JP2002313437A - Method and device for measuring gas quantity in sealed battery - Google Patents

Method and device for measuring gas quantity in sealed battery

Info

Publication number
JP2002313437A
JP2002313437A JP2001110994A JP2001110994A JP2002313437A JP 2002313437 A JP2002313437 A JP 2002313437A JP 2001110994 A JP2001110994 A JP 2001110994A JP 2001110994 A JP2001110994 A JP 2001110994A JP 2002313437 A JP2002313437 A JP 2002313437A
Authority
JP
Japan
Prior art keywords
pressure
gas
sealed battery
vacuum
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001110994A
Other languages
Japanese (ja)
Inventor
Yuji Wakimoto
祐二 脇本
Masataka Yamashita
正隆 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001110994A priority Critical patent/JP2002313437A/en
Publication of JP2002313437A publication Critical patent/JP2002313437A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To measure components of gas generated in a sealed battery at high precision even when the sealed battery is of a small type. SOLUTION: The sealed battery 7 is contained in a vacuum container 1, the vacuum container 1 is set vacuum, and a pressure P1 in the vacuum container is measured. In this state, a through hole is bored in a case of the sealed battery 7, and a pressure P2 in the vacuum container 1 is measured again. Using a following expression (1), quantity (a mole number) n of gas contained in the sealed battery is determined. n=(P2.V2-P1.V1)/RT...(1) In the expression, R is a gas constant, and T is an absolute temperature in the vacuum container. V1 is volume of space in the vacuum container 1 containing the sealed battery 7 before boring the through hole. V2 is volume of space in the vacuum container l after boring the through hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉電池内の気体
量測定方法とこの方法が実施可能な装置、および密閉電
池内の気体定量システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of gas in a sealed battery, a device capable of performing the method, and a system for determining gas in a sealed battery.

【0002】[0002]

【従来の技術】密閉電池(外装体内に電池構造が収納さ
れていて密封されている電池)の充放電時や保存時に内
部でガスが発生すると、このガスは、電池の膨れや漏
液、あるいは電池の容量やサイクル性能などの劣化が生
じる原因となる。そのため、密閉電池の安全性および電
気的性能を確保する目的で、従来より、電極、セパレー
タ、電解液などの材料の改良や構造の改良が行われてい
る。これに伴い、多数の異なるサンプルを作製して、充
放電や保存によって密閉電池内に生じる気体の量や成分
を、高精度で測定することが求められている。
2. Description of the Related Art When a gas is generated inside a sealed battery (a battery in which a battery structure is housed and sealed in an outer package) during charging / discharging or storage, the gas may swell or leak, or This may cause deterioration of battery capacity and cycle performance. Therefore, for the purpose of ensuring the safety and electrical performance of the sealed battery, materials such as an electrode, a separator, and an electrolytic solution and a structure have been conventionally improved. Along with this, it is required to produce a large number of different samples and measure the amount and components of gas generated in the sealed battery by charging and discharging and storage with high accuracy.

【0003】従来の方法としては、例えば図4に示すよ
うに、圧力計または分析装置60を直接、密閉電池の外
装体9に接続して、密閉電池内の圧力や密閉電池内に発
生した気体の量や成分を分析することが行われている。
As a conventional method, for example, as shown in FIG. 4, a pressure gauge or an analyzer 60 is directly connected to an outer package 9 of a sealed battery, and the pressure in the sealed battery and the gas generated in the sealed battery are connected. It has been performed to analyze the amount and composition of the components.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、外装体が小さいと分析装置等を直接外装
体に接続することが困難であるため、外装体をある程度
大きくする必要がある。また、大きな外装体内に小さな
電池内部材(電極板とセパレータとの積層体等)が入っ
ていると、電池内の空間が大きくなり、この空間に元々
存在している気体の量が多くなることから、試験によっ
て生じた僅かな気体の量を高精度で測定することが難し
くなる。そのため、電池内部材も外装体の大きさに応じ
てある程度大きいものにする必要がある。
However, in the above-mentioned conventional method, it is difficult to connect an analyzer or the like directly to the outer case if the outer case is small, so that the outer case needs to be enlarged to some extent. In addition, if a small battery internal member (such as a laminate of an electrode plate and a separator) is contained in a large exterior body, the space inside the battery becomes large, and the amount of gas originally existing in this space increases. Therefore, it becomes difficult to measure the small amount of gas generated by the test with high accuracy. For this reason, it is necessary to increase the size of the battery inner member to some extent according to the size of the outer package.

【0005】したがって、上記従来の方法で電池改良の
ための試験を行う際には、異なる構成の大きな電池内部
材と大きな外装体をそれぞれ多数個用意して、多数の異
なるサンプルを作製する必要があるが、この作業には多
大な手間が掛かる。本発明は、このような従来技術の問
題点に着目してなされたものであり、密閉電池内に生じ
る気体の量と成分の測定を、小型の密閉電池を用いて高
精度で簡便に行えるようにすることにより、電池改良の
ための試験にかかる手間を軽減することを課題とする。
Therefore, when conducting a test for improving a battery by the above-mentioned conventional method, it is necessary to prepare a large number of large internal battery members and a large number of large exterior members having different configurations to prepare a large number of different samples. There is, however, a lot of work involved in this task. The present invention has been made in view of such problems of the prior art, and enables the measurement of the amount and components of gas generated in a sealed battery to be performed easily and with high accuracy using a small sealed battery. It is an object of the present invention to reduce the labor required for a test for improving a battery.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、下記の〜を特徴とする密閉電池内の
気体量測定方法を提供する。この方法を本発明の第1の
方法と定義する。 密閉電池を真空容器内に収納し、所定の真空度(例え
ば、圧力0.1kPa)となるまでこの真空容器内を減
圧した後、この真空容器内の圧力P1を測定する。
In order to solve the above-mentioned problems, the present invention provides a method for measuring the amount of gas in a sealed battery characterized by the following. This method is defined as the first method of the present invention. The sealed battery is housed in a vacuum container, and the inside of the vacuum container is depressurized until a predetermined degree of vacuum (for example, a pressure of 0.1 kPa) is reached, and then the pressure P1 in the vacuum container is measured.

【0007】次いで、この状態のまま真空容器内の密
閉電池の外装体に貫通穴を開けた後、再度この真空容器
内の圧力P2を測定する。 これらの圧力測定値P1,P2と、密閉電池を収納し
て貫通穴を開ける前の状態での真空容器内の空間の体積
V1と、密閉電池に貫通穴を開けた後の状態での真空容
器内の空間の体積V2とから、下記の(1)式を使用し
て、密閉電池内に含まれていた気体の量(モル数)nを
算出する。
Next, in this state, a through-hole is formed in the outer casing of the sealed battery in the vacuum vessel, and the pressure P2 in the vacuum vessel is measured again. These pressure measurement values P1 and P2, the volume V1 of the space in the vacuum container before the sealed battery is housed and the through hole is opened, and the vacuum container after the sealed battery is opened and the through hole is opened From the volume V2 of the inner space, the amount (mole number) n of the gas contained in the sealed battery is calculated using the following equation (1).

【0008】 n=(P2・V2−P1・V1)/RT…(1) (式中、Rは気体定数であり、Tは真空容器内の気体の
絶対温度である。) この方法では、の工程で密閉電池の外装体に貫通穴を
開けると、所定の真空度にある真空容器内に密閉電池内
の気体が放出されるため、密閉電池に含まれる気体の量
が少ない場合でも、この気体が真空容器内に拡散するこ
とで真空容器内の圧力は大きく上昇する。の工程で
は、この圧力上昇量に基づいて、密閉電池内に含まれて
いた気体の量を算出する。そのため、この方法によれ
ば、小型の密閉電池であっても、密閉電池内の気体量を
高精度で測定できる。
N = (P2 · V2−P1 · V1) / RT (1) (where R is a gas constant and T is the absolute temperature of the gas in the vacuum vessel.) When a through hole is opened in the outer casing of the sealed battery in the process, the gas in the sealed battery is released into a vacuum container having a predetermined degree of vacuum, so even when the amount of gas contained in the sealed battery is small, this gas Is diffused into the vacuum vessel, so that the pressure in the vacuum vessel rises significantly. In the step (3), the amount of gas contained in the sealed battery is calculated based on the pressure increase amount. Therefore, according to this method, even in a small sealed battery, the gas amount in the sealed battery can be measured with high accuracy.

【0009】この方法では、真空容器の内容積が小さい
ほど、の工程での圧力上昇度合いが大きくなるため、
密閉電池内の気体測定の精度が高くなる。しかしなが
ら、この方法では、の工程で高真空下の圧力P1を測
定するために、高真空下の圧力を測定可能な圧力測定器
を使用するが、の工程での圧力上昇度合いが大き過ぎ
ると、P2の測定時に圧力測定器の測定限界を超えるこ
とが懸念される。
According to this method, the smaller the inner volume of the vacuum vessel, the greater the degree of pressure increase in the step.
The accuracy of gas measurement in a sealed battery is improved. However, in this method, in order to measure the pressure P1 under a high vacuum in the step, a pressure measuring device capable of measuring the pressure under a high vacuum is used, but if the degree of pressure increase in the step is too large, When measuring P2, there is a concern that the measurement limit of the pressure gauge will be exceeded.

【0010】これに対応するため、測定する密閉電池毎
に、含まれる気体量の想定値に合わせて、真空容器の内
容積を変更することが好ましい。そのためには、真空容
器内にスペーサを入れたり、内容積を変動させる機構を
有する真空容器を使用することが好ましい。上記(1)
式は気体の状態方程式から以下のように導かれる。
[0010] To cope with this, it is preferable to change the inner volume of the vacuum container in accordance with the assumed value of the contained gas amount for each sealed battery to be measured. For this purpose, it is preferable to use a vacuum container having a mechanism for inserting a spacer in the vacuum container or changing the internal volume. The above (1)
The equation is derived from the equation of state of the gas as follows.

【0011】密閉電池を収納して貫通穴を開ける前の真
空容器には、減圧しても残存している気体が存在する。
この気体は体積V1内に存在しており、その量n1は、
圧力測定値P1を用いて下記の(4)式で表される。 n1=P1・V1/RT…(4) 密閉電池に貫通穴を開けた後の真空容器内には、前記残
存気体と、密閉電池内に存在していた気体とが存在して
おり、その量(n1+n)は、圧力測定値P2を用いて
下記の(5)式で表される。
Before the sealed battery is housed and a through-hole is formed in the vacuum container, there is a gas remaining even if the pressure is reduced.
This gas is present in the volume V1 and its quantity n1 is
It is expressed by the following equation (4) using the measured pressure value P1. n1 = P1 · V1 / RT (4) The residual gas and the gas existing in the sealed battery are present in the vacuum vessel after the through hole is formed in the sealed battery, and the amount thereof is (N1 + n) is expressed by the following equation (5) using the measured pressure value P2.

【0012】n1+n=P2・V2/RT…(5) ここで、真空容器内の気体の温度Tが一定である場合、
(4)式と(5)式とから(1)式が導かれる。したが
って、測定精度を高くするためには、真空容器内の気体
の温度を一定に保持する必要がある。本発明は、また、
下記の〜を特徴とする密閉電池内の気体量測定方法
を提供する。この方法を本発明の第2の方法と定義す
る。
N1 + n = P2 / V2 / RT (5) Here, when the temperature T of the gas in the vacuum vessel is constant,
Equation (1) is derived from equations (4) and (5). Therefore, in order to increase the measurement accuracy, it is necessary to keep the temperature of the gas in the vacuum vessel constant. The present invention also provides
The present invention provides a method for measuring the amount of gas in a sealed battery, characterized by the following. This method is defined as the second method of the present invention.

【0013】密閉電池を真空容器内に収納し、所定の
真空度となるまでこの真空容器内を減圧した後、この真
空容器内の圧力P3を測定する。次いで、この真空容器
内に圧力Piの不活性ガスを体積Viで導入した後、こ
の真空容器内の圧力P4を測定する。これらの圧力測定
値P3,P4と導入した不活性ガスの圧力Piおよび体
積Viとから、下記の(2)式を使用して、密閉電池を
収納して貫通穴を開ける前の状態での真空容器内の空間
の体積V1を算出する。
[0013] The sealed battery is housed in a vacuum container, the pressure in the vacuum container is reduced until a predetermined degree of vacuum is reached, and the pressure P3 in the vacuum container is measured. Next, an inert gas at a pressure Pi is introduced into the vacuum container at a volume Vi, and then the pressure P4 in the vacuum container is measured. From these pressure measurement values P3 and P4 and the pressure Pi and volume Vi of the introduced inert gas, the vacuum in a state before the sealed battery is housed and a through hole is opened using the following equation (2). The volume V1 of the space in the container is calculated.

【0014】 V1=Pi・Vi/(P4−P3)…(2) 圧力P4の測定後に、この真空容器内を所定の真空度
となるまで減圧した後、この真空容器内の圧力P1を測
定する。次いで、この状態のまま真空容器内の密閉電池
の外装体に貫通穴を開けた後、再度この真空容器内の圧
力P2を測定する。
V1 = Pi · Vi / (P4−P3) (2) After measuring the pressure P4, the pressure inside the vacuum vessel is reduced to a predetermined degree of vacuum, and then the pressure P1 inside the vacuum vessel is measured. . Next, in this state, after a through-hole is formed in the exterior body of the sealed battery in the vacuum container, the pressure P2 in the vacuum container is measured again.

【0015】圧力P2の測定後に、この真空容器内を
所定の真空度となるまで減圧した後、この真空容器内の
圧力P5を測定する。次いで、この真空容器内に圧力P
jの不活性ガスを体積Vjで導入した後、この真空容器
内の圧力P6を測定する。これらの圧力測定値P5,P
6と導入した不活性ガスの圧力Pjおよび体積Vjとか
ら、下記の(3)式を使用して、密閉電池に貫通穴を開
けた後の状態での真空容器内の空間の体積V2を算出す
る。
After measuring the pressure P2, the pressure inside the vacuum vessel is reduced to a predetermined degree of vacuum, and then the pressure P5 inside the vacuum vessel is measured. Next, the pressure P
After introducing the inert gas of j in volume Vj, the pressure P6 in the vacuum vessel is measured. These pressure measurements P5, P
6 and the pressure Pj and the volume Vj of the introduced inert gas, the following formula (3) is used to calculate the volume V2 of the space in the vacuum vessel after the through-hole is opened in the sealed battery. I do.

【0016】 V2=Pj・Vj/(P6−P5)…(3) 圧力測定値P1,P2と、真空容器内の空間の体積測
定値V1,V2とから、下記の(1)式を使用して、密
閉電池内に含まれていた気体の量(モル数)nを算出す
る。 n=(P2・V2−P1・V1)/RT…(1) (式中、Rは気体定数であり、Tは真空容器内の絶対温
度である。) ここで、図3に示すように、密閉電池7を収納する前の
真空容器1内の体積をVa、密閉電池7の体積(外容
積)をVB、貫通穴70を開けた状態での密閉電池7内
の体積をVbとすると、密閉電池を収納して貫通穴を開
ける前と開けた後での真空容器内の空間の体積V1,V
2は、V1=(Va−VB)、V2=(Va−VB+V
b)である。
V2 = Pj · Vj / (P6-P5) (3) From the pressure measurement values P1 and P2 and the volume measurement values V1 and V2 of the space in the vacuum vessel, the following equation (1) is used. Then, the amount (number of moles) n of the gas contained in the sealed battery is calculated. n = (P2 · V2−P1 · V1) / RT (1) (where R is a gas constant, and T is an absolute temperature in the vacuum vessel.) Here, as shown in FIG. Assuming that the volume inside the vacuum container 1 before storing the sealed battery 7 is Va, the volume (outer volume) of the sealed battery 7 is VB, and the volume inside the sealed battery 7 with the through hole 70 opened is Vb, Volumes V1 and V of the space in the vacuum vessel before and after the battery is stored and the through hole is opened
2, V1 = (Va−VB), V2 = (Va−VB + V)
b).

【0017】前記体積値V1,V2として、予め用意し
ておいた値(平均値や代表値等)を用いて前記(1)式
から密閉電池内の気体量を算出した場合には、測定され
る密閉電池毎の外容積VBのバラツキが無視される。こ
れに対して、本発明の第2の方法によれば、前記体積V
1,V2を、密閉電池内の気体量を測定する度毎に測定
し、その測定値を用いて密閉電池内の気体量を算出する
ため、より高精度で気体量の測定が行われる。
When the amount of gas in the sealed battery is calculated from the above equation (1) using previously prepared values (average value, representative value, etc.) as the volume values V1 and V2, the measured values are measured. The variation in the external volume VB of each sealed battery is ignored. On the other hand, according to the second method of the present invention, the volume V
1, V2 is measured each time the gas amount in the sealed battery is measured, and the gas amount in the sealed battery is calculated using the measured value, so that the gas amount is measured with higher accuracy.

【0018】本発明の第1の方法および第2の方法にお
いて、密閉電池の外装体に貫通穴を開ける方法は機械的
な穿孔方法であることが好ましい。この方法によれば、
密閉電池の外装体に貫通穴を開ける際にガスが発生する
ことがなく、温度変化も生じない。密閉電池の外装体に
貫通穴を開ける方法としては、釘状物による穿孔や刃状
物による切断等の機械的な穿孔方法以外に、化学反応を
用いて外装体を溶解させる方法等の化学的方法、レーザ
ーで溶断する方法等の物理的方法もある。これらの方法
では、穴を開けることに伴ってガスが発生し、このガス
が密閉容器内に存在するようになるため好ましくない。
In the first and second methods of the present invention, it is preferable that the method for forming a through hole in the outer package of the sealed battery is a mechanical drilling method. According to this method,
No gas is generated when a through-hole is formed in the exterior body of the sealed battery, and no temperature change occurs. As a method of forming a through hole in the exterior body of a sealed battery, in addition to a mechanical perforation method such as drilling with a nail-like object or cutting with an edge-like object, a chemical method such as a method of dissolving the exterior body using a chemical reaction. There are also physical methods such as a method and a method of fusing with a laser. These methods are not preferable because gas is generated as the holes are made, and the gas is present in the closed container.

【0019】また、密閉電池の外装体に機械的な穿孔方
法で貫通穴を開ける際には、外装体が電池内部の電極等
の部材と接触したり部材を圧迫したりして電気的な短絡
が生じることを避ける必要がある。電気的な短絡が生じ
ると、発熱が生じて真空容器内の温度が上昇したり、電
気化学的反応で新たな気体が発生することに起因して、
本発明の方法による密閉電池内の気体量測定の精度が低
下する。
Further, when a through hole is formed in the exterior body of the sealed battery by a mechanical drilling method, the exterior body may come into contact with a member such as an electrode inside the battery or press the member to cause an electrical short circuit. Must be avoided. When an electric short circuit occurs, heat is generated and the temperature inside the vacuum vessel rises, or due to the generation of new gas by electrochemical reaction,
The accuracy of gas measurement in a sealed battery by the method of the present invention is reduced.

【0020】本発明はまた、密閉電池を収納する真空容
器と、この真空容器内を所定の真空度となるまで減圧す
る減圧機構と、この真空容器内に収納された密閉電池の
外装体に貫通穴を開ける開口機構と、この真空容器内の
圧力を測定する圧力測定器を備えたことを特徴とする密
閉電池内の気体量測定装置を提供する。この装置によれ
ば、本発明の第1の方法が実施可能となる。
The present invention also provides a vacuum container for accommodating a sealed battery, a decompression mechanism for reducing the pressure in the vacuum container until a predetermined degree of vacuum is reached, and a penetrating through the exterior of the sealed battery contained in the vacuum container. Provided is an apparatus for measuring the amount of gas in a sealed battery, comprising: an opening mechanism for making a hole; and a pressure measuring device for measuring the pressure in the vacuum vessel. According to this device, the first method of the present invention can be performed.

【0021】本発明の気体量測定装置の実施態様として
は、所定圧力の不活性ガスを所定体積で、密閉電池が収
納された真空容器内に導入するガス導入機構を備えた気
体量測定装置が挙げられる。この装置によれば、本発明
の第2の方法が実施可能となる。このガス導入機構とし
ては、マスフローメータおよびマスフローコントローラ
を備えていることが好ましい。
As an embodiment of the gas amount measuring device of the present invention, there is provided a gas amount measuring device provided with a gas introduction mechanism for introducing an inert gas of a predetermined pressure in a predetermined volume into a vacuum vessel containing a sealed battery. No. According to this device, the second method of the present invention can be performed. The gas introduction mechanism preferably includes a mass flow meter and a mass flow controller.

【0022】本発明の気体量測定装置において、開口機
構は密閉電池の外装体を機械的に穿孔する機構であるこ
とが好ましい。この穿孔機構には、電気的な短絡が生じ
ないようにするために、穿孔端が電極等に接触しないた
めのストッパー機構を設けることが好ましい。本発明の
方法により高精度で密閉電池内の気体量を測定するため
には、真空度の高い領域で精度良く圧力を測定する必要
がある。また、圧力測定時に真空容器内の温度変化が生
じないようにする必要がある。圧力検出機構が熱伝導特
性を利用するものである圧力測定器を使用すると、真空
容器内の温度変化が生じるため好ましくない。また、圧
力測定によって真空容器内の気体の組成が変化すること
を防止する必要がある。
In the gas amount measuring device of the present invention, it is preferable that the opening mechanism is a mechanism for mechanically piercing the exterior body of the sealed battery. In order to prevent an electric short circuit from occurring, it is preferable to provide a stopper mechanism for preventing the perforated end from contacting an electrode or the like. In order to measure the gas amount in the sealed battery with high accuracy by the method of the present invention, it is necessary to measure the pressure with high accuracy in a high vacuum area. Further, it is necessary to prevent a temperature change in the vacuum vessel from occurring during the pressure measurement. It is not preferable to use a pressure measuring device in which the pressure detecting mechanism utilizes heat conduction characteristics, because a temperature change in the vacuum vessel occurs. Further, it is necessary to prevent the composition of the gas in the vacuum vessel from changing due to the pressure measurement.

【0023】そのため、本発明の気体量測定装置におい
ては、圧力測定器は機械的な機構で圧力を検出するもの
(圧力検出素子の弾性変形によって、圧力を変位あるい
は力に変換するもの)が好ましい。このような圧力測定
器としては、例えば、ブルドン管式、ベローズ式、ダイ
ヤフラム式の圧力計が挙げられる。このような圧力測定
器によれば、本発明の方法による圧力測定時に真空容器
内の温度を著しく変化させたり、真空容器内の気体の組
成に影響を及ぼすことなく、圧力変化を検出できる。
Therefore, in the gas amount measuring device of the present invention, the pressure measuring device preferably detects pressure by a mechanical mechanism (converts pressure into displacement or force by elastic deformation of the pressure detecting element). . Examples of such a pressure measuring device include a Bourdon tube type, a bellows type, and a diaphragm type pressure gauge. According to such a pressure measuring device, a change in pressure can be detected without significantly changing the temperature in the vacuum vessel or affecting the composition of the gas in the vacuum vessel during the pressure measurement according to the method of the present invention.

【0024】特に、ダイアフラム型の圧力計であって、
ストレインゲージ式、シリコンピエゾ抵抗式、薄膜抵抗
式等の方式によって、ダイヤフラムの弾性変形量を電気
信号に変換するタイプの圧力計を使用することが好まし
い。本発明は、また、本発明の気体量測定装置の真空容
器が、気体の定性分析および定量分析を行う分析装置と
接続されていることを特徴とする密閉電池内の気体定量
システムを提供する。このシステムにおいて、分析装置
は、ガスクロマトグラフ、質量分析装置、またはガスク
ロマトグラフと質量分析装置を組み合わせた装置である
ことが好ましい。また、目的に応じて、複数のガスクロ
マトグラフおよび質量分析装置を接続してもよい。
In particular, it is a diaphragm type pressure gauge,
It is preferable to use a pressure gauge that converts the amount of elastic deformation of the diaphragm into an electric signal by a strain gauge method, a silicon piezo resistance method, a thin film resistance method, or the like. The present invention also provides a gas quantitative system in a sealed battery, wherein the vacuum vessel of the gas amount measuring device of the present invention is connected to an analyzer for performing qualitative analysis and quantitative analysis of gas. In this system, the analyzer is preferably a gas chromatograph, a mass spectrometer, or a combination of a gas chromatograph and a mass spectrometer. Further, a plurality of gas chromatographs and mass spectrometers may be connected according to the purpose.

【0025】このシステムによれば、密閉電池を開口し
た後の真空容器内に存在する全ての気体((a) 製造直後
の密閉電池内に含まれている気体、(b) 減圧工程によっ
ても除去されなかった真空容器内の残存気体、(c) 充放
電試験等を行うことによって電池内部に発生した気体)
の分析を一度に行うことができる。なお、真空容器内へ
の不活性ガス導入によって前記体積V1,V2を測定す
る場合には、(a) 〜(c) の気体として想定されない不活
性ガスを導入することによって、(a) 〜(c) の気体を正
確に定量することができる。
According to this system, all gases present in the vacuum vessel after opening the sealed battery ((a) gases contained in the sealed battery immediately after production, (b) removal by the decompression step Gas remaining in the vacuum vessel that was not applied, (c) gas generated inside the battery by conducting a charge / discharge test, etc.)
Can be analyzed at once. In the case where the volumes V1 and V2 are measured by introducing an inert gas into the vacuum vessel, the inert gases (a) to (c) are introduced by introducing an inert gas which is not assumed as a gas. The gas of c) can be accurately determined.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の一実施形態に相当する密閉
電池内の気体定量システムを示す概略構成図である。こ
のシステムは、真空容器1と、真空排気装置(減圧機
構)2と、機械的穿孔装置(開口機構)3と、ダイヤフ
ラム型の圧力計(圧力測定器)4と、ガス導入装置(ガ
ス導入機構)5と、ガスクロマト−質量分析装置(GC
−MS)6とで構成されている。
Embodiments of the present invention will be described below. FIG. 1 is a schematic configuration diagram showing a gas determination system in a sealed battery corresponding to one embodiment of the present invention. This system includes a vacuum vessel 1, a vacuum evacuation device (decompression mechanism) 2, a mechanical perforation device (opening mechanism) 3, a diaphragm-type pressure gauge (pressure measurement device) 4, and a gas introduction device (gas introduction mechanism). ) 5 and a gas chromatograph-mass spectrometer (GC
-MS) 6.

【0027】機械的穿孔装置3は、真空容器1に収納さ
れたコイン型電池(密閉電池)7の外装体に貫通穴を開
けるものであり、棒状部材31とストッパー32とを備
えている。棒状部材31は、真空容器1の上部外側から
内部に差し込まれており、モリブデン鋼からなる釘状の
先端を有する。棒状部材31を真空容器1内にねじ込む
ことにより、釘状の先端がコイン型電池7の上蓋71に
突き刺されて貫通穴が開く。なお、棒状部材31の先端
は、より鋭利に且つより高硬度に形成されていることが
好ましく、好ましい材料としては、モリブデン鋼以外に
も超硬合金や人工ダイヤモンド等が挙げられる。
The mechanical piercing device 3 is used to make a through-hole in the outer package of a coin-type battery (sealed battery) 7 housed in the vacuum container 1, and has a rod-shaped member 31 and a stopper 32. The rod-shaped member 31 is inserted into the inside of the vacuum vessel 1 from the upper outside, and has a nail-like tip made of molybdenum steel. By screwing the rod-shaped member 31 into the vacuum container 1, the nail-shaped tip is pierced into the upper lid 71 of the coin-type battery 7 to open a through hole. In addition, it is preferable that the tip of the rod-shaped member 31 is formed to be sharper and have higher hardness, and preferable materials include hard metal, artificial diamond, and the like, in addition to molybdenum steel.

【0028】図2に示すように、コイン型電池7は、上
蓋71、容器72、正極73、セパレータ74、負極7
5、電極押さえ板76、電極押さえ用バネ77、および
パッキング78で構成されている。コイン型電池7は、
上蓋71の周縁部(電極押さえ用バネ77との間に空間
がある位置)に棒状部材31が配置されるように、真空
容器1内に配置される。そして、ストッパー32によ
り、棒状部材31の先端は、コイン型電池7の上蓋71
のみを機械的に穿孔して、電極押さえ板76に接触しな
い位置までしか達しないようになっている。
As shown in FIG. 2, the coin-type battery 7 includes an upper lid 71, a container 72, a positive electrode 73, a separator 74, and a negative electrode 7.
5, an electrode pressing plate 76, an electrode pressing spring 77, and a packing 78. The coin-type battery 7
The rod-shaped member 31 is disposed in the vacuum vessel 1 such that the rod-shaped member 31 is disposed at the peripheral portion of the upper lid 71 (a position where there is a space between the upper lid 71 and the electrode pressing spring 77). Then, the tip of the rod-shaped member 31 is moved to the top cover 71 of the coin-type battery 7 by the stopper 32.
Only the holes are mechanically pierced so as to reach only the position not in contact with the electrode pressing plate 76.

【0029】ガス導入装置5は、所定圧力の窒素ガス
(不活性ガス)を所定体積で真空容器1内に導入するた
めに、フローメータ51とマスフローコントローラ52
とを備えている。また、真空容器1とガス導入装置5と
は配管81で接続されている。真空容器1と真空排気装
置2とは配管82で接続されている。真空容器1と分析
装置6とは配管83で接続されている。各配管81〜8
3にはバルブ81a〜83aが設けてある。
The gas introducing device 5 includes a flow meter 51 and a mass flow controller 52 for introducing a predetermined volume of nitrogen gas (inert gas) into the vacuum vessel 1 in a predetermined volume.
And The vacuum vessel 1 and the gas introduction device 5 are connected by a pipe 81. The vacuum vessel 1 and the evacuation device 2 are connected by a pipe 82. The vacuum vessel 1 and the analyzer 6 are connected by a pipe 83. Each piping 81-8
3 is provided with valves 81a to 83a.

【0030】このシステムを使用して、以下の方法でコ
イン型電池7の内部の気体量を測定することができる。
先ず、コイン型電池7を真空容器1内に収納して、ガス
導入装置5側のバルブ81aと分析装置6側のバルブ8
2aを閉じる。真空排気装置2側のバルブ83aを開け
て、真空排気装置2により所定の真空度(0.1kPa
程度)となるまで真空容器1内を減圧する。次に、この
バルブ83aも閉じて、圧力計3により真空容器1内の
圧力P3を測定する。
Using this system, the amount of gas inside the coin-type battery 7 can be measured by the following method.
First, the coin-type battery 7 is housed in the vacuum vessel 1, and the valve 81a on the gas introducing device 5 side and the valve 8 on the analyzer 6 side.
Close 2a. The valve 83a on the side of the evacuation apparatus 2 is opened, and the evacuation apparatus 2 operates to a predetermined degree of vacuum (0.1 kPa
(Approximately), the pressure inside the vacuum vessel 1 is reduced. Next, the valve 83a is also closed, and the pressure P3 in the vacuum vessel 1 is measured by the pressure gauge 3.

【0031】次いで、バルブ81aを開けて、窒素供給
源から圧力Piでガス導入装置5に窒素ガスを供給す
る。ガス導入装置5により、窒素ガスは、マスフローコ
ントローラ52で一定流量(例えば、1sccm:1分間に
1cm3 )に調整されて真空容器1内に導入される。こ
の窒素ガスの導入を、真空容器1内の圧力が例えば約1
00kPaとなるまで行い、導入された窒素ガスの体積
Viをマスフローメータ51で測定する。このようにし
て、真空容器1内に圧力Piの窒素ガスを体積Viで導
入する。次に、このバルブ81aを閉じて、真空容器1
内の圧力P4を測定する。
Next, the valve 81a is opened, and nitrogen gas is supplied from the nitrogen supply source to the gas introducing device 5 at the pressure Pi. The nitrogen gas is introduced into the vacuum vessel 1 by the gas introduction device 5 at a constant flow rate (for example, 1 sccm: 1 cm 3 per minute) adjusted by the mass flow controller 52. The introduction of the nitrogen gas is performed when the pressure in the vacuum vessel 1 is, for example, about 1
The operation is performed until the pressure becomes 00 kPa, and the volume Vi of the introduced nitrogen gas is measured by the mass flow meter 51. Thus, the nitrogen gas at the pressure Pi is introduced into the vacuum vessel 1 in a volume Vi. Next, the valve 81a is closed and the vacuum vessel 1 is closed.
The internal pressure P4 is measured.

【0032】これらの圧力測定値P3,P4と導入した
窒素ガスの圧力Piおよび体積Vi(マスフローメータ
51による測定値)とから、下記の(2)式を使用し
て、体積V1(コイン型電池7を収納して貫通穴を開け
る前の状態での、真空容器1内の空間の体積)を算出す
る。この状態を図3(b)に示す。 V1=Pi・Vi/(P4−P3)…(2) 圧力P4の測定後に、前記と同様にして、真空容器1内
を所定の真空度(0.1kPa程度)となるまで減圧し
た後、真空容器1内の圧力P1を測定する。次いで、こ
の状態のまま、真空容器1内のコイン型電池7の上蓋
(外装体)71に棒状部材31の先端を押しつけること
により貫通穴を開ける。次に、再度この真空容器内の圧
力P2を測定する。
From the measured pressure values P3 and P4, the pressure Pi of the introduced nitrogen gas and the volume Vi (measured value by the mass flow meter 51), the volume V1 (coin type battery) is calculated using the following equation (2). 7 is stored, and the volume of the space in the vacuum vessel 1 before opening the through-hole is calculated. This state is shown in FIG. V1 = Pi · Vi / (P4-P3) (2) After measuring the pressure P4, the pressure inside the vacuum vessel 1 is reduced to a predetermined degree of vacuum (about 0.1 kPa) in the same manner as described above, and then the vacuum is applied. The pressure P1 in the container 1 is measured. Next, in this state, a through hole is formed by pressing the tip of the rod-shaped member 31 against the upper cover (outer body) 71 of the coin-type battery 7 in the vacuum container 1. Next, the pressure P2 in the vacuum vessel is measured again.

【0033】圧力P2の測定後に、前記と同様にして、
真空容器1内を所定の真空度(0.1kPa程度)とな
るまで減圧した後、真空容器1内の圧力P5を測定す
る。次いで、前記と同様にして、ガス導入装置5から真
空容器1内に圧力Pjの窒素ガスを体積Vjで導入した
後、真空容器1内の圧力P6を測定する。これらの圧力
測定値P5,P6と導入した窒素ガスの圧力Pjおよび
体積Vj(マスフローメータ51による測定値)とか
ら、下記の(3)式を使用して、体積V2(コイン型電
池7に貫通穴70を開けた後の状態での、真空容器1内
の空間の体積)を算出する。この状態を図3(c)に示
す。
After the measurement of the pressure P2, in the same manner as described above,
After the pressure inside the vacuum vessel 1 is reduced to a predetermined degree of vacuum (about 0.1 kPa), the pressure P5 inside the vacuum vessel 1 is measured. Next, in the same manner as described above, a nitrogen gas having a pressure Pj is introduced into the vacuum vessel 1 at a volume Vj from the gas introducing device 5, and then the pressure P6 in the vacuum vessel 1 is measured. From these pressure measured values P5 and P6, the pressure Pj of the introduced nitrogen gas and the volume Vj (measured by the mass flow meter 51), the volume V2 (penetrating through the coin-type battery 7) is calculated using the following equation (3). The volume of the space in the vacuum vessel 1 after the hole 70 is formed is calculated. This state is shown in FIG.

【0034】 V2=Pj・Vj/(P6−P5)…(3) これらの圧力測定値P1,P2と体積測定値V1,V2
とから、下記の(1)式を使用して、コイン型電池7に
含まれていた気体の量(モル数)nを算出する。 n=(P2・V2−P1・V1)/RT…(1) (式中、Rは気体定数であり、Tは真空容器内の絶対温
度である。) これにより、コイン型電池7の内部の気体量が測定され
る。
V2 = Pj · Vj / (P6-P5) (3) These pressure measurement values P1, P2 and volume measurement values V1, V2
Then, the amount (mole number) n of the gas contained in the coin-type battery 7 is calculated using the following equation (1). n = (P2 · V2−P1 · V1) / RT (1) (where R is a gas constant, and T is an absolute temperature in the vacuum container). The gas volume is measured.

【0035】次に、バルブ83aを開けて、真空容器1
内の気体を分析装置6に導入し、分析装置6を稼働させ
ることにより、コイン型電池7に貫通穴70を開けた後
の真空容器1内に存在する全ての気体の分析が一度に行
われる。なお、制御用のコンピュータに、分析装置6、
マスフローメータ51、マスフローコントローラ52、
バルブ81a〜83a、および圧力計4を接続して、所
定の制御回路で各機器の動作を制御するシステムを構成
すれば、コイン型電池7内の気体の量および組成を自動
的に分析することができる。
Next, the valve 83a is opened and the vacuum vessel 1 is opened.
By introducing the gas inside the analyzer 6 and operating the analyzer 6, all the gases present in the vacuum vessel 1 after the through-hole 70 is opened in the coin-type battery 7 are analyzed at once. . Note that the control computer is provided with the analyzer 6,
Mass flow meter 51, mass flow controller 52,
By connecting the valves 81a to 83a and the pressure gauge 4 to form a system for controlling the operation of each device with a predetermined control circuit, the amount and composition of gas in the coin-type battery 7 can be automatically analyzed. Can be.

【0036】また、この実施形態において、分析装置6
(またはガス導入装置5と分析装置6)を外した構成
が、密閉電池内の気体量測定装置に相当する。この実施
形態においては、密閉電池としてコイン型電池7を使用
しているが、密閉電池の形態としてはコイン型電池以外
に、円筒型電池、角型電池、およびラミネート型電池な
どの電池がある。これらのいずれの電池についても、何
らかの方法(好ましくは機械的な穿孔方法)で外装体に
貫通穴を開けることが可能なものであれば、本発明の方
法で内部の気体量測定を行うことができる。
In this embodiment, the analyzer 6
A configuration in which the gas introduction device 5 and the analysis device 6 are removed corresponds to a gas amount measurement device in a sealed battery. In this embodiment, a coin-type battery 7 is used as a sealed battery. Examples of the form of the sealed battery include batteries such as a cylindrical battery, a square battery, and a laminated battery in addition to the coin-shaped battery. For any of these batteries, if it is possible to make a through hole in the exterior body by any method (preferably a mechanical perforation method), the internal gas amount can be measured by the method of the present invention. it can.

【0037】[0037]

【実施例】上記実施形態のシステムを用い、上述の方法
で、コイン型電池7に貫通穴70を開けた後の真空容器
1内に存在する気体を分析した。先ず、測定対象のコイ
ン型電池7として、下記の構成のリチウムイオン二次電
池を、アルゴンボックス内で作製した。この電池の直径
は20mm、高さは3.2mmである。
EXAMPLES Using the system of the above embodiment, the gas present in the vacuum vessel 1 after the through-hole 70 was opened in the coin-type battery 7 was analyzed by the above-described method. First, as a coin-type battery 7 to be measured, a lithium ion secondary battery having the following configuration was manufactured in an argon box. This battery has a diameter of 20 mm and a height of 3.2 mm.

【0038】負極の活物質はカーボンである。セパレー
タはポリエチレン製の微多孔膜である。正極の活物質は
コバルト酸リチウムである。電解液は、エチルカーボネ
ートとエチルメチルカーボネートを1:2で混合した溶
媒に、6フッ化リン酸リチウムを1モル溶解させたもの
である。この電池を24時間室温で放置した後、0.6
mAの電流で1時間充電を行ってから、真空容器1内に
入れ、上述の手順で真空容器1内の圧力測定やコイン型
電池7の穿孔等の操作を行い、分析装置(GC−MS)
6による分析結果を得た。その間、ガス導入装置5から
導入する窒素ガスの温度と、真空容器1内の温度を22
℃に保持した。
The active material of the negative electrode is carbon. The separator is a polyethylene microporous membrane. The active material of the positive electrode is lithium cobalt oxide. The electrolytic solution is obtained by dissolving 1 mol of lithium hexafluorophosphate in a solvent obtained by mixing ethyl carbonate and ethyl methyl carbonate at a ratio of 1: 2. After leaving the battery at room temperature for 24 hours, 0.6
After charging for 1 hour with a current of mA, the battery is charged into the vacuum vessel 1 and the pressure measurement in the vacuum vessel 1 and operations such as perforation of the coin-type battery 7 are performed by the above-described procedure, and the analyzer (GC-MS)
6 was obtained. Meanwhile, the temperature of the nitrogen gas introduced from the gas introduction device 5 and the temperature in the vacuum
C. was maintained.

【0039】ここで、Pi=101.0kPa、Vi=
5.724cm3 、P3=1.0kPa、P4=101.
0kPaであった。これらの値を用いて(2)式により
V1を算出した結果、V1=5.781cm3 であった。
また、Pj=101.0kPa、Vj=6.070c
m3 、P5=1.0kPa、P6=101.0kPaで
あった。これらの値を用いて(3)式によりV2を算出
した結果、V2=6.13cm3 であった。また、圧力測
定値P1=1.350kPaであり、P2=7.875
kPaであった。これらの算出値V1,V2および圧力
測定値P1,P2から(1)式によりコイン型電池7内
に含まれていた気体の量nを算出したところ、n=1.
650×10-6molであった。
Here, Pi = 101.0 kPa and Vi =
5.724 cm 3 , P3 = 1.0 kPa, P4 = 101.
It was 0 kPa. Using these values, V1 was calculated by the equation (2), and as a result, V1 = 5.781 cm 3 .
Pj = 101.0 kPa, Vj = 6.070c
m 3 , P5 = 1.0 kPa, and P6 = 101.0 kPa. Using these values, V2 was calculated according to equation (3), whereupon V2 = 6.13 cm 3 . In addition, the measured pressure value P1 = 1.350 kPa, and P2 = 7.875.
kPa. From the calculated values V1, V2 and the measured pressure values P1, P2, the amount n of the gas contained in the coin-type battery 7 was calculated by the equation (1).
It was 650 × 10 −6 mol.

【0040】また、分析の結果、アルゴン、一酸化炭
素、二酸化炭素、エチレンが検出された。このうち、ア
ルゴンは電池作製時に電池内に混入したものであり、そ
の量は1.361×10-6molであった。この結果か
ら、この電池は、24時間室温に放置した後に0.6m
Aの電流で1時間充電することによって、一酸化炭素、
二酸化炭素、エチレンが発生し、その合計量は2.89
×10-7molであることが分かった。
As a result of the analysis, argon, carbon monoxide, carbon dioxide, and ethylene were detected. Of these, argon was mixed into the battery at the time of manufacturing the battery, and the amount was 1.361 × 10 −6 mol. From this result, it was found that this battery was 0.6 m
By charging for 1 hour with the current of A, carbon monoxide,
Carbon dioxide and ethylene are generated, and the total amount is 2.89.
× 10 -7 mol was found.

【0041】[0041]

【発明の効果】以上説明したように、本発明の方法によ
れば、小型の密閉電池であっても、密閉電池内の気体量
を高精度で測定できる。したがって、本発明の方法を採
用することにより、電池改良のための試験を行う際のサ
ンプルとして小型の密閉電池を使用することができるた
め、サンプル作製作業に掛かる手間が軽減される。
As described above, according to the method of the present invention, even in a small sealed battery, the gas amount in the sealed battery can be measured with high accuracy. Therefore, by employing the method of the present invention, a small sealed battery can be used as a sample when a test for improving the battery is performed, so that the labor required for the sample preparation operation is reduced.

【0042】特に、本発明の第2の方法によれば、密閉
電池内の気体量を測定する度毎に、密閉電池内の気体量
を算出する式に使用する体積を測定して、その測定値を
用いて密閉電池内の気体量を算出するため、気体量測定
がより高精度で行われる。また、この方法によれば、密
閉電池内の気体量を測定するために使用する真空容器に
ガス導入装置を接続することで、前記体積測定を簡便に
行うことができる。
In particular, according to the second method of the present invention, every time the gas amount in the sealed battery is measured, the volume used in the equation for calculating the gas amount in the sealed battery is measured, and the measurement is performed. Since the gas amount in the sealed battery is calculated using the value, the gas amount measurement is performed with higher accuracy. According to this method, the volume measurement can be easily performed by connecting the gas introduction device to a vacuum container used for measuring the amount of gas in the sealed battery.

【0043】本発明の気体量測定装置によれば、本発明
の方法を容易に実施することができる。本発明の気体定
量システムによれば、密閉電池を開口した後の真空容器
内に存在する全ての気体((a) 製造直後の密閉電池内に
含まれている気体、(b) 減圧工程によっても除去されな
かった真空容器内の残存気体、(c) 充放電試験等を行う
ことによって電池内部に発生した気体)の分析を一度に
行うことができるため、充放電試験等を行うことによっ
て電池内部に発生した気体を正確に同定することができ
る。また、多数の異なるサンプルについて、密閉電池内
に生じる気体の成分を高精度で測定することが容易に行
えるようになる、という効果もある。
According to the gas amount measuring device of the present invention, the method of the present invention can be easily implemented. According to the gas determination system of the present invention, all gases present in the vacuum vessel after opening the sealed battery ((a) gas contained in the sealed battery immediately after production, (b) even in the decompression step The residual gas in the vacuum vessel that has not been removed, (c) the gas generated inside the battery by performing a charge / discharge test, etc.) can be analyzed at one time. The gas generated at the time can be accurately identified. In addition, there is also an effect that a gas component generated in the sealed battery can be easily measured with high accuracy for many different samples.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に相当する密閉電池内の気
体定量システムを示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a gas determination system in a sealed battery corresponding to one embodiment of the present invention.

【図2】開口機構による電池外装体の開口位置を説明す
る図である。
FIG. 2 is a diagram illustrating an opening position of a battery exterior body by an opening mechanism.

【図3】真空容器内に密閉電池を入れた状態およびこの
電池を開口した状態での、真空容器内の空間の体積を説
明する図である。
FIG. 3 is a diagram illustrating the volume of a space in a vacuum container when a sealed battery is placed in the vacuum container and when the battery is opened.

【図4】密閉電池内の圧力や密閉電池内に発生した気体
の分析を行うための、従来の方法を説明する図である。
FIG. 4 is a diagram illustrating a conventional method for analyzing the pressure in a sealed battery and the gas generated in the sealed battery.

【符号の説明】[Explanation of symbols]

1 真空容器 2 真空排気装置(減圧機構) 3 機械的穿孔装置(開口機構) 31 棒状部材 32 ストッパー 4 ダイヤフラム型の圧力計(圧力測定器) 5 ガス導入装置(ガス導入機構) 6 ガスクロマト−質量分析装置 60 圧力計または分析装置 7 コイン型電池(密閉電池) 70 貫通穴 71 上蓋(外装体) 72 容器(外装体) 73 正極 74 セパレータ 76 負極 76 電極押さえ板 77 電極押さえ用バネ 78 パッキング 81〜83 配管 81a〜83a バルブ 9 外装体 Va 密閉電池を収納する前の真空容器内の体積 VB 密閉電池の体積(外容積) Vb 貫通穴を開けた状態での密閉電池内の体積 V1 密閉電池を収納して貫通穴を開ける前の真空容器
内の気体の体積 V2 密閉電池に貫通穴を開けた後の真空容器内の気体
の体積 n1 減圧しても真空容器内に残存している気体の量
(モル数) n 密閉電池内の気体量(モル数)
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Vacuum exhaust device (decompression mechanism) 3 Mechanical perforation device (opening mechanism) 31 Bar-shaped member 32 Stopper 4 Diaphragm-type pressure gauge (pressure measuring device) 5 Gas introduction device (gas introduction mechanism) 6 Gas chromatograph-mass Analysis device 60 Pressure gauge or analysis device 7 Coin-type battery (sealed battery) 70 Through hole 71 Top lid (exterior body) 72 Container (exterior body) 73 Positive electrode 74 Separator 76 Negative electrode 76 Electrode pressing plate 77 Electrode pressing spring 78 Packing 81 to 81 83 Piping 81a to 83a Valve 9 Outer body Va Volume in vacuum container before storing sealed battery VB Volume of sealed battery (outer volume) Vb Volume in sealed battery with through hole opened V1 Store sealed battery Of the gas in the vacuum container before opening the through-hole V2 and the volume of the gas in the vacuum container after opening the through-hole in the sealed battery n1 Amount (moles) of gas remaining in the vacuum vessel even after pressure reduction n Amount of gas (moles) in sealed battery

フロントページの続き Fターム(参考) 5H025 AA09 BB18 BB20 CC31 CC39 MM01 5H030 AA00 FF31 Continuation of the front page F term (reference) 5H025 AA09 BB18 BB20 CC31 CC39 MM01 5H030 AA00 FF31

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 密閉電池を真空容器内に収納し、所定の
真空度となるまでこの真空容器内を減圧した後、この真
空容器内の圧力P1を測定し、 次いで、この状態のまま真空容器内の密閉電池の外装体
に貫通穴を開けた後、再度この真空容器内の圧力P2を
測定し、 これらの圧力測定値P1,P2と、密閉電池を収納して
貫通穴を開ける前の状態での真空容器内の空間の体積V
1と、密閉電池に貫通穴を開けた後の状態での真空容器
内の空間の体積V2とから、下記の(1)式を使用し
て、密閉電池内に含まれていた気体の量(モル数)nを
算出することを特徴とする密閉電池内の気体量測定方
法。 n=(P2・V2−P1・V1)/RT…(1) (式中、Rは気体定数であり、Tは真空容器内の絶対温
度である。)
1. A sealed battery is housed in a vacuum container, the pressure in the vacuum container is reduced until a predetermined degree of vacuum is reached, and the pressure P1 in the vacuum container is measured. After making a through hole in the exterior body of the sealed battery inside, the pressure P2 in this vacuum vessel was measured again, and these pressure measurement values P1 and P2 and the state before the sealed battery was stored and the through hole was made Of the space in the vacuum vessel at V
1 and the volume V2 of the space in the vacuum vessel after the through-hole is opened in the sealed battery, the amount of gas contained in the sealed battery (using the following equation (1)) A method for measuring the amount of gas in a sealed battery, wherein the number of moles (n) is calculated. n = (P2 · V2−P1 · V1) / RT (1) (where R is a gas constant and T is an absolute temperature in the vacuum vessel.)
【請求項2】 密閉電池を真空容器内に収納し、所定の
真空度となるまでこの真空容器内を減圧した後、この真
空容器内の圧力P3を測定し、次いで、この真空容器内
に圧力Piの不活性ガスを体積Viで導入した後、この
真空容器内の圧力P4を測定し、これらの圧力測定値P
3,P4と導入した不活性ガスの圧力Piおよび体積V
iとから、下記の(2)式を使用して、密閉電池を収納
して貫通穴を開ける前の状態での真空容器内の空間の体
積V1を算出し、 V1=Pi・Vi/(P4−P3)…(2) 圧力P4の測定後に、この真空容器内を所定の真空度と
なるまで減圧した後、この真空容器内の圧力P1を測定
し、次いで、この状態のまま真空容器内の密閉電池の外
装体に貫通穴を開けた後、再度この真空容器内の圧力P
2を測定し、 圧力P2の測定後に、この真空容器内を所定の真空度と
なるまで減圧した後、この真空容器内の圧力P5を測定
し、次いで、この真空容器内に圧力Pjの不活性ガスを
体積Vjで導入した後、この真空容器内の圧力P6を測
定し、これらの圧力測定値P5,P6と導入した不活性
ガスの圧力Pjおよび体積Vjとから、下記の(3)式
を使用して、密閉電池に貫通穴を開けた後の状態での真
空容器内の空間の体積V2を算出し、 V2=Pj・Vj/(P6−P5)…(3) 圧力測定値P1,P2と、真空容器内の空間の体積測定
値V1,V2とから、下記の(1)式を使用して、密閉
電池内に含まれていた気体の量(モル数)nを算出する
ことを特徴とする密閉電池内の気体量測定方法。 n=(P2・V2−P1・V1)/RT…(1) (式中、Rは気体定数であり、Tは真空容器内の絶対温
度である。)
2. The sealed battery is housed in a vacuum container, and the inside of the vacuum container is decompressed until a predetermined degree of vacuum is reached. Then, the pressure P3 in the vacuum container is measured, and then the pressure inside the vacuum container is measured. After introducing an inert gas of Pi in a volume Vi, the pressure P4 in this vacuum vessel is measured, and these pressure measurement values P
3, P4 and pressure Pi and volume V of the inert gas introduced
From Equation (1), the volume V1 of the space in the vacuum vessel before the sealed battery is housed and the through hole is opened is calculated using the following equation (2), and V1 = Pi · Vi / (P4 -P3) (2) After measuring the pressure P4, the inside of the vacuum vessel is depressurized to a predetermined degree of vacuum, and then the pressure P1 in the vacuum vessel is measured. After making a through hole in the outer casing of the sealed battery, the pressure P
After measuring the pressure P2, the pressure inside the vacuum vessel is reduced to a predetermined degree of vacuum, and then the pressure P5 inside the vacuum vessel is measured. After the gas was introduced at a volume Vj, the pressure P6 in the vacuum vessel was measured. From these pressure measured values P5 and P6 and the pressure Pj and the volume Vj of the introduced inert gas, the following equation (3) was obtained. Calculate the volume V2 of the space in the vacuum vessel after the through-hole is opened in the sealed battery using: V2 = Pj · Vj / (P6-P5) (3) Pressure measurement values P1, P2 And calculating the amount (mole number) n of the gas contained in the sealed battery from the volume measurement values V1 and V2 of the space in the vacuum container using the following equation (1). Method for measuring the amount of gas in a sealed battery. n = (P2 · V2−P1 · V1) / RT (1) (where R is a gas constant and T is an absolute temperature in the vacuum vessel.)
【請求項3】 機械的な穿孔によって密閉電池の外装体
に貫通穴を開けることを特徴とする請求項1または2記
載の密閉電池内の気体量測定方法。
3. The method for measuring the amount of gas in a sealed battery according to claim 1, wherein a through hole is formed in the exterior body of the sealed battery by mechanical perforation.
【請求項4】 密閉電池を収納する真空容器と、この真
空容器内を所定の真空度となるまで減圧する減圧機構
と、この真空容器内に収納された密閉電池の外装体に貫
通穴を開ける開口機構と、この真空容器内の圧力を測定
する圧力測定器を備えたことを特徴とする密閉電池内の
気体量測定装置。
4. A vacuum container for accommodating a sealed battery, a pressure reducing mechanism for reducing the pressure in the vacuum container until a predetermined degree of vacuum is achieved, and a through hole is formed in an outer package of the sealed battery contained in the vacuum container. A gas amount measuring device in a sealed battery, comprising: an opening mechanism; and a pressure measuring device for measuring a pressure in the vacuum vessel.
【請求項5】 所定圧力の不活性ガスを所定体積で、密
閉電池が収納された真空容器内に導入するガス導入機構
を備えたことを特徴とする請求項4記載の密閉電池内の
気体量測定装置。
5. The gas amount in a sealed battery according to claim 4, further comprising a gas introduction mechanism for introducing an inert gas of a predetermined pressure in a predetermined volume into a vacuum container containing the sealed battery. measuring device.
【請求項6】 ガス導入機構としてマスフローメータお
よびマスフローコントローラを備えた請求項5記載の密
閉電池内の気体量測定装置。
6. The gas amount measuring device in a sealed battery according to claim 5, further comprising a mass flow meter and a mass flow controller as a gas introduction mechanism.
【請求項7】 開口機構は密閉電池の外装体を機械的に
穿孔する機構である請求項4記載の密閉電池内の気体量
測定装置。
7. The gas amount measuring device in a sealed battery according to claim 4, wherein the opening mechanism is a mechanism for mechanically piercing an exterior body of the sealed battery.
【請求項8】 圧力測定器は、圧力検出素子の弾性変形
によって圧力を変位あるいは力に変換するものである請
求項4記載の密閉電池内の気体量測定装置。
8. The gas amount measuring device in a sealed battery according to claim 4, wherein the pressure measuring device converts pressure into displacement or force by elastic deformation of the pressure detecting element.
【請求項9】 請求項4乃至8のいずれか1項に記載の
気体量測定装置の真空容器が、気体の定性分析および定
量分析を行う分析装置と接続されていることを特徴とす
る密閉電池内の気体定量システム。
9. A sealed battery, wherein the vacuum container of the gas amount measuring device according to claim 4 is connected to an analyzer for performing qualitative analysis and quantitative analysis of gas. Gas quantification system inside.
【請求項10】 分析装置は、ガスクロマトグラフ、質
量分析装置、またはガスクロマトグラフと質量分析装置
を組み合わせた装置であることを特徴とする請求項9記
載の密閉電池内の気体定量システム。
10. The system according to claim 9, wherein the analyzer is a gas chromatograph, a mass spectrometer, or a combination of a gas chromatograph and a mass spectrometer.
JP2001110994A 2001-04-10 2001-04-10 Method and device for measuring gas quantity in sealed battery Withdrawn JP2002313437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001110994A JP2002313437A (en) 2001-04-10 2001-04-10 Method and device for measuring gas quantity in sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110994A JP2002313437A (en) 2001-04-10 2001-04-10 Method and device for measuring gas quantity in sealed battery

Publications (1)

Publication Number Publication Date
JP2002313437A true JP2002313437A (en) 2002-10-25

Family

ID=18962678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110994A Withdrawn JP2002313437A (en) 2001-04-10 2001-04-10 Method and device for measuring gas quantity in sealed battery

Country Status (1)

Country Link
JP (1) JP2002313437A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256051B1 (en) * 2011-09-26 2013-04-18 한국표준과학연구원 method and Device for measuring inner pressure, vacuum of sealed component included the porous or elastometic materials
KR20160144217A (en) * 2015-06-08 2016-12-16 주식회사 엘지화학 Apparatus for collecting inner gas in secondary electric cell
KR20170041100A (en) 2015-10-06 2017-04-14 주식회사 엘지화학 A device for injection of gas sample for gas-chromatograph and a method thereof
KR20170041103A (en) * 2015-10-06 2017-04-14 주식회사 엘지화학 A device for collecting inner gas in secondary battery and charging/discharging in secondary battery
KR101728495B1 (en) 2014-12-03 2017-04-19 주식회사 엘지화학 Apparatus for analyzing venting gas in secondary electric cell and method of analyzing the venting gas
KR101803527B1 (en) 2014-12-31 2017-12-28 주식회사 엘지화학 Apparatus for collecting inner gas in secondary electric cell
JP2018041740A (en) * 2017-10-31 2018-03-15 住友金属鉱山株式会社 Method for evaluating gas generated in nonaqueous electrolyte secondary battery
CN107941300A (en) * 2017-12-19 2018-04-20 华霆(合肥)动力技术有限公司 Aerogenesis measuring method and frock
WO2019098673A1 (en) * 2017-11-17 2019-05-23 주식회사 엘지화학 Jig for pressing gas analysis monocell, and gas analysis device including same
CN110612634A (en) * 2017-11-17 2019-12-24 株式会社Lg化学 Pressurization jig for monocell for gas analysis and gas analysis device comprising same
US11824171B2 (en) 2018-12-03 2023-11-21 Lg Energy Solution, Ltd. Internal pressure measuring jig for cylindrical battery cell
WO2024050796A1 (en) * 2022-09-09 2024-03-14 宁德时代新能源科技股份有限公司 Gas volume measurement apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256051B1 (en) * 2011-09-26 2013-04-18 한국표준과학연구원 method and Device for measuring inner pressure, vacuum of sealed component included the porous or elastometic materials
KR101728495B1 (en) 2014-12-03 2017-04-19 주식회사 엘지화학 Apparatus for analyzing venting gas in secondary electric cell and method of analyzing the venting gas
KR101803527B1 (en) 2014-12-31 2017-12-28 주식회사 엘지화학 Apparatus for collecting inner gas in secondary electric cell
KR101852238B1 (en) 2015-06-08 2018-06-11 주식회사 엘지화학 Apparatus for collecting inner gas in secondary electric cell
KR20160144217A (en) * 2015-06-08 2016-12-16 주식회사 엘지화학 Apparatus for collecting inner gas in secondary electric cell
KR20170041100A (en) 2015-10-06 2017-04-14 주식회사 엘지화학 A device for injection of gas sample for gas-chromatograph and a method thereof
KR20170041103A (en) * 2015-10-06 2017-04-14 주식회사 엘지화학 A device for collecting inner gas in secondary battery and charging/discharging in secondary battery
KR101989909B1 (en) * 2015-10-06 2019-06-17 주식회사 엘지화학 A device for collecting inner gas in secondary battery and charging/discharging in secondary battery
JP2018041740A (en) * 2017-10-31 2018-03-15 住友金属鉱山株式会社 Method for evaluating gas generated in nonaqueous electrolyte secondary battery
WO2019098673A1 (en) * 2017-11-17 2019-05-23 주식회사 엘지화학 Jig for pressing gas analysis monocell, and gas analysis device including same
CN110612634A (en) * 2017-11-17 2019-12-24 株式会社Lg化学 Pressurization jig for monocell for gas analysis and gas analysis device comprising same
US11567048B2 (en) 2017-11-17 2023-01-31 Lg Energy Solution, Ltd. Jig for pressing gas analysis monocell, and gas analysis device including same
CN107941300A (en) * 2017-12-19 2018-04-20 华霆(合肥)动力技术有限公司 Aerogenesis measuring method and frock
US11824171B2 (en) 2018-12-03 2023-11-21 Lg Energy Solution, Ltd. Internal pressure measuring jig for cylindrical battery cell
WO2024050796A1 (en) * 2022-09-09 2024-03-14 宁德时代新能源科技股份有限公司 Gas volume measurement apparatus

Similar Documents

Publication Publication Date Title
JP2002313437A (en) Method and device for measuring gas quantity in sealed battery
US8273229B2 (en) Hydrogen quantity sensor and hydrogen storage device using the same
EP3300159A1 (en) Electrochemical cell testing device
US6177799B1 (en) Rechargeable battery electrode testing device
CN109186846B (en) Multipurpose battery gas production in-situ detection and analysis device
CN105510174B (en) Apparatus and method for detecting gas inside battery
Misiewicz et al. Online electrochemical mass spectrometry on large-format Li-ion cells
JP2015529827A (en) Method for detecting and quantifying hydrofluoric acid in an electrolyte containing lithium hexafluorophosphate LiPF6 for lithium batteries
CN110687455B (en) Method for evaluating heat release of lithium ion battery
JP2001332312A (en) Gas measurement method and device utilizing this method
CN111580001A (en) Battery volume change in-situ testing device
CA2139855C (en) Apparatus for measuring the pressure inside a rechargeable electrochemical cell
KR102160339B1 (en) Apparatus for real-time collecting inner gas in pouch type secondary electric cell while charging and discharging and method thereof
KR100821861B1 (en) Reference Electrode Member for Measurement of Electrode Potential in 3-Electrode System
CN113945502A (en) Porosity testing tool and testing method thereof
CN210742203U (en) Battery detection system
CN112394096A (en) Novel three-electrode electrochemical testing device
CN212341403U (en) Battery volume change in-situ testing device
KR20220147253A (en) Pressure measuring device and pressure measuring method of pouch-type battery cells
Halpert et al. Procedure for analysis of nickel-cadmium cell materials
CN110174293A (en) A kind of method and apparatus that cylindrical battery inside produces gas analysis
CN113125531B (en) Electrochemical testing device for three-electrode system
CN212433028U (en) Gas production detection device for battery
EP3614140B1 (en) Method for determining the amount of alkali or alkaline-earth metal contained in a material
CN219777459U (en) In-situ Raman device for capacitor and battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701