては、バルブの開閉操作を頻繁に行な
う必要があるため、測定の自動化が困難であり、然もガ
スリークの危険性が高い問題があった。又、測定前の真
空排気条件(排気温度、排気時間、真空度)によって試料
中の水素吸収量の原点が変動するため、測定結果の再現
性に乏しい問題があった。
However, in the conventional characteristic evaluation method by measuring the P-C-T curve using the Sibelts apparatus, it is necessary to open and close the valve frequently, so that the measurement can be automated. It was difficult and there was a high risk of gas leakage. Further, since the origin of the hydrogen absorption amount in the sample varies depending on the vacuum exhaust conditions (exhaust temperature, exhaust time, vacuum degree) before the measurement, there is a problem that the reproducibility of the measurement result is poor.

【0006】特に、近年、実用化が進んでいるNi−H
2電池の水素負極として用いられる水素吸蔵合金におい
ては、平衡水素圧力が0.5atm以下となり、水素吸
収域の圧力範囲が広いため、特性評価のために、広範囲
に亘る圧力変化を正確に測定する必要がある。しかし、
一般的な圧力ゲージを用いた測定では、圧力範囲の増大
に伴って測定誤差が増大し、測定結果の再現性が著しく
悪化する。本発明の目的は、ジーベルツ装置を用いた特
性評価方法において、バルブの開閉操作を省略して、測
定の自動化を容易とすると共に、平衡水素圧力が低い場
合にも、測定結果の再現性を高めることである。
In particular, Ni-H, which has been put into practical use in recent years,
2 In the hydrogen storage alloy used as the hydrogen negative electrode of the battery, the equilibrium hydrogen pressure is 0.5 atm or less, and the pressure range of the hydrogen absorption region is wide, so the pressure change over a wide range is accurately measured for the characteristic evaluation. There is a need. But,
In the measurement using a general pressure gauge, the measurement error increases as the pressure range increases, and the reproducibility of the measurement result deteriorates significantly. An object of the present invention is to improve the reproducibility of measurement results even when the equilibrium hydrogen pressure is low, while facilitating the automation of the measurement by omitting the valve opening / closing operation in the characteristic evaluation method using the Sibelts apparatus. That is.

【0007】[0007]

【課題を解決する為の手段】本発明に係る水素吸蔵合金
の特性評価方法は、水素吸蔵合金の試料が収容された一
定容積の系内にて、試料温度を変化させつつ系内の圧力
を測定し、この過程における圧力−温度曲線に基づい
て、試料の特性を評価するものである。
A method for evaluating the characteristics of a hydrogen storage alloy according to the present invention is to measure the pressure in the system while changing the temperature of the sample in a system of a constant volume containing a sample of the hydrogen storage alloy. The measurement is performed and the characteristics of the sample are evaluated based on the pressure-temperature curve in this process.

【0008】具体的には、試料温度Tsを変化させる際
の温度範囲の設定は、試料となる水素吸蔵合金が温度一
定で水素を放出する場合の圧力Pと水素吸収量Cの関係
(P−C−T曲線)において、該水素吸蔵合金の用途に応
じた水素吸収量が得られることとなる圧力範囲を設定す
ることによって行なう。
Specifically, the temperature range is set when the sample temperature Ts is changed by setting the relationship between the pressure P and the hydrogen absorption amount C when the hydrogen storage alloy as a sample releases hydrogen at a constant temperature.
(P-C-T curve) is performed by setting a pressure range in which a hydrogen absorption amount according to the intended use of the hydrogen storage alloy is obtained.

【0009】例えば、温度上昇開始時における温度及び
圧力は、水素吸蔵合金の実際の用途において水素放出開
始点となる値に設定し、これを原点とする。そして、温
度上昇終了時における温度Ts及び圧力Pは、水素吸蔵
合金の実際の用途においてP−C−T曲線上の水素放出
完了点の温度及び圧力との関係において、下記数2で表
わされるVan't Hoffの関係式が同一の係数A及びBに下
に成立することとなる値、或いはその近傍値に設定され
る。
For example, the temperature and the pressure at the start of the temperature rise are set to values which are the hydrogen desorption starting point in the actual use of the hydrogen storage alloy, and this is the origin. Then, the temperature Ts and the pressure P at the end of the temperature rise are represented by the following formula 2 in relation to the temperature and the pressure of the hydrogen desorption completion point on the P-C-C curve in the actual use of the hydrogen storage alloy. The relational expression of't Hoff is set to a value such that the same coefficient A and B holds below, or a value close to the value.

【0010】[0010]

【数1】lnP=A/Ts+B[Formula 1] lnP = A / Ts + B

【0011】[0011]

【作用】一定容積の系内に水素吸蔵合金の試料を収容
し、例えば水素吸収状態から試料温度を上昇させると、
水素吸蔵合金は系内へ徐々に水素を放出し、これに伴っ
て系内の圧力が上昇する。この過程で、温度と圧力の関
係を測定し、図5に示す様に測定結果をグラフ化する。
この圧力−温度曲線は試料毎に固有のものであり、圧力
−温度曲線によって試料を特定することが出来る。そし
て、圧力−温度曲線の比較によって、試料の特性を評価
することが出来る。又、測定開始時の試料温度及び圧力
と、測定終了時の試料温度及び圧力から、水素ガスの状
態方程式に基づいて水素放出量を算出することが出来
る。この水素吸収量の比較によって、試料の水素吸放出
についての特性の優劣を評価することが出来る。
[Function] When a sample of a hydrogen storage alloy is housed in a system having a constant volume and, for example, the temperature of the sample is raised from a hydrogen absorption state,
The hydrogen storage alloy gradually releases hydrogen into the system, and the pressure in the system rises accordingly. In this process, the relationship between temperature and pressure is measured, and the measurement result is graphed as shown in FIG.
This pressure-temperature curve is unique to each sample, and the sample can be specified by the pressure-temperature curve. Then, the characteristics of the sample can be evaluated by comparing the pressure-temperature curves. Further, the amount of hydrogen released can be calculated from the sample temperature and pressure at the start of measurement and the sample temperature and pressure at the end of measurement based on the equation of state of hydrogen gas. By comparing the hydrogen absorption amounts, it is possible to evaluate the superiority or inferiority of the characteristics of the sample regarding the hydrogen absorption and desorption.

【0012】ここで、試料温度Tsを変化させる際の温
度範囲の設定として、水素吸蔵合金の実際の用途におけ
る水素吸収量と同一の水素吸収量が得られることとなる
圧力範囲を設定すれば、水素吸蔵合金が実際に応用され
た場合の水素吸収、放出過程の特性を前記圧力−温度曲
線によって評価することが出来る。
Here, if the temperature range for changing the sample temperature Ts is set to a pressure range in which the same hydrogen absorption amount as the hydrogen absorption amount in the actual use of the hydrogen storage alloy is obtained, The characteristics of hydrogen absorption and desorption processes when the hydrogen storage alloy is actually applied can be evaluated by the pressure-temperature curve.

【0013】[0013]

【発明の効果】本発明に係る水素吸蔵合金の特性評価方
法は、ジーベルツ装置を用いて実施することが可能であ
り、この際、活性状態の試料が配置された系内をバルブ
で仕切った状態のまま昇温すればよく、バルブの開閉操
作を行なう必要はない。従って、測定の自動化が容易で
ある。又、系内を仕切ったまま昇温する過程における圧
力上昇は、従来のP−C−T曲線測定の場合と比べて僅
かであり、水素吸収状態を圧力上昇の原点とすることに
よって、精度の高い圧力測定が可能である。従って、測
定結果に高い再現性が得られる。
The method for evaluating the characteristics of a hydrogen storage alloy according to the present invention can be carried out by using a Sibelts apparatus, and in this case, a system in which an active sample is placed is partitioned by a valve. It is sufficient to raise the temperature as it is, and it is not necessary to open and close the valve. Therefore, automation of measurement is easy. In addition, the pressure rise in the process of raising the temperature with the inside of the system partitioned is smaller than that in the case of the conventional P-C-T curve measurement, and by setting the hydrogen absorption state as the origin of the pressure rise, the accuracy can be improved. High pressure measurement is possible. Therefore, high reproducibility of the measurement result can be obtained.

【0014】[0014]

【実施例】図1は、ジーベルツ装置を応用した本発明の
測定装置を示しており、ジーベルツ装置自体の構成は従
来と同様である。試料容器(3)が収容された恒温槽(7)
には、ヒータ(8)及び温度センサ(9)が配置されおり、
ヒータ(8)による加熱制御は、温度センサ(9)からの検
出信号に基づいて、温度コントローラ(10)が行なう。こ
れによって、試料温度は所定の昇温速度で上昇すること
になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a measuring apparatus of the present invention to which the Sibelts apparatus is applied, and the construction of the Sibelts apparatus itself is the same as the conventional one. Constant temperature chamber (7) containing sample container (3)
The heater (8) and the temperature sensor (9) are installed in the
The heating control by the heater (8) is performed by the temperature controller (10) based on the detection signal from the temperature sensor (9). As a result, the sample temperature rises at a predetermined temperature rising rate.

【0015】又、温度センサ(9)による温度検出信号
と、圧力センサー(6)による圧力検出信号は、マイクロ
コンピュータからなる演算処理回路(11)へ送られ、後述
の演算処理が施されて試料(2)の特性が評価される。そ
の結果は、プリンターやディスプレイ等の出力装置(12)
から出力される。
Further, the temperature detection signal from the temperature sensor (9) and the pressure detection signal from the pressure sensor (6) are sent to an arithmetic processing circuit (11) composed of a microcomputer, and are subjected to the arithmetic processing described later to perform the sample processing. The characteristic of (2) is evaluated. The result is an output device such as a printer or display (12).
Is output from.

【0016】以下、上記測定装置を用いた本発明の実施
例について説明する。合金試料として、MmNi3.2
1.0Al0.2Mn0.6合金を用いた。尚、本合金はNi
−H2電池用の水素吸蔵合金であって、図6に示す如く
水素吸収時のP−C−T曲線は、平衡水素圧力が1at
m以下となる低圧領域まで伸びており、従来のP−C−
T曲線測定においては、この広い圧力範囲を高精度で測
定することが困難であったものである。
An embodiment of the present invention using the above measuring device will be described below. As an alloy sample, MmNi 3.2 C
o 1.0 Al 0.2 Mn 0.6 alloy was used. This alloy is Ni
A hydrogen storage alloy for a -H 2 battery, and the P-C-T curve when absorbing hydrogen as shown in Fig. 6 shows that the equilibrium hydrogen pressure is 1 at.
It extends to the low pressure range of m or less, and the conventional PC-
In the T-curve measurement, it was difficult to measure this wide pressure range with high accuracy.

【0017】本合金を300μm程度の粒径に粉砕した
後、その内の5.0gを採取し、これを試料容器(3)に
封入して活性化処理を施した。活性化処理としては、先
ず試料(2)を80℃まで昇温し、バルブ(4)(5)を開い
て水素導入・排気管(13)からロータリーポンプにて系内
全体を真空排気した。次に、水素導入・排気管(13)から
10atmの水素ガスを系内に導入し、その後、試料温
度を室温まで下げて、試料に水素を吸入せしめた。以上
の試料の昇温、真空排気、試料の降温、及び水素ガス加
圧を5回繰り返して、活性化処理を終えた。
After crushing this alloy to a particle size of about 300 μm, 5.0 g of the alloy was sampled, sealed in a sample container (3) and subjected to activation treatment. As the activation treatment, first, the sample (2) was heated to 80 ° C., the valves (4) and (5) were opened, and the entire system was evacuated by a rotary pump from the hydrogen introduction / exhaust pipe (13). Next, 10 atm of hydrogen gas was introduced into the system through the hydrogen introduction / exhaust pipe (13), and then the sample temperature was lowered to room temperature to allow the sample to absorb hydrogen. The above-mentioned temperature rising of the sample, vacuum evacuation, temperature lowering of the sample, and hydrogen gas pressurization were repeated 5 times to complete the activation treatment.

【0018】続いて、試料を室温(20℃)、水素圧力8
atmの加圧下で水素吸収状態(図6のP点)とし、これ
を水素吸収量の原点とした。この原点は、水素吸蔵合金
が実際にNi−H2電池に応用された場合の充電状態(室
温及び圧力8atm)に相当する。そして、原点の状態
から試料を2℃/minの速度で昇温し、この過程にお
ける試料温度及び水素圧力の変化を測定した。温度上昇
に伴って、試料合金からは、その時の温度に応じて水素
が放出され、系内の圧力が上昇することになる。測定の
結果、図5に示す水素圧力(P)−試料温度(Ts)曲線が
得られた。
Subsequently, the sample was placed at room temperature (20 ° C.) and hydrogen pressure of 8
A hydrogen absorption state (point P in FIG. 6) was set under the pressure of atm, and this was set as the origin of the hydrogen absorption amount. This origin corresponds to the state of charge (room temperature and pressure 8 atm) when the hydrogen storage alloy is actually applied to a Ni-H 2 battery. Then, the sample was heated from the state of the origin at a rate of 2 ° C./min, and changes in the sample temperature and the hydrogen pressure in this process were measured. As the temperature rises, hydrogen is released from the sample alloy depending on the temperature at that time, and the pressure in the system rises. As a result of the measurement, a hydrogen pressure (P) -sample temperature (Ts) curve shown in FIG. 5 was obtained.

【0019】ここで、水素圧力Pの時の水素放出量C
は、例えば理想気体についての状態方程式に基づき、下
記数2によって算出することが出来る。
Here, the hydrogen release amount C at the hydrogen pressure P
Can be calculated by the following equation 2 based on the equation of state for an ideal gas, for example.

【0020】[0020]

【数2】C=(V/RT)・(201.6/w)・(P−Pi) 但し、Cは合金に対する重量%に換算した水素放出量(w
t%)、Vは試料容器及び配管からなる系内の容積、Rは
気体定数、Tは試料容器及び配管からなる系内系内の水
素ガス温度、wは試料の重量、Piは前記原点における
圧力、Pは試料温度がTsのときの水素圧力である。
[Equation 2] C = (V / RT) * (201.6 / w) * (P-Pi) where C is the amount of released hydrogen (w
t%), V is the volume in the system consisting of the sample container and piping, R is the gas constant, T is the hydrogen gas temperature in the system inside the system consisting of the sample container and piping, w is the weight of the sample, and Pi is at the origin. The pressure and P are hydrogen pressures when the sample temperature is Ts.

【0021】ここで、測定終了点とすべき試料温度の設
定について考察する。Ni−H2電池用の水素吸蔵合金
においては、一般に、前記原点に相当する充電状態(2
0℃、8atm)から水素を放出して、20℃、0.01
atmに相当放電状態に至る。従って、本発明の測定に
おける昇温は、この放電状態に至るまでの水素放出過程
と同等の水素放出量が得られる温度まで行なえばよいこ
とになる。
Here, the setting of the sample temperature to be the measurement end point will be considered. Ni-H in the hydrogen-absorbing alloy for 2 battery, generally, the charge state corresponding to the origin (2
Hydrogen is released from 0 ° C, 8 atm), and 20 ° C, 0.01
A discharge state corresponding to atm is reached. Therefore, the temperature rise in the measurement of the present invention may be carried out to a temperature at which a hydrogen release amount equivalent to the hydrogen release process up to this discharge state is obtained.

【0022】例えば図3に示すP−C−T曲線におい
て、充電状態、即ち室温Ta(=20℃)、水素圧力Pa
(=8atm)の状態(図中のa点)から、一定温度で放電
が行なわれて、放電状態、即ち室温Ta(=20℃)、水
素圧力Pf(=0.01atm)の状態(図中のf点)まで
変化したとする。この場合、本発明の測定における昇温
は、f点における水素吸収量と等しい水素吸収量となる
状態(d点)まで行なえばよいことになる。本実施例の水
素吸蔵合金の場合、測定終了点の20℃、0.01at
mでの水素吸収量は0.13wt%である。尚、図3中の
点a、b、c、d及びeは、原点から測定終了点に至る
昇温過程(Ta→Tb→Tc→Td→Te)を示すもので
ある。
For example, in the P-C-T curve shown in FIG. 3, the charged state, that is, room temperature Ta (= 20 ° C.), hydrogen pressure Pa
From the state of (= 8 atm) (point a in the figure), discharging is performed at a constant temperature, that is, the state of discharge at room temperature Ta (= 20 ° C.) and hydrogen pressure Pf (= 0.01 atm) (in the figure). It has been changed to point f). In this case, the temperature rise in the measurement of the present invention may be performed up to a state (point d) where the hydrogen absorption amount is equal to the hydrogen absorption amount at point f. In the case of the hydrogen storage alloy of this example, the measurement end point was 20 ° C. and 0.01 at
The amount of hydrogen absorbed at m is 0.13 wt%. It should be noted that points a, b, c, d and e in FIG. 3 indicate the temperature rising process (Ta → Tb → Tc → Td → Te) from the origin to the measurement end point.

【0023】ところで、水素吸蔵合金においては、水素
吸収量が同一であれば、水素圧力Pと試料温度Tsの間
に、下記数3で表わされるVan't Hoffの関係式が成立す
ることが知られている。
In the hydrogen storage alloy, if the hydrogen absorption amount is the same, it is known that the relational expression of Van't Hoff expressed by the following equation 3 is established between the hydrogen pressure P and the sample temperature Ts. Has been.

【0024】[0024]

【数3】lnP=A/Ts+B 但し、A及びBは水素吸収量によって決まる定数であ
る。
LnP = A / Ts + B where A and B are constants determined by the amount of absorbed hydrogen.

【0025】即ち、図3において水素吸収量が同一の点
f、g、h、dでは、図4に示す如くlnPと1/Ts
の間に直線関係が成立する。本実施例の水素吸蔵合金に
おいては、f点でのVan't Hoffの関係式は下記数4で表
わされる。
That is, at points f, g, h and d where the hydrogen absorption amount is the same in FIG. 3, lnP and 1 / Ts as shown in FIG.
A linear relationship is established between. In the hydrogen storage alloy of this example, the relational expression of Van't Hoff at the point f is expressed by the following equation 4.

【0026】[0026]

【数4】lnP=5220/Ts+11.4 従って、本発明の測定における昇温過程にて、上記数4
を満たす圧力及び温度(図3中のd点)での水素吸収量
が、Ni−H2電池用の水素吸蔵合金としての容量に相
当し、この時点で昇温を終了することが出来るのであ
る。本実施例の水素吸蔵合金では、例えば系内の容量を
320ccとした場合、測定終了点での水素吸収量は
1.15wt%となる。このとき、試料温度は300℃、
水素圧力は10atmとなる(図5のd点、図6のQ
点)。
LnP = 5220 / Ts + 11.4 Therefore, in the temperature rising process in the measurement of the present invention,
The hydrogen absorption amount at the pressure and temperature (point d in FIG. 3) satisfying the above conditions corresponds to the capacity as the hydrogen storage alloy for the Ni-H 2 battery, and the temperature rise can be terminated at this point. . In the hydrogen storage alloy of this example, for example, when the capacity of the system is 320 cc, the hydrogen absorption amount at the measurement end point is 1.15 wt%. At this time, the sample temperature is 300 ° C,
Hydrogen pressure is 10 atm (point d in FIG. 5, Q in FIG. 6)
point).

【0027】この結果、本合金をNi−H2電池の負極
として用いた場合、1.15wt%の水素量に対応する充
放電が可能であることが評価出来る。尚、実際の測定に
おいては、圧力及び温度の測定が一定のサンプリング周
期で行なわれることから、図3のd点よりも温度が僅か
に上昇したe点にて、測定が終了される。
As a result, it can be evaluated that when the present alloy is used as a negative electrode of a Ni-H 2 battery, charging / discharging corresponding to a hydrogen amount of 1.15 wt% is possible. In the actual measurement, the pressure and the temperature are measured at a constant sampling cycle, so the measurement is finished at the point e where the temperature is slightly higher than the point d in FIG.

【0028】図2は、上述の測定方法を実施する場合の
手順を表わしている。先ずステップS1にて水素吸収量
の原点を設定した後、ステップS2にて昇温を開始す
る。そして、ステップS3にて試料温度Ts、水素ガス
温度T、圧力Pの計測を一定のサンプリング周期で行な
い、ステップS4にて、1回の計測が終了する毎に、計
測された圧力Pが上記数3の右辺で計算される圧力(=
A/Ts+B)よりも小さいか否かを判断し、NOの場
合はステップS3に戻って次の計測を行なう。YESの
場合は、ステップS5にて水素吸収量(容量)の計算を行
なって測定を終了する。
FIG. 2 shows a procedure for carrying out the above-mentioned measuring method. First, in step S1, the origin of the hydrogen absorption amount is set, and then in step S2, the temperature rise is started. Then, in step S3, the sample temperature Ts, the hydrogen gas temperature T, and the pressure P are measured at a constant sampling cycle, and in step S4, the measured pressure P is the above number each time one measurement is completed. Pressure calculated on the right side of 3 (=
A / Ts + B), and if NO, the process returns to step S3 to perform the next measurement. If YES, the hydrogen absorption amount (capacity) is calculated in step S5, and the measurement is completed.

【0029】上述の如く本発明の測定方法によれば、バ
ルブの開閉は水素の導入時だけで済むため、測定の自動
化が容易である。
As described above, according to the measuring method of the present invention, the valve can be opened and closed only when hydrogen is introduced, so that the measurement can be easily automated.

【0030】上述の初期活性化から水素吸収量の計算に
至る測定を5回繰り返して再現性を調べたところ、図5
に示すP−Ts曲線及び水素吸収量(容量)について、極
めて高い再現性が確認された。
When the measurement from the initial activation to the calculation of the amount of absorbed hydrogen was repeated 5 times to examine the reproducibility, the results shown in FIG.
Very high reproducibility was confirmed for the P-Ts curve and the hydrogen absorption amount (capacity) shown in.

【0031】次に、上記のMmNi3.2Co1.0Al0.2
Mn0.6合金(A1)、該合金と僅かに組成の異なるMm
Ni3.1Co1.0Al0.2Mn0.7合金(A2)、及び公知の
LaNi5合金(A3)の3種類の試料について、上述の
特性評価を行なって、合金組成の違いによるP−Ts曲
線の違いを調べた。その結果を図7に示す。図示の如
く、組成が大きく異なる合金A1とA3については、P
−Ts曲線に大きな違いが認められる。然も、僅かな組
成差が存在するに過ぎない合金A1とA2の間において
も、P−Ts曲線に明確な違いが現われている。以上の
様に、本発明の水素吸蔵合金の特性評価方法によれば、
合金組成の僅かな相違による特性の相違も、精度良く評
価することが出来る。
Next, the above MmNi 3.2 Co 1.0 Al 0.2
Mn 0.6 alloy (A1), Mm slightly different in composition from the alloy
The above-mentioned characteristic evaluation was performed for three types of samples, that is, the Ni 3.1 Co 1.0 Al 0.2 Mn 0.7 alloy (A2) and the known LaNi 5 alloy (A3), and the difference in P-Ts curve due to the difference in alloy composition was investigated. It was The result is shown in FIG. 7. As shown in the figure, for alloys A1 and A3 having greatly different compositions, P
A large difference is observed in the -Ts curve. However, a clear difference appears in the P-Ts curve even between the alloys A1 and A2 in which only a slight difference in composition exists. As described above, according to the method for evaluating characteristics of the hydrogen storage alloy of the present invention,
Differences in characteristics due to slight differences in alloy composition can also be evaluated accurately.

【0032】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The above description of the embodiments is for explaining the present invention and should not be construed as limiting the invention described in the claims or reducing the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水素吸蔵合金の特性評価方法を実
施するための装置構成を示す図である。
FIG. 1 is a diagram showing an apparatus configuration for carrying out a method for evaluating characteristics of a hydrogen storage alloy according to the present invention.

【図2】特性評価手順を示すフローチャートである。FIG. 2 is a flowchart showing a characteristic evaluation procedure.

【図3】P−C−T曲線を示すグラフである。FIG. 3 is a graph showing a P-C-T curve.

【図4】水素吸収量が同一の場合の水素圧力と試料温度
の関係を表わすグラフである。
FIG. 4 is a graph showing the relationship between hydrogen pressure and sample temperature when the amount of absorbed hydrogen is the same.

【図5】本発明の測定において、昇温過程の水素圧力と
試料温度の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between hydrogen pressure and sample temperature during the temperature rising process in the measurement of the present invention.

【図6】Ni−H2電池に用いる水素吸蔵合金の充電状
態と放電状態を示すグラフである。
FIG. 6 is a graph showing a charged state and a discharged state of a hydrogen storage alloy used in a Ni-H 2 battery.

【図7】組成の異なる合金についての測定結果を表わす
グラフである。
FIG. 7 is a graph showing measurement results of alloys having different compositions.

【図8】従来のジーベルツ装置の構成を示す図である。FIG. 8 is a diagram showing a configuration of a conventional Sibelts device.

【図9】従来のP−C−T曲線測定の結果を示すグラフ
である。
FIG. 9 is a graph showing the results of conventional P-C-T curve measurement.

【符号の説明】[Explanation of symbols]

(1) ガスホルダー (2) 試料 (3) 試料容器 (4) バルブ (5) バルブ (6) 圧力センサー (7) 恒温槽 (8) 加熱ヒータ (9) 温度センサー (1) Gas holder (2) Sample (3) Sample container (4) Valve (5) Valve (6) Pressure sensor (7) Temperature chamber (8) Heater (9) Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 浩志 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Watanabe 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Ikuro Yonezu 2-chome Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金の試料が収容された一定容
積の系内にて、試料温度を変化させつつ系内の圧力を測
定し、この過程における圧力−温度曲線に基づいて、試
料の特性を評価する水素吸蔵合金の特性評価方法。
1. The characteristics of the sample are measured by measuring the pressure in the system while changing the temperature of the sample in a system of a constant volume in which the sample of the hydrogen storage alloy is housed. A method for evaluating the characteristics of a hydrogen storage alloy for evaluating.
【請求項2】 試料温度を変化させる際の温度範囲は、
試料となる水素吸蔵合金が温度一定で水素を放出する場
合の圧力と水素吸収量の関係において、該水素吸蔵合金
の用途に応じた水素放出量が得られることとなる範囲に
設定される請求項1に記載の水素吸蔵合金の特性評価方
法。
2. The temperature range for changing the sample temperature is
In the relationship between the pressure and the hydrogen absorption amount when the sample hydrogen storage alloy releases hydrogen at a constant temperature, the hydrogen release amount is set to a range such that the hydrogen release amount according to the application of the hydrogen storage alloy is obtained. 1. The method for evaluating characteristics of a hydrogen storage alloy as described in 1.
JP26322293A 1993-10-21 1993-10-21 Method for evaluating properties of hydrogen storage alloy Expired - Fee Related JP3238995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26322293A JP3238995B2 (en) 1993-10-21 1993-10-21 Method for evaluating properties of hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26322293A JP3238995B2 (en) 1993-10-21 1993-10-21 Method for evaluating properties of hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH07120420A true JPH07120420A (en) 1995-05-12
JP3238995B2 JP3238995B2 (en) 2001-12-17

Family

ID=17386482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26322293A Expired - Fee Related JP3238995B2 (en) 1993-10-21 1993-10-21 Method for evaluating properties of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3238995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319451B1 (en) * 2010-12-01 2013-10-17 (주)오선텍 Method of determining the relations of hydrogen-absorbing alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319451B1 (en) * 2010-12-01 2013-10-17 (주)오선텍 Method of determining the relations of hydrogen-absorbing alloys

Also Published As

Publication number Publication date
JP3238995B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
Goodell et al. Hydriding and dehydriding rates of the LaNi5-H system
Sharma et al. Effect of measurement parameters on thermodynamic properties of La-based metal hydrides
Falahati et al. Evaluation of hydrogen sorption models for AB5-type metal alloys by employing a gravimetric technique
US6584825B2 (en) Method and apparatus for determining the amount of hydrogen in a vessel
US20090041629A1 (en) Method and apparatus for measuring gas sorption and desorption properties of materials
US4389239A (en) Method and pressure container for producing hydrogen-storage metal granulates
EP0689044B1 (en) Apparatus for and method of measuring gas absorbing characteristics
CN105606767A (en) High vacuum-high pressure combined hydrogen storage property testing device for low hydrogen absorption equilibrium pressure material
Dantzer Static, dynamic and cycling studies on hydrogen in the intermetallics LaNi5 and LaNi4. 77Al0. 22
Reilly et al. The kinetics of the absorption of hydrogen by LaNi5Hx-n-undecane suspensions
CN114034604A (en) Hydrogen-involved material comprehensive reaction system and test method thereof
Song et al. A kinetic study on the reaction of hydrogen with Mg2Ni
CN104155425B (en) A kind of method of high precision PCT tester and test alloy material storing hydrogen PCT
JPH07120420A (en) Evaluation method for characteristic of hydrogen storage alloy
JP2002313437A (en) Method and device for measuring gas quantity in sealed battery
Sherman et al. Hydrogen permeation and diffusion in niobium
CN108931280A (en) A kind of detection device and its detection method of lithium ion battery volume
Heics et al. Tritium aging of zirconium cobalt
Post et al. Metal hydride studies at the National Research Council of Canada
Kumar et al. Influence of aluminium content on the dynamic characterstics of mischmetal based hydrogen storage alloys
Purushothaman et al. Analysis of pressure variations in a low-pressure nickel–hydrogen battery. Part 2: Cells with metal hydride storage
US6129789A (en) Surface treatment method of hydrogen absorbing alloy
Jung et al. The reaction kinetics of hydrogen storage in Mg2Ni
CN112485285A (en) Thermal analysis device for helium existing state in tritium storage material
US10053362B2 (en) Gas-loading and packaging method and apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees