JPH0712023B2 - Crystal structure - Google Patents

Crystal structure

Info

Publication number
JPH0712023B2
JPH0712023B2 JP26783186A JP26783186A JPH0712023B2 JP H0712023 B2 JPH0712023 B2 JP H0712023B2 JP 26783186 A JP26783186 A JP 26783186A JP 26783186 A JP26783186 A JP 26783186A JP H0712023 B2 JPH0712023 B2 JP H0712023B2
Authority
JP
Japan
Prior art keywords
layer
superlattice
gaas
present
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26783186A
Other languages
Japanese (ja)
Other versions
JPS63122210A (en
Inventor
良成 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26783186A priority Critical patent/JPH0712023B2/en
Publication of JPS63122210A publication Critical patent/JPS63122210A/en
Publication of JPH0712023B2 publication Critical patent/JPH0712023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はIII−V化合物半導体の結晶、特に超格子層
を含んだ結晶層の構造に関する。
TECHNICAL FIELD The present invention relates to a structure of a crystal of a III-V compound semiconductor, particularly a crystal layer including a superlattice layer.

〔従来の技術〕[Conventional technology]

近年、分子線エピタキシャル成長法(MBE法:Molecular
Beam Epitaxy)や有機金属の熱分解による気相成長法
(MOCVD法:Metal Orgnic Chemical Vapour Depositio
n)が、薄膜エピタキシャル層の層厚制御に有効なとこ
ろから盛んに研究がなされている。これらの結晶成長法
の最大の特徴は、厚さ数10Å以下の薄膜エピタキシーを
可能にしたところにあろう。この点から、これらの結晶
成長法は超格子や量子井戸構造等の超薄膜構造のヘテロ
エピタキシーやいわゆる選択ドーピング結晶を製作する
上で最も特徴を発揮するものであり、こうした極薄膜多
層構造結晶が新規なデバイスを可能としつつある。しか
し、こうした極薄膜多層結晶では常に異物質が構成する
界面における相互拡散の問題が深刻である。
In recent years, the molecular beam epitaxial growth method (MBE method: Molecular
Beam Epitaxy) and pyrolysis of organic metals (MOCVD: Metal Orgnic Chemical Vapor Depositio)
n) has been actively studied because it is effective for controlling the thickness of the thin film epitaxial layer. The most important feature of these crystal growth methods is that they enable thin film epitaxy with a thickness of several 10Å or less. From this point, these crystal growth methods are most characteristic in producing hetero epitaxy of ultra-thin film structure such as superlattice and quantum well structure, and so-called selective doping crystal. We are enabling new devices. However, in such ultra-thin film multilayer crystals, the problem of mutual diffusion at the interface formed by different substances is always serious.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

極薄膜多層結晶技術では常に多層構造を形成する異物質
間の界面における相互拡散の問題があり、結晶成長中や
プロセス途中でこうした相互拡散が起こるがために、目
的とする性能を持ったデバイスの製造歩留りを著しく下
げる。そこでこの発明が対象とするような極薄膜多層構
造結晶では、層間界面での相互拡散の問題をぜひ解決す
る必要がある。
The ultra-thin film multi-layer crystal technology always has a problem of interdiffusion at the interface between different substances that form a multi-layered structure, and such interdiffusion occurs during crystal growth or during the process. Significantly reduce manufacturing yield. Therefore, it is necessary to solve the problem of interdiffusion at the interface between the layers in the ultrathin film multilayer structure crystal to which the present invention is directed.

本発明の目的は、GaAsとAlxGa1-xAs(Al組成比x≠0)
層を交互に積み重ねた多層構造のヘテロ界面における相
互拡散の問題を防止するに有効な超格子結晶構造を提供
することにある。
The object of the present invention is to provide GaAs and Al x Ga 1-x As (Al composition ratio x ≠ 0).
It is an object of the present invention to provide a superlattice crystal structure effective for preventing the problem of interdiffusion at a hetero interface of a multilayer structure in which layers are alternately stacked.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の結晶の構造は、GaAs層とAlxGa1-xAs(Al組成比
x≠0)層を交互に積み重ねた多層構造が超格子層を構
成し、しかも前記GaAs層とAlxGa1-xAs層の境界には少な
くとも1分子層以上の厚さを持ったAlyGa1-yN(Al組成
比0<y≦1)層とを有することを特徴としている。
In the crystal structure of the present invention, a multilayer structure in which GaAs layers and Al x Ga 1-x As (Al composition ratio x ≠ 0) layers are alternately stacked constitutes a superlattice layer, and the GaAs layers and Al x Ga are formed. The boundary of the 1-x As layer is characterized by having an Al y Ga 1-y N (Al composition ratio 0 <y ≦ 1) layer having a thickness of at least one molecular layer.

〔実施例〕〔Example〕

以下、この発明を実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

ここではSiをドーピングしたGaAs層とAlxGa1-xAs(x=
0.5)層とからなる超格子構造を、MBE法でエピタキシャ
ル成長する場合の実施例について示す。形成しようとす
る超格子の構造を含んだウェーハの断面図を第1図に示
す。第1図で11はGaAs基板、12はGaAs基板11からの不純
物汚染等を避けるためのバッファー層と呼ぶことにする
AlxGa1-xAs(x=0.3)混晶層、13は高純度GaAs層であ
り、14がGaAs極薄膜層とAlxGa1-xAs(x=0.5)極薄膜
からなる超格子層である。各層の厚みは、バッファー層
であるAlxGa1-xAs層12が0.5μm、高純度GaAs層13は1
μmおよび超格子層14は0.5μmであり、超格子層14を
構成するGaAs極薄膜層の厚みは25Å,AlxGa1-xAs極薄膜
層の厚さは20Åであり、超格子層全体の厚さは0.2μm
である。
Here, a GaAs layer doped with Si and Al x Ga 1-x As (x =
An example in which a superlattice structure composed of 0.5) layers is epitaxially grown by the MBE method will be shown. A cross-sectional view of a wafer including a structure of a superlattice to be formed is shown in FIG. In FIG. 1, 11 is a GaAs substrate, and 12 is a buffer layer for avoiding impurity contamination from the GaAs substrate 11.
Al x Ga 1-x As (x = 0.3) mixed crystal layer, 13 is a high-purity GaAs layer, 14 is a superlattice composed of GaAs ultra-thin film layer and Al x Ga 1-x As (x = 0.5) ultra-thin film It is a layer. The thickness of each layer is 0.5 μm for the Al x Ga 1-x As layer 12, which is a buffer layer, and 1 for the high-purity GaAs layer 13.
μm and the superlattice layer 14 are 0.5 μm, the thickness of the GaAs ultra-thin film layer constituting the superlattice layer 14 is 25 Å, and the thickness of the Al x Ga 1-x As ultra-thin film layer is 20 Å. Has a thickness of 0.2 μm
Is.

超格子層14の層構造のほぼ1周期分の断面構造を第2図
に示す。第2図に示されるように超格子層を構成するGa
As極薄膜層21の中央部24であり、約20Åの厚さを持つ領
域にはSiが3×1018cm-3ドーピングしてあり、これを挟
むように作られた約2.5Åの厚さを持ったアンドープGaA
s層25からなっている。また、この発明の骨子となる構
造はAlxGa1-xAs極薄膜層22とGaAs層25の間に少なくとも
1分子層すなわち約5Åの厚さを持った領域がAlxGa1-x
N層23となっていることである。AlxGa1-xN層23以外は通
常のMBE成長と変わるものではないが、AlxGa1-xN層23は
Asソースを遮断し、NH3を導入した化成MBEで成長する。
The cross-sectional structure of the layer structure of the superlattice layer 14 for one cycle is shown in FIG. Ga that constitutes the superlattice layer as shown in FIG.
As the central part 24 of the ultra-thin film layer 21 and the region having a thickness of about 20Å is doped with Si at 3 × 10 18 cm -3 , and the thickness of about 2.5Å made so as to sandwich it. Undoped GaA with
It consists of s layer 25. In addition, the structure that is the essence of the present invention is that the region of at least one molecular layer, that is, a region having a thickness of about 5Å between the Al x Ga 1-x As ultrathin film layer 22 and the GaAs layer 25 is Al x Ga 1-x.
It is the N layer 23. Other than the Al x Ga 1-x N layer 23, there is no difference from normal MBE growth, but the Al x Ga 1-x N layer 23
Cut off As source and grow with chemical MBE introduced NH 3 .

この第2図で示された超格子層14は従来、AlxGa1-xN層2
3を設けるというようなことはなかったが、ジャパニー
ズ ジャーナル オブ アプライド フィジィックス
パート2,レター(Japanese Journal of Applied Physic
s Part2 Letters),第22巻,L627ページ(1983年)およ
びジャパニーズ ジャーナル オブ アプライド フィ
ジィックス パート2,レター(Japanese Journal of Ap
plied Physics Part2 Letters),第24巻,L17ページ(1
985年)に示されるように、Si,Te,Se等のドナーがドー
ピングされたAlxGa1-xAs(Al組成比x≧0.2)混晶で普
遍的に観測されるDXセンターと呼ばれる深い準位の濃度
は極めて低くなり、よく知られたPPC(Persistent Phot
ocondactivity)と呼ばれる深い準位に相関すると考え
られている光伝導現象も殆ど見られない。こうしたこと
から混晶AlxGa1-xAsではドナー不純物をドーピングして
も高いキャリア濃度を持った結晶層が得られないのに反
し、前記超格子構造ではキャリア濃度を容易に高めるこ
とができる。このため第1図に示した断面構造のウェー
ハでは、高純度GaAs層13中に高密度の二次元電子ガスを
誘起でき、高速動作の二次元電子ガス電界効果トランジ
スタ(通称HEMTと呼称される)が実現される。
The superlattice layer 14 shown in FIG. 2 is conventionally the Al x Ga 1-x N layer 2
There was no such thing as setting up 3, but the Japanese Journal of Applied Physics
Part 2, Letter (Japanese Journal of Applied Physic
s Part2 Letters), Volume 22, L627 (1983) and Japanese Journal of Applied Physics Part 2, Letter (Japanese Journal of Ap
plied Physics Part2 Letters), Volume 24, Page L17 (1
985), a deep center called DX center that is universally observed in Al x Ga 1-x As (Al composition ratio x ≥ 0.2) mixed crystals doped with donors such as Si, Te, and Se. The concentration of levels is extremely low, and the well-known PPC (Persistent Phot)
There is almost no photoconduction phenomenon, which is considered to correlate with deep level called ocondactivity). Therefore, in the mixed crystal Al x Ga 1-x As, a crystal layer having a high carrier concentration cannot be obtained even if a donor impurity is doped, whereas in the superlattice structure, the carrier concentration can be easily increased. . Therefore, in the wafer having the sectional structure shown in FIG. 1, a high-density two-dimensional electron gas can be induced in the high-purity GaAs layer 13, and a high-speed operation two-dimensional electron gas field effect transistor (commonly called HEMT) Is realized.

しかし、AlxGa1-xN層23を設けていない従来の超格子構
造では520℃以上の高温成長ではキャリア濃度の約1/2以
上に相当するDXセンターの発生あるいはPPCの発生が観
測にかかりはじめ、成長温度の上昇に伴い、いずれも増
加し、ドーピング量を増してもキャリア濃度が思ったよ
うに増加しない。現時点ではDXセンター、あるいはPPC
の起源については不明であるが、これら深い準位の発生
はAlxGa1-xAs層22とGaAs層21との界面におけるAlとGaの
相互拡散より生じるものであることが予想される。
However, in the conventional superlattice structure without the Al x Ga 1-x N layer 23, it was observed that at high temperature growth of 520 ° C or higher, DX centers or PPCs corresponding to about 1/2 or more of the carrier concentration were generated. It begins to take, and as the growth temperature rises, both increase, and even if the doping amount is increased, the carrier concentration does not increase as expected. Currently DX Center or PPC
The origin of these is unknown, but it is expected that these deep levels occur due to the interdiffusion of Al and Ga at the interface between the Al x Ga 1-x As layer 22 and the GaAs layer 21.

さらに、AlxGa1-xN層23を設けていない従来の超格子構
造を用いてデバイスを形成する等の場合にもプロセス温
度における制約が厳しかった。すなわち、第3図は520
℃以下の基板温度でMBE成長した従来構造の超格子層を
持ったエピタキシャルウェーハをH2中で30分間、各種温
度で熱処理した場合における超格子層のフォトルミネッ
センス(PL)スペクトルを示したものであるが、650℃
以上の熱処理を受けた場合にはPLピーク波長が変化して
おり、かつPL強度が著しく減少していることがわかる。
800℃での熱処理試料でのPL強度は同様なSiドーピング
を行って作られた多層構造をとらない混晶AlxGa1-xAsと
同等となっており、650℃以上の熱処理ではAlとGaの相
互拡散が進行することは明瞭である〔前記したジャパニ
ーズ ジャーナル オブ アプライド フィジィックス
パート2,レター(Japanese Journal of Applied Phys
ics Part2 Letters),第24巻,L17ページ(1985年)を
参照のこと〕。
Further, the restrictions on the process temperature were severe even in the case of forming a device using the conventional superlattice structure in which the Al x Ga 1-x N layer 23 was not provided. That is, FIG. 3 shows 520.
The photoluminescence (PL) spectrum of the superlattice layer is shown when an epitaxial wafer with a conventional superlattice layer grown by MBE at a substrate temperature of ℃ or less is heat-treated in H 2 for 30 minutes at various temperatures. Yes, but 650 ℃
It can be seen that the PL peak wavelength is changed and the PL intensity is significantly reduced when the above heat treatment is performed.
The PL strength of the heat-treated sample at 800 ° C is equivalent to that of the mixed crystal AlxGa 1- xAs that does not have a multilayer structure made by similar Si doping. It is clear that diffusion is progressing [Japanese Journal of Applied Phys
ics Part2 Letters), Volume 24, page L17 (1985)].

一方、本発明のAlxGa1-xN層23を設けた構造をとった超
格子層では成長する場合の基板温度を700℃で行ってもD
Xセンターの発生はGaAs層24に添加したSiの量の1/10か
ら1/100程度と少なく、また、本発明の超格子構造層を
持ったエピタキシャルウェーハをH2中で30分間,800℃の
熱処理を受けた場合にもPLピーク波長の変化は起こら
ず、かつPL強度が減少することもない。従って、AlxGa
1-xN層23を設けていなぽ超格子構造が650℃程度の熱処
理で超格子構造がくずれるのに、本発明のAlxGa1-xN層2
3を設けた構造をとることにより、800℃の熱処理にも耐
える超格子構造が得られる。
On the other hand, in the superlattice layer having the structure in which the Al x Ga 1-x N layer 23 of the present invention is provided, even if the substrate temperature during growth is 700 ° C.
The generation of X centers was as small as about 1/10 to 1/100 of the amount of Si added to the GaAs layer 24, and the epitaxial wafer having the superlattice structure layer of the present invention was kept in H 2 at 800 ° C. for 30 minutes. The PL peak wavelength does not change and the PL intensity does not decrease even when subjected to the heat treatment of. Therefore, Al x Ga
Although the superlattice structure without the 1-xN layer 23 is destroyed by the heat treatment at about 650 ° C., the Al x Ga 1-xN layer 2 of the present invention
By adopting the structure provided with 3, a superlattice structure that can withstand a heat treatment at 800 ° C can be obtained.

なお、AlxGa1-xN層23の厚さは1ないし2分子層の場合
には前記した高密度の二次元電子ガス濃度をほとんど変
化させるものではないし、相互拡散を防止する意味でも
やはり1分子層以上のAlxGa1-xN層23がはいることで大
きく改善が図れる。また、GaAs基板11は閃亜鉛鉱型の結
晶構造を持つ。一方、AlxGa1-xN層23は、通常はウルツ
型結晶構造をとるが、10分子層まではエピタキシャル成
長が現状で可能である。このようにAlxGa1-xN層23が厚
い場合ほど耐熱処理性は向上する。
The thickness of the Al x Ga 1-x N layer 23 does not substantially change the high-density two-dimensional electron gas concentration described above in the case of one or two molecular layers, and also in the sense of preventing mutual diffusion. A significant improvement can be achieved by including the Al x Ga 1-x N layer 23 of one molecular layer or more. Further, the GaAs substrate 11 has a zinc blende type crystal structure. On the other hand, the Al x Ga 1-x N layer 23 usually has a wurtz-type crystal structure, but epitaxial growth is currently possible up to 10 molecular layers. Thus, the thicker the Al x Ga 1-x N layer 23 is, the higher the heat resistance is.

本発明のAlxGa1-xN層23を挿入することで耐熱処理効果
が増加する機構については明らかではないが、窒化物が
砒化物に較べて熱安定性が高いとする熱力学的予想とあ
いいれるものである。
The mechanism by which the heat treatment effect is increased by inserting the Al x Ga 1-x N layer 23 of the present invention is not clear, but it is thermodynamically predicted that nitride has higher thermal stability than arsenide. It is said that

本実施例ではAl組成比x=0.5の場合について述べた
が、AlxGa1-xAs層22のAl組成比はこの値に限るものでは
なく零でなければよく、本発明を適用することは有効で
ある。
Although the case where the Al composition ratio x = 0.5 has been described in the present embodiment, the Al composition ratio of the Al x Ga 1-x As layer 22 is not limited to this value and may be non-zero, and the present invention is applied. Is valid.

〔発明の効果〕〔The invention's effect〕

この発明の構造を適用することにより、周期100Å以下
で少なくとも1周期のGaAsとAlxGa1-xAs(Al組成比x≠
0)層を交互に積み重ね多層構造を有する結晶層すなわ
ち超格子層を700℃程の高温で再現性良く製作すること
ができるし、また製作プロセスにおいても800℃程の高
温処理が可能となる。すなわち、この発明のAlxGa1-xN
層を設けた構造をとることにより、超格子層を製作する
場合に問題となっていたGaAsとAlxGa1-xAs(Al組成比x
≠0)層の界面における相互拡散にもとづく構造の乱れ
が防止され、またこうした超格子ウェーハからデバイス
を製作する場合のプロセス温度を格段に上昇することが
できる。
By applying the structure of the present invention, GaAs and Al x Ga 1-x As (Al composition ratio x ≠
It is possible to fabricate a crystal layer having a multi-layered structure, that is, a superlattice layer, which has a multi-layered structure of 0) layers alternately, at a high temperature of about 700 ° C. with high reproducibility, and in the manufacturing process, a high temperature treatment of about 800 ° C. That is, Al x Ga 1-x N of the present invention
By adopting a structure in which a layer is provided, GaAs and Al x Ga 1-x As (Al composition ratio x
Distortion of the structure due to interdiffusion at the interface of the ≠ 0) layer is prevented, and the process temperature when manufacturing a device from such a superlattice wafer can be significantly increased.

本発明は100Å以下の周期を持った超格子に効果が顕著
であり、これ以上の周期を持った超格子を作る場合に本
発明のごとき構造を採用する必要が必ずしもない。しか
し、こうした100Å以上の長周期の超格子を作成した
り、たとえ周期は長くとも超格子層を構成する一方の材
料層か数10Åといった100Å以下の場合には本発明が有
効であることはいうまでもない。
The present invention has a remarkable effect on a superlattice having a period of 100 Å or less, and it is not always necessary to adopt the structure of the present invention when forming a superlattice having a period of more than 100 Å. However, it is said that the present invention is effective when a superlattice having a long period of 100 Å or more is created, or even when the period is long and one material layer constituting the superlattice layer or a few 10 Å or less such as 100 Å or less. There is no end.

なお、本発明はGaAsとAlxGa1-xAsからなる超格子層に関
するが、他の材料の組み合わせによる超格子層に対して
も本発明の構造と類似の窒化層超格子界面に挿入するこ
とにより、成長温度を上昇すること、さらにはデバイス
製作途中での熱処理温度を上昇することができる。
Note that the present invention relates to a superlattice layer made of GaAs and Al x Ga 1-x As, but a superlattice layer made of a combination of other materials is also inserted in a nitride layer superlattice interface similar to the structure of the present invention. As a result, it is possible to increase the growth temperature and further increase the heat treatment temperature during device fabrication.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の効果を示した実験に用いた超格子層を
含むウェーハの断面構造を示す模式図、 第2図は第1図中の超格子層のほぼ1周期に相当する断
面構造を示す模式図、 第3図は従来構造の超格子層における熱処理前後でのフ
ォトルミネッセンススペクトルを示すグラフである。 11……GaAs基板 12……バッファーAlxGa1-xAs層 13……高純度GaAs層 14……超格子層 21……超格子層を形成するGaAs極薄膜層 22……超格子層を形成するAlxGa1-xAs(Al組成比x=0.
5)極薄膜層 23……AlxGa1-xN層 24……超格子層を形成するGaAsのうちSiが添加された領
域 25……超格子層を形成するGaAsのうち不純物が無添加の
領域
FIG. 1 is a schematic view showing a sectional structure of a wafer including a superlattice layer used in an experiment showing the effect of the present invention, and FIG. 2 is a sectional structure corresponding to almost one period of the superlattice layer in FIG. And FIG. 3 is a graph showing photoluminescence spectra before and after heat treatment in a superlattice layer having a conventional structure. 11 …… GaAs substrate 12 …… buffer Al x Ga 1-x As layer 13 …… high-purity GaAs layer 14 …… superlattice layer 21 …… ultra-thin GaAs layer forming superlattice layer 22 …… superlattice layer Formed Al x Ga 1-x As (Al composition ratio x = 0.
5) Ultra-thin layer 23 …… Al x Ga 1-x N layer 24 …… Si-added region of GaAs forming superlattice layer 25 …… No impurities are added in GaAs forming superlattice layer Area of

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】GaAs層とAlxGa1-xAs(Al組成比x≠0)層
を交互に積み重ねた多層構造が超格子層を構成し、しか
も前記GaAs層とAlxGa1-xAs層の境界には少なくとも1分
子層以上の厚さを持ったAlyGa1-yN(Al組成比0<y≦
1)層とを有することを特徴とする結晶の構造。
1. A multi-layer structure in which GaAs layers and Al x Ga 1-x As (Al composition ratio x ≠ 0) layers are alternately stacked to form a superlattice layer, and the GaAs layers and Al x Ga 1-x are formed. At the boundary of the As layer, Al y Ga 1-y N (Al composition ratio 0 <y ≦
1) A crystal structure having a layer.
JP26783186A 1986-11-12 1986-11-12 Crystal structure Expired - Lifetime JPH0712023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26783186A JPH0712023B2 (en) 1986-11-12 1986-11-12 Crystal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26783186A JPH0712023B2 (en) 1986-11-12 1986-11-12 Crystal structure

Publications (2)

Publication Number Publication Date
JPS63122210A JPS63122210A (en) 1988-05-26
JPH0712023B2 true JPH0712023B2 (en) 1995-02-08

Family

ID=17450222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26783186A Expired - Lifetime JPH0712023B2 (en) 1986-11-12 1986-11-12 Crystal structure

Country Status (1)

Country Link
JP (1) JPH0712023B2 (en)

Also Published As

Publication number Publication date
JPS63122210A (en) 1988-05-26

Similar Documents

Publication Publication Date Title
Krost et al. GaN-based optoelectronics on silicon substrates
Semond et al. High-electron-mobility AlGaN/GaN heterostructures grown on Si (111) by molecular-beam epitaxy
US6533874B1 (en) GaN-based devices using thick (Ga, Al, In)N base layers
KR100424759B1 (en) A METHOD OF GROWING AN AlN SINGLE CRYSTAL LAYER AND PRODUCING METHOD OF GROUP Ⅲ NITRIDE COMPOUND SEMICONDUCTOR DEVICE INCLUDING THEREOF
US6856005B2 (en) Semiconductor device having a nitride-based hetero-structure and method of manufacturing the same
US7282744B2 (en) III-nitride optoelectronic device structure with high Al AlGaN diffusion barrier
US5051786A (en) Passivated polycrystalline semiconductors quantum well/superlattice structures fabricated thereof
Zhang et al. High-bright InGaN multiple-quantum-well blue light-emitting diodes on Si (111) using AlN/GaN multilayers with a thin AlN/AlGaN buffer layer
JPH1079501A (en) Method for forming quantum dot and quantum dot structure
US6452215B1 (en) Semiconductor light emitting devices
EP2678881A1 (en) Semiconductor device and fabrication method
Umeno et al. Heteroepitaxial technologies on Si for high-efficiency solar cells
US6399473B1 (en) Method of producing a II-VI semiconductor component containing selenium and/or sulrfur
JPH0315334B2 (en)
Foxon et al. Arsenic-doped GaN grown by molecular beam epitaxy
US4835583A (en) Semiconductor device having strained superlattice buffer layers with In-doped GaAs substrate
JP3547320B2 (en) GaN-based compound semiconductor device
JPH0712023B2 (en) Crystal structure
JP3425357B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor layer
KR100281939B1 (en) Semiconductor epitaxial substrate
JPH0458439B2 (en)
Damilano et al. InGaN heterostructures grown by molecular beam epitaxy:: from growth mechanism to optical properties
US5773853A (en) Compound semiconductor device
JP2003077840A5 (en)
Plano et al. Dislocation‐accelerated impurity‐induced layer disordering of Al x Ga1− x As‐GaAs quantum well heterostructures grown on GaAs‐on‐Si