JPH07119179B2 - Purification method of acetylene gas - Google Patents
Purification method of acetylene gasInfo
- Publication number
- JPH07119179B2 JPH07119179B2 JP10831592A JP10831592A JPH07119179B2 JP H07119179 B2 JPH07119179 B2 JP H07119179B2 JP 10831592 A JP10831592 A JP 10831592A JP 10831592 A JP10831592 A JP 10831592A JP H07119179 B2 JPH07119179 B2 JP H07119179B2
- Authority
- JP
- Japan
- Prior art keywords
- acetylene gas
- sodium hypochlorite
- gas
- absorption tower
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/148—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
- C07C7/14833—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with metals or their inorganic compounds
- C07C7/1485—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with metals or their inorganic compounds oxides; hydroxides; salts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】 アセチレンガスの精製方法には乾式と湿式の二通りがあ
り、本発明は湿式精製の新しい方法である。従来の湿式
精製法には、高純度の硫酸を使う方法、塩化第二鉄など
金属塩化物を使う方法、サラシ粉水溶液を使う方法およ
び塩素水を使う方法などがある。これらの内国内で広く
採用されている塩素水洗浄方法は、装置がシンプルで、
運転経費も安いと言う長所もあるが、猛毒の塩素ガスを
使うため、特定化学物質等障害予防規則や大気汚染防止
法などで取締まられているように取扱いに特段の注意が
必要であるうえ、ほとんどすべての金属を腐食させると
いう欠点がある。このため最近では塩素ガスによる消
毒、殺菌はそのほとんどが次亜塩素酸ソーダ溶液に取っ
てかわられている。本発明は作業環境の安全性と公害の
未然防止という点で大きな効果があり、しかも急速な進
歩をとげた工業用有効塩素濃度計を採用することで、従
来危険とされたアルカリ性次亜塩素酸ソーダとアセチレ
ンの反応で生ずる可能性のあるモノクロルアセチレンを
生成させることなく、燐化水素と硫化水素を高効率にし
かも経済的に除去できるようにするとともに、精製装置
の自動化に成功した。以下にその方法を図面によって説
明する。第1図が本発明の流れ図である。粗アセチレン
ガスはあらかじめ硫酸水溶液を使った前段吸収塔にて、
アンモニア等、アルカリ性ガスを除去しておく。吸収塔
(1)の下部ノズルから導入された粗アセチレンガスは
充填物(2)のつまった部分で上方より流下してくるご
くうすい次亜塩素酸ソーダ水溶液と気液接触し、粗アセ
チレンガス中に残存する燐化水素と硫化水素を吸収除去
する。その反応式は燐化水素については、 PH3+NaclO → H3PO+Nacl H3PO+NaclO → H3PO2+Nacl H3PO2+NaclO → H3PO3+Nacl H3PO3+NaclO → H3PO4+Nacl のようになると予想され、硫化水素については、 H2S+NaclO → S+Nacl+H2O のようになると予想される。いずれも次亜塩素酸ソーダ
の酸化力を利用して燐化水素および硫化水素を酸化吸収
するため、か性ソーダを添加し安定化させている市販の
次亜塩素酸ソーダを前段の硫酸洗浄塔で使う希硫酸を注
入して中性に近づけ使用する点が本発明のポイントであ
る。一方反応式から明らかなように燐化水素を酸化する
ことにより生ずる次亜燐酸などが、次亜塩素酸ソーダ中
に含まれているか性ソーダ分を中和する効果があり、反
応は酸化力を活性化させる方法へ進行し、次亜塩素酸ソ
ーダを中和させるための希硫酸を極く少量添加させるだ
けですむ。本法の欠点となる高濃度の次亜塩素酸ソーダ
が吸収塔内に入って粗アセチレンガスと接触した時の危
険性回避については次のような対策を組込んでいる。DETAILED DESCRIPTION OF THE INVENTION There are two methods of refining acetylene gas, a dry method and a wet method, and the present invention is a new method of wet refining. Conventional wet refining methods include a method using high-purity sulfuric acid, a method using a metal chloride such as ferric chloride, a method using an aqueous solution of sardine powder, and a method using chlorine water. The chlorine water cleaning method that is widely adopted in Japan has a simple device,
Although it has the advantage that the operating cost is low, it uses special poisonous chlorine gas, so special handling is required as it is regulated by the regulations for prevention of damage such as specific chemical substances and the Air Pollution Control Law. , Has the drawback of corroding almost all metals. For this reason, most of the disinfection and sterilization with chlorine gas has recently been replaced by sodium hypochlorite solution. INDUSTRIAL APPLICABILITY The present invention has a great effect in terms of safety of work environment and prevention of pollution, and by adopting an industrial effective chlorine concentration meter that has made rapid progress, alkaline hypochlorous acid, which has been regarded as dangerous in the past, is adopted. We succeeded in removing hydrogen phosphide and hydrogen sulfide with high efficiency and economically without producing monochloroacetylene which may occur in the reaction of soda and acetylene, and also succeeded in automating the purification equipment. The method will be described below with reference to the drawings. FIG. 1 is a flow chart of the present invention. The crude acetylene gas was used in advance in the absorption tower using a sulfuric acid solution.
Remove alkaline gas such as ammonia. The crude acetylene gas introduced from the lower nozzle of the absorption tower (1) comes into gas-liquid contact with the very thin sodium hypochlorite aqueous solution flowing down from above in the packed portion of the packing (2), and the crude acetylene gas Absorbs and removes hydrogen phosphide and hydrogen sulfide remaining in the. The reaction formula is hydrogen phosphide, PH 3 + NaclO → H 3 PO + Nacl H 3 PO + NaclO → H 3 PO 2 + Nacl H 3 PO 2 + NaclO → H 3 PO 3 + Nacl H 3 PO 3 + NaclO → H 3 as PO 4 + NaCl For hydrogen sulfide, it is expected to be H 2 S + NaclO → S + Nacl + H 2 O. In both cases, hydrogen peroxide and hydrogen sulfide are oxidized and absorbed by utilizing the oxidizing power of sodium hypochlorite, so commercially available sodium hypochlorite is added and stabilized with caustic soda before the sulfuric acid washing tower. The point of the present invention is to inject the diluted sulfuric acid to be used in step (3) and bring it close to neutral. On the other hand, as is clear from the reaction formula, hypophosphorous acid generated by oxidizing hydrogen phosphide has the effect of neutralizing the caustic soda component contained in sodium hypochlorite, and the reaction has an oxidizing power. Proceed to the activation method, and only add a very small amount of dilute sulfuric acid to neutralize sodium hypochlorite. The following measures are incorporated to avoid the danger of high-concentration sodium hypochlorite entering the absorption tower and coming into contact with crude acetylene gas, which is a drawback of this method.
有効塩素濃度計(9)を吸収塔(1)の循環ポンプ
(6)吐出側に設置し、吸収塔頂でノズル(3)より噴
霧される吸収液の有効塩素濃度を予知、制御している。An effective chlorine concentration meter (9) is installed on the discharge side of the circulation pump (6) of the absorption tower (1) to predict and control the effective chlorine concentration of the absorption liquid sprayed from the nozzle (3) at the top of the absorption tower. .
次亜塩素酸ソーダ注入用定量ポンプ(11a)は有
効塩素濃度計(9)の信号により、ON−OFF制御運
転されている。The metering pump (11a) for injecting sodium hypochlorite is on-off controlled by the signal of the effective chlorine concentration meter (9).
次亜塩素酸ソーダ(14)は6%溶液で貯蔵し、定
量ポンプ(11a)を使って流量指示警報器(16)に
て必要量が確保された清水と混合され、有効塩素濃度
1,000p.p.m.以下で循環ポンプ(6)吐出側
ラインミキサー(8)の手前へ注入される。したがって
万一循環ポンプ(6)が停止した場合でも、ノズル
(3)より噴霧される吸収液の有効塩素濃度は、1,0
00p.p.m.であり、従来危険のため液更新の目安
とされてきた2,000p.p.m.の半分である。
又、希釈用の清水が止まった場合は流量指示警報器(1
6)より警報が出るが、この場合でも循環ポンプ(6)
により循環されている吸収液中の残留有効塩素濃度は数
+p.p.m.のオーダーとなっているからラインミキ
サー(8)で混合希釈され有効塩素濃度300p.p.
m.以下となる。このように吸収塔(1)で不純物を酸
化吸収除去されたアセチレンガスはデミスター(4)よ
り液滴を取り除きガスホルダーへ圧送される。本発明の
性能を確認するため、小型の充填塔2基を製作し、片方
には有効塩素濃度を300p.p.m.に水で希釈した
次亜塩素酸ソーダ液、もう一方はその10倍濃度の3,
000p.p.m.に調合した水溶液をいれ、ポンプで
液を噴霧循環させながら粗アセチレンガスを同時に通し
てみた所、第1表のような結果を得た。Sodium hypochlorite (14) was stored as a 6% solution and mixed with fresh water whose required amount was secured by a flow rate indicator (16) using a metering pump (11a) to obtain an effective chlorine concentration of 1,000 p . p. m. Below, it is injected in front of the circulation pump (6) discharge side line mixer (8). Therefore, even if the circulation pump (6) is stopped, the effective chlorine concentration of the absorbing liquid sprayed from the nozzle (3) is 1,0.
00p. p. m. 2,000 p.m., which has been conventionally used as a guideline for renewing the liquid due to danger. p. m. Is half of.
Also, when the fresh water for dilution stops, the flow rate indicator alarm (1
The alarm is issued from 6), but in this case also the circulation pump (6)
The residual effective chlorine concentration in the absorption liquid circulated by the company is several + p. p. m. The order of the effective chlorine concentration is 300p. p.
m. It becomes the following. The acetylene gas from which the impurities have been oxidized and absorbed and removed in the absorption tower (1) in this way is subjected to pressure removal by the demister (4) to remove the liquid droplets and pressure-feed the gas holder. In order to confirm the performance of the present invention, two small packed towers were manufactured, and one had an effective chlorine concentration of 300 p. p. m. Sodium hypochlorite solution diluted with water, the other is 10 times the concentration of 3,
000p. p. m. When the crude acetylene gas was passed at the same time while pouring the aqueous solution prepared in Example 1 into the solution and circulating the solution with a pump, the results shown in Table 1 were obtained.
すなわち、次亜塩素酸ソーダの濃度をうすくして液を中
性に近づけることにより、有効塩素の酸化力が活性化さ
れ燐化水素の除去性能が向上する。本テストで中性次亜
塩素酸ソーダ水洗浄後の精製アセチレンガス中に含まれ
る塩素ガス漏洩量は5〜10p.p.m.であり塩素水
洗浄法のそれに較べ1/15〜1/30となり、同時に
ジクロルエチレンの発生量も既法の1/2〜1/4とな
ることが確認された。したがって上述のようなシステム
を組むことにより安全で経済的でしかも性能の安定した
アセチレンガス精製が可能になる。 That is, the concentration of sodium hypochlorite is reduced to bring the solution closer to neutral, whereby the oxidizing power of available chlorine is activated and the hydrogen phosphide removal performance is improved. In this test, the leakage amount of chlorine gas contained in the purified acetylene gas after washing with neutral sodium hypochlorite water was 5 to 10 p. p. m. It was confirmed that the amount was 1/15 to 1/30 compared to that of the chlorine water washing method, and at the same time, the amount of dichloroethylene generated was also 1/2 to 1/4 of the existing method. Therefore, by constructing the system as described above, it is possible to carry out acetylene gas purification which is safe, economical and has stable performance.
第1図は本発明の流れ図である。前段の硫酸水溶液によ
るアンモニア除去吸収塔は既知技術であるため省略して
ある。 記号の説明 吸収塔 V−2 循環ポン
プ逆止弁 充填物 V−3 〃
サンプル弁 ノズル V−4 〃
吐出弁 デミスター V−5 濃度計サ
ンプル弁 水封槽 V−6 ストレー
ナー元弁(2個) 循環ポンプ V−7 定量ポン
プ吸込弁(2個) 流量計 V−8 〃
吐出弁(2個) ラインミキサー V−9 〃
サンプル弁(2個) 有効塩素濃度計 V−10 〃
背圧弁 ▲10▼ ストレーナー(2台) V−11
〃 注入弁 ▲11▼ 定量ポンプ(2台) V−12 薬
液槽ドレン弁(2個) ▲12▼ 検流器(2台) V−13 希
釈水弁(2個) ▲13▼ 薬液槽(2槽) V−14 清
水元弁 ▲14▼ 6%次亜塩素酸ソーダ液 V−15 清
水逆止弁 ▲15▼ 攪はん機(2台) V−16 注
水元弁 ▲16▼ 流量指示警報器 V−17 注
水弁 ▲17▼ PH計 V−18 吸
収塔ドレン弁 ▲18▼ 5%硫酸液 V−19 定
流量弁 V−1 循環ポンプ吸込弁 V−20 次亜塩素
酸ソーダ元弁FIG. 1 is a flow chart of the present invention. The ammonia removal and absorption tower using the sulfuric acid aqueous solution in the previous stage is omitted because it is a known technique. Explanation of symbols Absorption tower V-2 Circulation pump check valve Filling material V-3 〃
Sample valve nozzle V-4 〃
Discharge valve Demister V-5 Concentration meter Sample valve Water sealing tank V-6 Strainer main valve (2) Circulation pump V-7 Metering pump suction valve (2) Flow meter V-8 〃
Discharge valve (2) Line mixer V-9 〃
Sample valve (2) Effective chlorine concentration meter V-10 〃
Back pressure valve (10) Strainer (2 units) V-11
〃 Injection valve ▲ 11 ▼ Quantitative pump (2 units) V-12 Chemical liquid tank drain valve (2 pcs) ▲ 12 ▼ Detector (2 units) V-13 Dilution water valve (2 pcs) ▲ 13 ▼ Chemical liquid tank (2) Tank) V-14 Fresh water main valve ▲ 14 ▼ 6% sodium hypochlorite liquid V-15 Shimizu check valve ▲ 15 ▼ Stirrer (2 units) V-16 Water injection valve ▲ 16 ▼ Flow rate indicator alarm V-17 Water injection valve ▲ 17 ▼ PH meter V-18 Absorption tower drain valve ▲ 18 ▼ 5% sulfuric acid solution V-19 Constant flow valve V-1 Circulation pump suction valve V-20 Sodium hypochlorite main valve
Claims (1)
吸収塔の下部から粗アセチレンガスを導入し、水でうす
めた次亜塩素酸ソーダを循環吸収液として使い、該粗ア
セチレンガスと該次亜塩素酸ソーダとを該吸収塔におい
て気液接触せしめ、粗アセチレンガス中に含まれる不純
物燐化水素と硫化水素を吸収除去するアセチレンガスの
精製方法であり、上記気液接触後の循環吸収液中の有効
塩素濃度を有効塩素濃度計にて連続測定管理しながら、
消費された有効塩素分に見合った量の次亜塩素酸ソーダ
を自動的に該循環吸収液に注入補給することを特徴 とす
るアセチレンガスの精製方法。 1. An absorption tower comprising a packing is used,
Introduce crude acetylene gas from the bottom of the absorption tower and dilute it with water.
Using sodium hypochlorite as a circulating absorbent,
Cetylene gas and the sodium hypochlorite are placed in the absorption tower.
Impurity contained in crude acetylene gas
Of acetylene gas that absorbs and removes hydrogen phosphide and hydrogen sulfide
It is a purification method and is effective in the circulating absorption liquid after the above gas-liquid contact.
While continuously measuring and managing the chlorine concentration with an effective chlorine concentration meter,
Sodium hypochlorite in an amount commensurate with the amount of available chlorine consumed
A method for purifying acetylene gas, which comprises automatically injecting and replenishing the circulating absorption liquid .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10831592A JPH07119179B2 (en) | 1992-03-16 | 1992-03-16 | Purification method of acetylene gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10831592A JPH07119179B2 (en) | 1992-03-16 | 1992-03-16 | Purification method of acetylene gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH072704A JPH072704A (en) | 1995-01-06 |
JPH07119179B2 true JPH07119179B2 (en) | 1995-12-20 |
Family
ID=14481598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10831592A Expired - Lifetime JPH07119179B2 (en) | 1992-03-16 | 1992-03-16 | Purification method of acetylene gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07119179B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104892343A (en) * | 2015-04-30 | 2015-09-09 | 鄂尔多斯市君正能源化工有限公司 | Process apparatus for recovering acetylene gas from waste sodium hypochlorite liquid |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2939132B1 (en) * | 2008-11-28 | 2011-11-11 | Arkema France | MANUFACTURE OF MONOMERIC VINYL CHLORIDE FROM RENEWABLE MATERIALS, MONOMERIC VINYL CHLORIDE OBTAINED AND USE THEREOF |
CN110331003B (en) * | 2019-06-21 | 2021-07-13 | 航锦科技股份有限公司 | Recovery method of waste cleaning liquid for preparing acetylene by wet method |
CN110845063A (en) * | 2019-08-22 | 2020-02-28 | 青海宜化化工有限责任公司 | Acetylene sodium hypochlorite cleaning waste liquid circulation zero-emission system for PVC production process |
CN112299943B (en) * | 2020-11-23 | 2023-07-07 | 安徽皖维高新材料股份有限公司 | Acetylene cleaning device and method in vinyl acetate production process |
CN114849591A (en) * | 2022-05-06 | 2022-08-05 | 河南能源化工集团鹤壁煤化工有限公司 | Acetylene gas purification device in 1.4 butanediol production process and process thereof |
-
1992
- 1992-03-16 JP JP10831592A patent/JPH07119179B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104892343A (en) * | 2015-04-30 | 2015-09-09 | 鄂尔多斯市君正能源化工有限公司 | Process apparatus for recovering acetylene gas from waste sodium hypochlorite liquid |
Also Published As
Publication number | Publication date |
---|---|
JPH072704A (en) | 1995-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100325571B1 (en) | REMOVAL OF NOx AND SOx EMISSIONS FROM PICKLING LINES FOR METAL TREATMENT | |
US6365099B1 (en) | In situ gas scrubbing method and system for odor and corrosion control in wastewater collection systems | |
AU2003275051B2 (en) | Process for reducing the level of NOx in waste gas streams using sodium chlorite | |
EP1405827A1 (en) | Process and apparatus for treating nitrogen compound containing water | |
US20070034230A1 (en) | Method and system for producing ozonized deionized water | |
US7682520B2 (en) | Composition and method for chelated scavenging compounds | |
US20210230487A1 (en) | Chemical compositions and treatment systems and treatment methods using same for remediating h2s and other contaminants in fluids, including liquids,gasses and mixtures thereof | |
JP4557434B2 (en) | Gas removal system and method, scrubber assembly and method of operating the same | |
JPH07119179B2 (en) | Purification method of acetylene gas | |
KR20190032168A (en) | Apparatus for reducing air pollutant | |
US11266950B2 (en) | Methods and compositions for scrubbing chlorine-containing gases | |
US6827090B2 (en) | Process for removing deposits from water-carrying systems and devices for water supply | |
JP3129945B2 (en) | Semiconductor manufacturing exhaust gas treatment method | |
JP2020040855A (en) | Method for producing hydrogen gas | |
KR20010104007A (en) | Advanced Wastewater Treatment System Adding Dechlorination Process | |
JP2006281075A (en) | Alkaline wastewater neutralization system | |
JPH02267288A (en) | Etching liquid regenerator | |
KR102039719B1 (en) | Apparatus for reducing air pollutant | |
JPH08141582A (en) | Method and apparatus for treating industrial waste water | |
CN105696009B (en) | The processing unit and its application method of acid washing liquid for stainless steel | |
JP3423204B2 (en) | How to remove scale | |
US12084615B2 (en) | Chemical compositions and in-situ methods of using same for remediating sulfur-containing compositions and other contaminants in fluids being extracted from the earth | |
KR102122662B1 (en) | Gas dissolving system with double mixers | |
JPH08281064A (en) | Ozone removing method | |
JPS63137734A (en) | Fluorine control-type wet exhaust gas desulfurizer |