JPH07119382A - Automatic measuring method of shield excavator - Google Patents

Automatic measuring method of shield excavator

Info

Publication number
JPH07119382A
JPH07119382A JP14429793A JP14429793A JPH07119382A JP H07119382 A JPH07119382 A JP H07119382A JP 14429793 A JP14429793 A JP 14429793A JP 14429793 A JP14429793 A JP 14429793A JP H07119382 A JPH07119382 A JP H07119382A
Authority
JP
Japan
Prior art keywords
prisms
automatic tracking
positions
shield machine
tracking type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14429793A
Other languages
Japanese (ja)
Other versions
JP2711329B2 (en
Inventor
Tamotsu Konishi
保 小西
Koji Kikko
耕治 橘▲高▼
Hiromi Tsuboi
宏美 坪井
Masanori Ishii
正典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITSUTAKA KOGAKU KENKYUSHO KK
Nishimatsu Construction Co Ltd
Original Assignee
KITSUTAKA KOGAKU KENKYUSHO KK
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITSUTAKA KOGAKU KENKYUSHO KK, Nishimatsu Construction Co Ltd filed Critical KITSUTAKA KOGAKU KENKYUSHO KK
Priority to JP14429793A priority Critical patent/JP2711329B2/en
Publication of JPH07119382A publication Critical patent/JPH07119382A/en
Application granted granted Critical
Publication of JP2711329B2 publication Critical patent/JP2711329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate re-shoring and to make it possible to measure positions of both reflected prisms with high degree of accuracy even if they have complicated lines such as a curve, etc. CONSTITUTION:Reflected prisms 1a and 1b are fixed to two positions in a tunnel, a pair of automatic tracking light wave distance and angle measuring devices 2a and 2b are mounted to a shield excavator M, positions of both reflected prisms are measured from known poits, a position and an attitude of the shield excavator M are successively calculated by the distance and angle measuring devices with the positions of the reflected prisms of the known points as the reference points and are obtained, and a position in the case the shield excavator is advanced by a specific distance is stored. Under such a state, the reflected prisms fixed to two position are remounted, and positions of the remounted reflected prisms are measured by the distance and angle measuring devices with the stored position of the shield excavator as the reference point. The value is substituted for reference value and is stored as renewal reference value, and in the case excavation is started again, the position and attitude of the shield excavator are successively measured by the distance and angle measuring devices with the renewal reference value as the reference point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシールド掘進機の自動測
量方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic surveying method for a shield machine.

【0002】[0002]

【従来の技術】近時、都市部等の地中にトンネルを構築
するシールド工法において、断面の増大や、地中接合、
又はその線形の複雑化等により、高精度な施工、特に高
精度な線形管理が要求されている。
2. Description of the Related Art Recently, in a shield construction method for constructing a tunnel in the ground such as in an urban area, an increase in cross section, underground connection,
Or, due to the complicatedness of the linearity, highly accurate construction, particularly highly accurate linear management is required.

【0003】そして、このような高精度の線形管理は、
従来の作業者による光学測量では信頼性が少なく、かつ
煩雑となるため、近時はレーザ光線やジャイロコンパス
を利用した自動測量装置が開発され、使用実績も増えて
きている。
And, such high precision linear control is
Since conventional optical surveying by a worker is unreliable and complicated, an automatic surveying instrument using a laser beam or a gyro compass has recently been developed, and its use record is increasing.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記レーザ光
線を利用した自動測量装置は、レーザ光線の直進性のた
めに、曲線を含む線形においては、レーザー発振器の位
置を頻繁に移動(測量装置、又は測量ターゲットを所定
の測量距離ごとに移動することを「盛り替え」と称す
る。)しなくてはならず、煩雑であるばかりか盛り替え
時に誤差を生ずるおそれをも有している。また、レーザ
ー光波到達距離が長くなると、該レーザー光は拡散して
光束が広がり、また、レーザー光は温度・湿度よって光
束が揺れ、測量誤差が大きくなるという課題をも有して
いる。
However, in the automatic surveying instrument using the above laser beam, due to the straightness of the laser beam, the position of the laser oscillator is frequently moved in the linear shape including the curve (the surveying instrument, Alternatively, moving the surveying target for each predetermined surveying distance is referred to as "refilling." This is not only complicated, but also has a risk of causing an error at the time of refilling. Further, when the laser light wave reaching distance becomes long, there is a problem that the laser light is diffused and the luminous flux spreads, and the luminous flux of the laser light fluctuates due to temperature and humidity, resulting in a large survey error.

【0005】また、ジャイロコンパスを利用した測量装
置は、真北を示すセンサーを使用するため、設置場所・
振動等の環境の影響を受け易く、また、このジャイロコ
ンパスは方位のみを測量するものでこの測定値を距離デ
ータによって位置データに変換して使用することが必要
となるが、この過程で精度が低下し、またシールド掘進
機に横滑り等があると位置計算が不可能となる課題をも
有していた。
A surveying device using a gyro compass uses a sensor indicating the true north, so that the installation location and
It is easily affected by the environment such as vibration, and since this gyro compass measures only the azimuth, it is necessary to convert this measurement value into position data using distance data and use it. There was also a problem that the position could not be calculated if the shield machine had slips or the like.

【0006】また、上記レーザ光線を利用した自動測量
装置及びジャイロコンパスを利用した測量装置は、「図
3」に示すごとく共にシールド掘進機Mの後方の既知点
P1に測量機械を設置して、シールド掘進機Mの所定点
Q1,Q2を測量ターゲットとして測量するので、測量
距離が長くなったり、曲線部で所定点Q1,Q2が視準
不可能となった場合、既知点P1を前方に移動するた
め、別途測量して新たに既知点となった盛り替え用既知
点P2に測量装置を移動しなくてはならず、この盛り替
え作業が煩雑であるという課題を有していた。
Further, the automatic surveying instrument using the laser beam and the surveying instrument using the gyrocompass both have a surveying machine installed at a known point P1 behind the shield machine M as shown in FIG. Since the predetermined points Q1 and Q2 of the shield machine M are used as survey targets, the known point P1 is moved forward when the surveying distance becomes long or the predetermined points Q1 and Q2 cannot be collimated at the curved portion. Therefore, it is necessary to move the surveying device to the known point P2 for refilling, which has been newly measured and becomes a new known point, and there is a problem that this refilling work is complicated.

【0007】そこで、本発明は上記課題を解決すべくな
されたもので、盛り替えが容易で、曲線等の複雑な線形
でも精度よく測量できるシールド掘進機の自動測量方法
を提供することを目的としたものである。
Therefore, the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide an automatic surveying method for a shield machine which is easy to replace and can accurately measure even a complicated linear shape such as a curve. It was done.

【0008】[0008]

【課題を解決するための手段】上記の目的に沿い、先述
特許請求の範囲を要旨とする本発明の構成は前述課題を
解決するために、既設トンネルT内の二か所に反射プリ
ズム1a,1bを固定し、シールド掘進機Mには一対の
自動追尾式光波測距測角儀2a,2bを取り付け、さら
に、両自動追尾式光波測距測角儀2a,2bの出力値を
演算するコンピュータCとを用意し、始めに、既知点P
から上記の両反射プリズム1a,1bの位置を測量し、
コンピュータCにこの両反射プリズム1a,1bの位置
の値を基準値として入力し、次いで、既知点となった両
反射プリズム1a,1bの位置を基準点として自動追尾
式光波測距測角儀2a,2bによってシールド掘進機M
の位置及び姿勢を逐次該コンピュータCで演算して求
め、シールド掘進機Mが所定距離前進したら、該シール
ド掘進機Mを停止し、その時のシールド掘進機Mの位置
をコンピュータCに記憶させ、そのままの状態で上記二
か所の反射プリズム1a,1bを以前の固定位置より掘
進前方位置に取付け直し、掘進再開前に取付け直した両
反射プリズム1a,1bの位置を、すでにコンピュータ
に記憶したシールド掘進機Mの位置を基準点として自動
追尾式測距測角儀2a,2bで測量し、その値を前記基
準値と置き換えて更新基準値として記憶し、掘進を再開
したら、置き換えられた更新基準値を基準点として自動
追尾式光波測距測角儀2a,2bによってシールド掘進
機Mの位置及び姿勢を逐次測量するようになした技術的
手段を講じたものである。
In order to solve the above-mentioned problems, in order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims, has two reflecting prisms 1a, 1b is fixed, the shield machine M is equipped with a pair of automatic tracking type optical rangefinders 2a and 2b, and a computer for calculating output values of both automatic tracking type optical rangefinders 2a and 2b Prepare C and, first, known point P
Measure the positions of the above-mentioned both reflection prisms 1a and 1b from
The values of the positions of the both reflecting prisms 1a and 1b are input to the computer C as a reference value, and then the positions of the both reflecting prisms 1a and 1b which have become known points are used as the reference points, and the automatic tracking type optical distance measuring and angle measuring device 2a is used. , 2b shield machine M
The position and orientation of the shield machine M are sequentially calculated by the computer C, and when the shield machine M advances by a predetermined distance, the shield machine M is stopped, the position of the shield machine M at that time is stored in the computer C, and the position is maintained. In this state, the two reflecting prisms 1a and 1b are reattached to a position ahead of the excavation from the previous fixed position, and the positions of the two reflecting prisms 1a and 1b reattached before resuming the excavation are stored in the computer. The position of the machine M is used as a reference point for measurement by the automatic tracking type rangefinders 2a and 2b, the value is replaced with the reference value and stored as an update reference value, and when the excavation is restarted, the replaced update reference value A technical means is adopted in which the position and the posture of the shield machine M are successively measured by the automatic tracking type optical wave distance measuring and goniographs 2a and 2b with the reference point as the reference point. That.

【0009】[0009]

【作用】次ぎに、本発明の作用を説明する。本発明測量
法は、既知点P(地上から掘削した立坑の下部等で、従
来公知な測量法によって測量された点)より、既設トン
ネルT内の二か所に固定した反射プリズム1a,1bの
位置を測定するので、この反射プリズム1a,1bの位
置が特定される。
Next, the operation of the present invention will be described. According to the surveying method of the present invention, the reflection prisms 1a and 1b fixed at two points in the existing tunnel T are known from a known point P (a point measured by a conventionally known surveying method such as a lower part of a shaft excavated from the ground). Since the positions are measured, the positions of the reflection prisms 1a and 1b are specified.

【0010】そして、既知点となった両反射プリズム1
a,1bの位置を基準点として、言い換えると、該両反
射プリズム1a,1bをターゲットにして、自動追尾式
光波測距測角儀2a,2bによって、この反射プリズム
1a,1bと自動追尾式光波測距測角儀2a,2bの取
り付け中心点とを結ぶ直線の距離と角度(X軸方向と、
Y軸方向の傾き)とを測量すると、シールド掘進機Mの
二点、すなわち、シールド掘進機Mに取付けた自動追尾
式光波測距測角儀2a,2bの取付け中心点の三次元的
位置が夫々が特定できるので、この二点の三次元的位置
をコンピュータCで演算すればシールド掘進機の位置と
姿勢(シールド掘進機Mの中心軸の三次元的傾き)とを
知ることができる。
The birefringent prism 1 which has become a known point
Using the positions of a and 1b as reference points, in other words, targeting the both reflection prisms 1a and 1b, the reflection prisms 1a and 1b and the automatic tracking light wave are detected by the automatic tracking type optical wave distance measuring and angle measuring devices 2a and 2b. Distance and angle of a straight line connecting the attachment center points of the rangefinders 2a and 2b (X-axis direction,
(Inclination in the Y-axis direction), the two points of the shield machine M, that is, the three-dimensional positions of the center points of the mounting of the automatic tracking type optical wave rangefinders 2a and 2b attached to the shield machine M are determined. Since each can be specified, the position and orientation of the shield machine (three-dimensional inclination of the central axis of the shield machine M) can be known by computing the three-dimensional position of these two points with the computer C.

【0011】そして、反射プリズム1a,1bと自動追
尾式光波測距測角儀2a,2bとの距離が長くなると誤
差が大きくなるので、また,この距離が小さくても、曲
線部では光波が遮られて反射プリズム1a,1bに届か
なくなることもあるので、適宜距離ごとに両反射プリズ
ム1a,1bを盛り替える必要性がある。従来この盛り
替えは、前記既知点Pから測量された盛り替え用既知点
Pnに測量装置を移動しなくてはならず、その設置位置
を正確に設定するのは大変煩雑な作業であるが、本発明
の場合は既知点でない適宜位置に反射プリズム1a,1
bを取り付け、その取り付け位置は既知となっているシ
ールド掘進機Mの位置を基準点として自動追尾式光波測
距測角儀2a,2bで測量して、コンピュータCで計算
して求めることができる作用を呈する。
The error increases as the distance between the reflecting prisms 1a and 1b and the automatic tracking type optical wave distance measuring and angle measuring instruments 2a and 2b increases, and even if this distance is small, the light wave is blocked at the curved portion. Since the reflection prisms 1a and 1b may not reach the reflection prisms 1a and 1b, it is necessary to replace the reflection prisms 1a and 1b at appropriate distances. Conventionally, in this reshuffling, the surveying device has to be moved to the reshuffling known point Pn measured from the known point P, and it is a very complicated work to set the installation position accurately, In the case of the present invention, the reflecting prisms 1a, 1
b is attached, and its attachment position can be calculated and calculated by the computer C by using the position of the shield machine M, which is already known, as a reference point, by the automatic tracking type optical wave rangefinders 2a and 2b. Exerts an action.

【0012】そして、取り付け直した反射プリズム1
a,1bの位置が求められれば、以後も前記と同様に、
自動追尾式光波測距測角儀2a,2bによって、シール
ド掘進機Mの位置と姿勢とを測量することができる作用
を呈するものである。
Then, the re-attached reflecting prism 1
If the positions of a and 1b are obtained, the same applies to the following.
The automatic tracking type optical wave distance measuring and angle measuring instruments 2a and 2b have an effect of being able to measure the position and the posture of the shield machine M.

【0013】[0013]

【実施例】次に、本発明の実施例を添附図面に従って説
明すれば以下の通りである。先ず本発明法は、既設トン
ネルT内の二か所に反射プリズム1a,1bを固定し、
シールド掘進機Mには一対の自動追尾式光波測距測角儀
2a,2bを取り付け、さらに、両自動追尾式光波測距
測角儀2a,2bの出力値を演算するコンピュータCと
を用意する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, according to the method of the present invention, the reflecting prisms 1a and 1b are fixed at two positions in the existing tunnel T,
The shield machine M is equipped with a pair of automatic tracking type optical distance measuring and ranging instruments 2a and 2b, and a computer C for calculating output values of both automatic tracking type optical distance measuring and observing instruments 2a and 2b is prepared. .

【0014】上記反射プリズム1a,1bは、従来公知
なコーナーキューブプリズム等の、後記自動追尾式光波
測距測角儀2a,2bより照射される光波を入射方向に
反射するものが使用される。
As the reflection prisms 1a and 1b, those which are conventionally known corner cube prisms and the like, which reflect the light waves emitted from the later-described automatic tracking type lightwave distance measuring angle measuring devices 2a and 2b, are used.

【0015】また、上記自動追尾式光波測距測角儀2
a,2bは、測距用の光波を照射し、反射光を受光して
反射プリズム1a,1bまでの距離を演算する従来公知
なものが使用できるが、受光部は自動追尾用受光部も用
意されている。すなわち、図示はしていないが、中央に
測距用の受光部を有し、その回りには上記反射プリズム
1a,1bよりの反射を受光する自動追尾用受光部を複
数個(通常、左右上下に4個で、この4個の受光部を四
分割受光素子と称することもある。)設けてある。そし
て、この自動追尾用受光部は受光量を上下左右等の対向
する受光部で比較しするようになしてある。これら受光
部(実際には該受光部を保持する測距測角儀本体)はそ
の中央測距用受光部の中心点を支点として、上下方向の
傾斜角と左右方向の傾斜角を駆動源で変更可能となし、
この駆動源は上記自動追尾用受光部の比較値信号で制御
され、対向する自動追尾用受光部の受光量が常に同一と
なるように、すなわち、自動追尾式光波測距測角儀2は
常に測量ターゲットである反射プリズム1a,1bを視
準するように自動追尾するようになしてある。なお、本
発明法は上記四分割受光素子に代え、点状レーザ光をあ
る照射平面を想定してスキャニング照射し、スキャニン
グ時に反射光が入力された時点でのスキャニング用信号
値で上記駆動源を制御するものを使用してもよい。
Further, the above-mentioned automatic tracking type light wave distance measuring and angle measuring device 2
For a and 2b, conventionally known ones that radiate a light wave for distance measurement and receive reflected light to calculate the distance to the reflection prisms 1a and 1b can be used, but the light receiving part also has a light receiving part for automatic tracking. Has been done. That is, although not shown, there is a light receiving unit for distance measurement in the center, and a plurality of light receiving units for automatic tracking for receiving the reflections from the reflection prisms 1a and 1b are provided around the light receiving unit (usually left, right, up and down). The four light receiving portions are sometimes referred to as a four-division light receiving element.). The automatic tracking light receiving unit compares the amount of light received by the light receiving units facing each other, such as vertically and horizontally. These light receiving units (actually, the main body of the distance measuring and angle measuring device that holds the light receiving units) use the center point of the central distance measuring light receiving unit as a fulcrum, and use the vertical tilt angle and the horizontal tilt angle as drive sources. Changeable and none,
This drive source is controlled by the comparison value signal of the automatic tracking light receiving unit so that the light receiving amount of the opposing automatic tracking light receiving unit is always the same, that is, the automatic tracking lightwave range finder 2 is always The reflective prisms 1a and 1b, which are survey targets, are automatically tracked so as to collimate them. In the method of the present invention, instead of the four-division light receiving element, scanning irradiation is performed by assuming a certain irradiation plane with point laser light, and the driving source is set to a scanning signal value at the time when reflected light is input during scanning. You may use what controls.

【0016】また、上記自動追尾式光波測距測角儀2
は、自動追尾によって傾斜角度を変更するのは前記した
通りであるが、その傾斜角度の変更値を電気信号値とし
て出力する機能をも有し、距離と角度の双方を測量でき
るトータルステーションの機能を有してなる。
Further, the above-mentioned automatic tracking type light wave distance measuring and angle measuring device 2
As described above, the tilt angle is changed by automatic tracking, but it also has the function of outputting the changed value of the tilt angle as an electric signal value, and has the function of a total station that can measure both distance and angle. To have.

【0017】また、上記コンピュータCは、「図2」に
示すごとく、第一演算手段C1と、第二演算手段C2
と、第一外部入力手段C3と、記憶更新手段C4と、図
示しない第二外部入力手段の信号の有無を判断する第一
判断手段C5と、この第一判断手段C5が作動した際の
シールド掘進機の位置を記憶する記憶手段C6と、図示
しない第三外部入力手段の信号の有無を判断する第二判
断手段C7と、表示手段C8とで構成されている。そし
て、上記各手段を本発明測定法に添って説明すると以下
の通りである。
The computer C, as shown in FIG. 2, has a first computing means C1 and a second computing means C2.
A first external inputting means C3, a memory updating means C4, a first judging means C5 for judging the presence or absence of a signal from a second external inputting means (not shown), and a shield excavation when the first judging means C5 operates. It comprises a storage means C6 for storing the position of the machine, a second determination means C7 for determining the presence or absence of a signal from a third external input means (not shown), and a display means C8. Then, each of the above means will be described below along with the measuring method of the present invention.

【0018】先ず、本発明法は、始めに、既知点Pから
上記の両反射プリズム1a,1bの位置を測量し、コン
ピュータCにこの両反射プリズム1a,1bの位置の値
を基準値として入力するが、この既知点Pは従来測量法
で、立坑の下部等が特定され、この既知点Pより両反射
プリズム1a,1bの位置の測量も従来法で行われる。
First, according to the method of the present invention, first, the positions of the reflection prisms 1a and 1b are measured from a known point P, and the value of the positions of the reflection prisms 1a and 1b is input to the computer C as a reference value. However, the known point P is identified by the conventional surveying method such as the lower part of the shaft, and the position of both reflection prisms 1a and 1b is also measured by the conventional method from the known point P.

【0019】そして、上記により測量された両反射プリ
ズム1a,1bの位置(XP1,YP1,ZP1)(X
P2,YP2,ZP2)をコンピュータCに入力するに
は、上記第一外部入力手段C3によって行われ、この第
一外部入力手段C3は、キーボード等で構成され、両反
射プリズム1a,1bの位置(XP1,YP1,ZP
1)(XP2,YP2,ZP2)として記憶更新手段C
4に入力する。
Then, the positions (XP1, YP1, ZP1) (X) of the two reflecting prisms 1a, 1b measured as described above are measured.
P2, YP2, ZP2) is input to the computer C by the first external input means C3. The first external input means C3 is composed of a keyboard or the like, and the positions of the birefringent prisms 1a and 1b ( XP1, YP1, ZP
1) Memory update means C as (XP2, YP2, ZP2)
Enter in 4.

【0020】そして、上記記憶後進手段C4は、第一外
部入力手段C3よりの入力値を、後記第二演算手段C2
よりの信号入力がない場合はそのままで、信号入力があ
った場合は、記憶値を新たに入力された値に更新して両
反射プリズム1a,1bの位置の更新値n(XP1,Y
P1,ZP1),n(XP2,YP2,ZP2)として
更新記憶すると共に、その更新された値を第一演算手段
C1に出力するようになしてある。
Then, the memory reverse drive means C4 converts the input value from the first external input means C3 into the second operation means C2 described later.
When there is no signal input, the memory value is updated to the newly input value and the updated value n (XP1, Y) of the positions of both reflection prisms 1a and 1b is updated.
P1, ZP1) and n (XP2, YP2, ZP2) are updated and stored, and the updated value is output to the first computing means C1.

【0021】そして、次に、既知点となった両反射プリ
ズム1a,1bの位置を基準点として自動追尾式光波測
距測角儀2a,2bによってシールド掘進機Mの位置及
び姿勢を逐次該コンピュータCで演算して求めるが、こ
の演算は、第一演算手段C1によって行われる。なお、
自動追尾式光波測距測角儀2a,2bよりの入力信号は
両反射プリズム1a,1bと両自動追尾式光波測距測角
儀2a,2bとを結ぶ線分の距離値(L1,L2)と該
線分の角度値(Θx1,Θy1),(Θx2,Θy2)
である。
Then, the position and attitude of the shield machine M are successively determined by the automatic tracking type optical distance measuring and angle measuring instruments 2a and 2b with the positions of the both reflection prisms 1a and 1b, which are known points, as reference points. The calculation is performed by C, and this calculation is performed by the first calculation means C1. In addition,
The input signals from the automatic tracking type optical distance measuring and measuring instruments 2a and 2b are distance values (L1, L2) of line segments connecting the both reflecting prisms 1a and 1b and the two automatic tracking type optical distance measuring and measuring instruments 2a and 2b. And the angle values of the line segment (Θx1, Θy1), (Θx2, Θy2)
Is.

【0022】そして、上記第一演算手段C1は、記憶更
新手段C4の更新値n(XP1,YY1,ZP1),n
(XP2,YP2,ZP2)と両自動追尾式光波測距測
角儀2a,2bの測量値(L1,Θx1,Θy1),
(L2,Θx2,Θy2)とからシールド掘進機Mの二
点の位置(X3,Y3,Z3),(X4,Y4,Z4)
と、該シールド掘進機Mの中心軸の傾斜角度Θを演算す
る。なお、ここでのシールド掘進機Mの二点の現在位置
(X3,Y3,Z3),(X4,Y4,Z4)を始めと
する各部位の位置の値は、初めの既知点Pを座標原点と
した三次元の値で示す。また、本実施例ではシールド掘
進機Mの位置は両自動追尾式光波測距測角儀2a,2b
の取り付け位置に相当するとしたが、この値からシール
ド掘進機Mの中心軸と両自動追尾式光波測距測角儀2
a,2bの取り付け基準点(前記中央測距用受光部の中
心点)を含む面との交点を求めることは容易であるので
この値まで演算してもよいことは無論である。
Then, the first computing means C1 updates the update values n (XP1, YY1, ZP1), n of the memory updating means C4.
(XP2, YP2, ZP2) and the surveyed values (L1, Θx1, Θy1) of both automatic tracking type optical distance measuring and angle measuring instruments 2a, 2b,
From (L2, Θx2, Θy2) and two positions of the shield machine M (X3, Y3, Z3), (X4, Y4, Z4)
And the tilt angle Θ of the central axis of the shield machine M is calculated. The values of the positions of the respective parts, including the current positions (X3, Y3, Z3) and (X4, Y4, Z4) of the two points of the shield machine M, are the coordinate origin from the first known point P. It is shown by the three-dimensional value. Further, in the present embodiment, the position of the shield machine M is set to be both automatic tracking type optical wave distance measuring and angle measuring instruments 2a and 2b.
It is assumed that it corresponds to the mounting position of the shield excavator M and the both automatic tracking type optical wave range finder 2 from this value.
Since it is easy to obtain the intersection with the plane including the attachment reference points a and 2b (the central point of the central distance measuring light receiving portion), it is of course possible to calculate up to this value.

【0023】そして、上記第一演算手段C1で演算され
た結果(X3,Y3,Z3),(X4,Y4,Z4),
Θは表示手段C8に逐次表示され、図では省略したが必
要に応じてハードコピー出力装置等にも出力されるよう
になしてもよい。
The results (X3, Y3, Z3), (X4, Y4, Z4), calculated by the first calculating means C1,
Θ is sequentially displayed on the display means C8, and although not shown in the figure, it may be output to a hard copy output device or the like as necessary.

【0024】そして、シールド掘進機Mが所定距離前進
したら、該シールド掘進機Mを停止し、その時のシール
ド掘進機Mの位置をコンピュータCに記憶させ、そのま
まの状態で上記二か所の反射プリズム1a,1bを以前
の固定位置より掘進前方位置に取付け直し(この取付け
直とは、該反射プリズム1a,1bを移動することを意
味しているが、この反射プリズム1a,1bはそのまま
残し、新たに別の反射プリズム1a,1bを一対取付け
てもよい。)、掘進再開前に取付け直した両反射プリズ
ム1a,1bの位置を、すでにコンピュータCに記憶し
たシールド掘進機Mの位置を基準点として自動追尾式測
距測角儀2a,2bで測量し、その値を前記基準値と置
き換えて更新基準値として記憶する。
When the shield machine M advances by a predetermined distance, the shield machine M is stopped, the position of the shield machine M at that time is stored in the computer C, and the reflection prisms at the above two positions are kept as they are. 1a and 1b are reattached to a position ahead of the excavation from the previously fixed position (this reattachment means moving the reflecting prisms 1a and 1b, but leaving the reflecting prisms 1a and 1b as they are, Another pair of reflecting prisms 1a and 1b may be attached to the above), and the positions of the two reflecting prisms 1a and 1b reattached before resuming the excavation are set with the position of the shield excavator M already stored in the computer C as a reference point. The distance is measured by the automatic tracking type rangefinders 2a and 2b, and the value is replaced with the reference value and stored as the updated reference value.

【0025】すなわち、第二演算手段C2が上記更新基
準値を演算するもので、シールド掘進機Mの運転を停止
した際に第二外部入力装置(スイッチ等)を操作して、
第一判断手段C5を作動させる。そして、この第一判断
手段C5が作動すると、その時点でのシールド掘進機M
の位置(X3,Y3,Z3)(X4,Y4,Z4)が記
憶手段C6に記憶される。そして、第二演算手段はC2
は、このシールド掘進機Mの位置(X3,Y3,Z3)
(X4,Y4,Z4)と、両自動追尾式光波測距測角儀
2a,2bの測定値(L1,Θx1,Θy1),(L
2,Θx2,Θy2)とから,取付け直された両反射プ
リズム1a,1bの位置を(n+1)(XP1,YP
1,ZP1),(n+1)(XP2,YP2,ZP2)
として測量する。
That is, the second calculation means C2 calculates the above-mentioned update reference value, and when the operation of the shield machine M is stopped, the second external input device (switch or the like) is operated,
The first determination means C5 is activated. When the first determining means C5 operates, the shield machine M at that time
The position (X3, Y3, Z3) (X4, Y4, Z4) is stored in the storage means C6. The second calculation means is C2
Is the position of this shield machine M (X3, Y3, Z3)
(X4, Y4, Z4) and the measurement values (L1, Θx1, Θy1), (L1, Θx1, Θy1) of both automatic tracking type optical distance measuring and angle measuring instruments 2a, 2b.
2, Θx2, Θy2), the positions of the re-attached birefringent prisms 1a and 1b are (n + 1) (XP1, YP
1, ZP1), (n + 1) (XP2, YP2, ZP2)
To measure.

【0026】なお、上記取り付け直された両反射プリズ
ム1a,1bの位置の値(n+1)(XP1,YP
1),(n+1)(XP2,YP2)は、盛り替え作業
時は、反射プリズム1a,1bは移動しているため安定
せず、盛り替えが終了して自動追尾式光波測測角距儀2
a,2bの自動追尾が終了すると安定するので、それを
表示手段C8を目視して第三外部入力手段C7(スイッ
チ等)を手動で操作すると、その時の両反射プリズム1
a,1bの位置の値(n+1)(XP1,YP1,ZP
1),(n+1)(XP2,YP2,ZP2)を記憶更
新手段C4に出力し従来の反射プリズム1a,1bの位
置の値n(XP1,YP1,ZP1),n(XP2,Y
P2,ZP2)を新たな値(n+1)(XP1,YP
1,ZP1),(n+1)(XP2,YP2,ZP2)
に更新するようになしてある。、
The value (n + 1) (XP1, YP) of the position of the re-attached both reflection prisms 1a, 1b.
1) and (n + 1) (XP2, YP2) are not stable because the reflecting prisms 1a and 1b are moving during the refilling work, and the refilling is completed and the automatic tracking type optical wave measuring and angular range 2
When the automatic tracking of a and 2b is completed, it becomes stable. Therefore, by visually observing the display means C8 and manually operating the third external input means C7 (switch etc.), the birefringent prism 1 at that time is displayed.
Value at position a, 1b (n + 1) (XP1, YP1, ZP
1) and (n + 1) (XP2, YP2, ZP2) are output to the memory updating means C4 and the position values n (XP1, YP1, ZP1), n (XP2, Y) of the conventional reflecting prisms 1a, 1b are output.
P2, ZP2) as a new value (n + 1) (XP1, YP
1, ZP1), (n + 1) (XP2, YP2, ZP2)
It is designed to be updated to. ,

【0027】そして、取付け直した両反射プリズム1
a,1bの位置の値(n+1)(XP1,YP1),
(n+2)(XP2,YP2)が更新されたら、すなわ
ち、(n+1)(XP1,YP1,ZP1),(n+
1)(XP2,YP2,ZP2)の値を新たな記憶値n
(XP1,YP1,ZP1),n(XP2,YP2,Z
P2)として記憶更新手段C4に更新したら、シールド
掘進機Mの運転を再開する。そして、掘進を再開した
ら、置き換えられた更新基準値n(XP1,YP1,Z
P1),n(XP2,YP2,ZP2)を基準点として
自動追尾式光波測距測角儀2a,2bによってシールド
掘進機Mの位置及び姿勢を再度逐次測量するようになし
てある。
Then, the re-attached birefringent prism 1
The value (n + 1) at position a, 1b (XP1, YP1),
When (n + 2) (XP2, YP2) is updated, that is, (n + 1) (XP1, YP1, ZP1), (n +
1) The value of (XP2, YP2, ZP2) is set to a new stored value n
(XP1, YP1, ZP1), n (XP2, YP2, Z
After updating to the memory updating means C4 as P2), the operation of the shield machine M is restarted. Then, when the excavation is resumed, the replaced update reference value n (XP1, YP1, Z
P1) and n (XP2, YP2, ZP2) are used as reference points to automatically measure the position and orientation of the shield machine M again by the automatic tracking type optical wave distance measuring and angle measuring instruments 2a and 2b.

【0028】なお、前記において反射プリズム1a,1
bは移動せずに残して、別途新たな位置に新たな反射プ
リズム1a,1bを取りつけてもよいとしたが、この残
した反射プリズム1a,1bは、トンネルTが周辺地盤
の性状変化等の原因で変移していないか確認するのに使
用できる。しかし、この場合、自動追尾式光波測距測角
儀2a,2bは残した方の反射プリズム1a,1bを追
尾し続けるので、この残した方の反射プリズム1a,1
bは一時的に遮蔽する等して追尾を一時的に遮断する必
要性を有する。
Incidentally, in the above, the reflecting prisms 1a, 1
Although b may be left without moving, and new reflecting prisms 1a and 1b may be separately attached to new positions, the remaining reflecting prisms 1a and 1b are such that the tunnel T does not change the properties of the surrounding ground. It can be used to check if there is a change in the cause. However, in this case, the automatic tracking type optical distance measuring and angle measuring rigs 2a and 2b continue to track the remaining reflecting prisms 1a and 1b, and thus the remaining reflecting prisms 1a and 1b.
b has a need to temporarily block tracking by temporarily blocking it.

【0029】[0029]

【発明の効果】本発明は上記のごときであるので、反射
プリズム1a,1bの盛り替えを、測量した正確な位置
ではなく、適宜位置となすことで正確な測量が行えるの
で、従来最も手数を要した測量の盛り替えを簡略化でき
るシールド機の自動測量方法を提供できるものである。
Since the present invention is as described above, accurate re-measurement can be performed by setting the re-positioning of the reflecting prisms 1a and 1b at an appropriate position, not at the precisely measured position. It is possible to provide an automatic surveying method for a shield machine that can simplify the re-sampling of required surveys.

【0030】なお、本発明は上記反射プリズム1a,1
bの取り付け以外は自動的に測量ができるもので、人手
による測量地点の盛り替えを不要とするので、信頼性の
高い測量が確保されるシールド機の自動測量方法を提供
できるものである。
In the present invention, the reflecting prisms 1a, 1
It is possible to provide an automatic surveying method for a shield machine that can ensure highly reliable surveying, since it is possible to automatically perform surveying except for mounting b, and it is not necessary to manually change the surveying points.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明シールド機の自動測量方法を実施中のト
ンネル斜視図である。
FIG. 1 is a perspective view of a tunnel in which an automatic surveying method for a shield machine according to the present invention is being performed.

【図2】本発明法に使用されるコンピュータのブロック
回路図である。
FIG. 2 is a block circuit diagram of a computer used in the method of the present invention.

【図3】従来測量法を実施中のトンネル平面図である。FIG. 3 is a plan view of a tunnel in which a conventional surveying method is being performed.

【符号の説明】[Explanation of symbols]

1a 反射プリズム 1b 反射プリズム 2a 自動追尾式光波測距測角儀 2b 自動追尾式光波測距測角儀 C コンピュータ M シールド掘進機 T トンネル 1a Reflective prism 1b Reflective prism 2a Automatic tracking type lightwave distance measuring gonio 2b Automatic tracking type lightwave distance measuring gonio C Computer M Shield excavator T tunnel

フロントページの続き (72)発明者 橘▲高▼ 耕治 大阪府大阪市東淀川区西淡路1丁目1番36 号 株式会社橘▲高▼工学研究所内 (72)発明者 坪井 宏美 神奈川県大和市下鶴間2570−4 西松建設 株式会社技術研究所内 (72)発明者 石井 正典 東京都港区虎ノ門一丁目20番10号 西松建 設株式会社内Front page continuation (72) Inventor Tachibana ▲ Taka ▼ Koji Osaka Prefecture, Osaka City Higashiyodogawa-ku 1-3-36 Nishi-Awaji Co., Ltd. Tachibana ▲ Taka ▼ Engineering Research Institute (72) Inventor Hiromi Tsuboi Shimotsuruma, Kanagawa 2570-4 Nishimatsu Construction Co., Ltd. Technical Research Laboratory (72) Inventor Masanori Ishii 1-20-10 Toranomon, Minato-ku, Tokyo Nishimatsu Construction Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 既設トンネル内の二か所に反射プリズム
を固定し、シールド掘進機には一対の自動追尾式光波測
距測角儀を取り付け、さらに、両自動追尾式光波測距測
角儀の出力値を演算するコンピュータとを用意し、 始めに、既知点から上記の両反射プリズムの位置を測量
し、コンピュータにこの両反射プリズムの位置の値を基
準値として入力し、次いで、既知点となった両反射プリ
ズムの位置を基準点として自動追尾式光波測距測角儀に
よってシールド掘進機の位置及び姿勢を逐次該コンピュ
ータで演算して求め、 シールド掘進機が所定距離前進したら、該シールド掘進
機を停止し、その時のシールド掘進機の位置をコンピュ
ータに記憶させ、そのままの状態で上記二か所の反射プ
リズムを以前の固定位置より掘進前方位置に取付け直
し、掘進再開前に取付け直した両反射プリズムの位置
を、すでにコンピュータに記憶したシールド掘進機の位
置を基準点として自動追尾式測距測角儀で測量し、その
値を前記基準値と置き換えて更新基準値として記憶し、 掘進を再開したら、置き換えられた更新基準値を基準点
として自動追尾式光波測距測角儀によってシールド掘進
機の位置及び姿勢を逐次測量するようになしたシールド
掘進機の自動測量方法。
1. A reflection prism is fixed at two places in an existing tunnel, a pair of automatic tracking type optical wave rangefinders are attached to the shield machine, and further both automatic tracking type optical rangefinders are installed. Prepare a computer that calculates the output value of, and first measure the positions of the above two reflection prisms from known points, input the values of the positions of both reflection prisms into the computer as reference values, and then The position and orientation of the shield machine are sequentially calculated by the computer by the automatic tracking type optical wave distance and angle measuring instrument with the position of the both reflection prisms as the reference point, and when the shield machine advances a predetermined distance, the shield machine Stop the excavator, store the shield excavator's position at that time in the computer, and reattach the above two reflection prisms to the excavation forward position from the previous fixed position in that state. The position of the double-reflection prism that was reattached before resuming the excavation was measured with the automatic tracking type rangefinder using the position of the shield machine, which was already stored in the computer, as a reference point, and the value was replaced with the reference value and updated. When the shield excavator is stored as a reference value and the excavation is resumed, the position and orientation of the shield excavator are sequentially measured by the automatic tracking type optical wave rangefinder using the replaced updated reference value as a reference point. Automatic survey method.
JP14429793A 1993-05-24 1993-05-24 Automatic surveying method for shield machine Expired - Fee Related JP2711329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14429793A JP2711329B2 (en) 1993-05-24 1993-05-24 Automatic surveying method for shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14429793A JP2711329B2 (en) 1993-05-24 1993-05-24 Automatic surveying method for shield machine

Publications (2)

Publication Number Publication Date
JPH07119382A true JPH07119382A (en) 1995-05-09
JP2711329B2 JP2711329B2 (en) 1998-02-10

Family

ID=15358797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14429793A Expired - Fee Related JP2711329B2 (en) 1993-05-24 1993-05-24 Automatic surveying method for shield machine

Country Status (1)

Country Link
JP (1) JP2711329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116295313A (en) * 2023-05-22 2023-06-23 太原理工大学 Real-time positioning system of heading machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116295313A (en) * 2023-05-22 2023-06-23 太原理工大学 Real-time positioning system of heading machine
CN116295313B (en) * 2023-05-22 2023-07-18 太原理工大学 Real-time positioning system of heading machine

Also Published As

Publication number Publication date
JP2711329B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP2846950B2 (en) Apparatus for forming or defining the position of a measuring point
CA2623979C (en) Two-sided reflector and two-sided target object
JP3390629B2 (en) Survey method of propulsion method
JP3323779B2 (en) Surveying instrument with reflective prism
JP2003082990A (en) Position measuring device of tunnel boring machine
JPH0843084A (en) Multifunctional measurement vehicle for tunnel
JPH08271251A (en) Method and apparatus for measurement of position and posture of tunnel excavator
JPH07119382A (en) Automatic measuring method of shield excavator
CN111580127B (en) Mapping system with rotating mirror
JPH0755938A (en) Device and method for measuring point-to-point distance
JP2945467B2 (en) Machine height measuring device
RU2555511C2 (en) Method and apparatus for maintaining geodetic direction
JP2001174261A (en) Measuring apparatus for internal corner or the like by using reflecting prism or the like
JPH08145673A (en) Method for detecting position of excavator body or the like
JP2000018944A (en) Range-finding/angle-measuring device and linear survey device
JPS59206709A (en) Measuring method of position having moving measuring point at intermediate
JPH0423229B2 (en)
EP4242584A1 (en) A reference free calibration method for a point cloud measuring module combined with a geodetic single point measurement unit
JPH08189827A (en) Tunnel surveying method
JPH06249616A (en) Instrument for measuring position and attitude of object
JP2916977B2 (en) Surveying instrument with eccentricity correction function
JP3376009B2 (en) Surveying method and surveying device
JP3314363B2 (en) 3D coordinate measurement method
JP2909634B2 (en) Direction detection method and detection device using light pulse
JPH0324969B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081031

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees