JPH07118929A - Polyvinyl alcohol fiber having water resistance and thermocompression bonding character - Google Patents

Polyvinyl alcohol fiber having water resistance and thermocompression bonding character

Info

Publication number
JPH07118929A
JPH07118929A JP26502293A JP26502293A JPH07118929A JP H07118929 A JPH07118929 A JP H07118929A JP 26502293 A JP26502293 A JP 26502293A JP 26502293 A JP26502293 A JP 26502293A JP H07118929 A JPH07118929 A JP H07118929A
Authority
JP
Japan
Prior art keywords
fiber
melting point
polymer
thermocompression bonding
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26502293A
Other languages
Japanese (ja)
Other versions
JP3254315B2 (en
Inventor
Akio Omori
昭夫 大森
Tomoyuki Sano
友之 佐野
Masahiro Sato
政弘 佐藤
Shunpei Naramura
俊平 楢村
Satoru Kobayashi
悟 小林
Yosuke Sekiya
洋輔 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP26502293A priority Critical patent/JP3254315B2/en
Publication of JPH07118929A publication Critical patent/JPH07118929A/en
Application granted granted Critical
Publication of JP3254315B2 publication Critical patent/JP3254315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain a polyvinyl alcohol fiber having a water resistance, thermocompression bonding character and a high strength, especially having the ordinary handleability of a fiber in a common use and having little dimensional change in a thermocompression-bonding treatment to enable thermocompression bonding. CONSTITUTION:This fiber is obtained by blending a polyvinyl alcohol polymer having high melting point and a water-resistant polymer having a low melting point in a specific range of the ratio and subjecting to low-temperature blended spinning in such a manner that the fiber is solidified evenly in the direction of the cross section. This is a strong fiber and has a sea-island configuration composed of a sea component consisting of a polyvinyl alcohol polymer having a high melting point and an island component consisting of a water resistant polymer having a low melting point, wherein the plenty number of island components preferably distribute within 1 p depth from the outermost surface of the fiber. Further, this fiber has the characteristic fiber function of the high-melting polyvinyl alcohol of the matrix phase in a common use but when pressure is applied at a high temperature during thermocompression bonding treatment the low melting polymer of the island component is extruded on the fiber surface to enable the thermocompression bonding of fibers with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐水性かつ熱圧着性の
ポリビニルアルコール系(以下PVA系と略記)繊維に
関するもので、従来困難とされてきた耐水性PVA系繊
維でありながら熱圧着を可能とするとともに、高強度で
しかも熱圧着時の繊維の寸法変化が小さいPVA系繊
維、その製法及びそれを用いた不織布に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water-resistant and thermocompression-bonding polyvinyl alcohol (hereinafter abbreviated as PVA-based) fibers. The present invention relates to a PVA-based fiber that enables high strength and has a small dimensional change of the fiber during thermocompression bonding, a method for producing the same, and a nonwoven fabric using the same.

【0002】[0002]

【従来の技術】溶融紡糸可能なポリエチレン、ポリエス
テルなどでは熱接着可能な繊維が市販されている。最近
では芯を高融点ポリマーとし、鞘を低融点ポリマーとす
る芯鞘複合繊維が開発され、熱接着時の収縮を抑えるこ
とが可能となり、この芯鞘複合熱接着性バインダー繊維
は、接着時の簡便性、高速性、無公害性のメリットを生
かして、ますます用途拡大しつつある。
2. Description of the Related Art For melt-spinnable polyethylene, polyester, etc., heat-bondable fibers are commercially available. Recently, a core-sheath composite fiber having a core as a high-melting polymer and a sheath as a low-melting polymer has been developed, which makes it possible to suppress shrinkage during heat bonding. Utilizing the merits of simplicity, high speed, and no pollution, the application is expanding more and more.

【0003】しかし、これらの熱接着性バインダー繊維
は、PVA系やセルロース系などの親水性繊維に対して
はその接着効果が低く、強力を必要とする用途には使用
できない。そのため強力を出すためにアクリル系、メラ
ミン系、PVA系等のポリマーが化学接着剤として単独
又は複合して使用されている。例えば、耐水性ビニロン
を材料とする乾式不織布に、アクリル系、メラミン系、
PVA系等のポリマー接着剤のエマルジョンまたは有機
溶剤溶液を単独又は複合して塗布するか含浸し、乾燥す
る方法が一般的に実施されているが、エマルジョンの場
合は、ポリマーの乾燥に時間を要するため低速生産しか
できないし、ローラーなどに接着剤やその変質物が固着
する問題もある。有機溶剤溶液の場合には揮発した有機
溶剤が人間の健康を害する問題がある。もし親水性のP
VA系繊維において熱接着性かつ耐水性繊維が開発でき
れば、親水性の不織布の高速生産が可能となる。またウ
ェットワイパー用基布として重要な親水性セルロース不
織布の高速生産が可能になる。
However, these thermo-adhesive binder fibers have a low adhesive effect to hydrophilic fibers such as PVA type and cellulose type, and cannot be used in applications requiring high strength. Therefore, polymers such as acrylic type, melamine type, and PVA type polymers are used alone or in combination as a chemical adhesive in order to obtain a high strength. For example, a dry non-woven fabric made of water resistant vinylon, acrylic, melamine,
A method of applying or impregnating an emulsion or an organic solvent solution of a polymer adhesive such as a PVA system or impregnating it with a composite and drying it is generally carried out, but in the case of an emulsion, it takes time to dry the polymer. Therefore, it can only be produced at low speeds, and there is also the problem that the adhesive and its alterations stick to the rollers. In the case of the organic solvent solution, there is a problem that the volatilized organic solvent impairs human health. If hydrophilic P
If heat-adhesive and water-resistant fibers can be developed for VA fibers, hydrophilic nonwoven fabrics can be produced at high speed. It also enables high-speed production of hydrophilic cellulose nonwoven fabric, which is important as a base cloth for wet wipers.

【0004】しかしながら、従来の熱接着性繊維は溶融
紡糸可能な疎水性ポリマーをベースとしており、親水性
繊維に対する熱接着性と耐水性を兼備し、かつ実用に耐
える他の繊維物性を有する繊維は知られていない。親水
性ポリマーの代表例であるPVA系ポリマーやセルロー
ス系ポリマーは、分子内に有する水酸基による分子間相
互作用が強く、融点が熱分解温度に近く、通常は熱分解
させずに溶融することが出来ず、熱接着性繊維を得るこ
とができない。
However, conventional heat-adhesive fibers are based on a melt-spinnable hydrophobic polymer, and have fibers having both heat-adhesiveness to hydrophilic fibers and water resistance, and other fiber properties that are practically usable. unknown. PVA-based polymers and cellulosic-based polymers, which are typical examples of hydrophilic polymers, have strong intermolecular interactions due to hydroxyl groups in the molecule, have a melting point close to the thermal decomposition temperature, and can usually be melted without thermal decomposition. No heat-bondable fibers can be obtained.

【0005】この背景下、PVA系ポリマーにおいて
も、共重合変性や後反応変性による内部可塑化及び可塑
剤混合による外部可塑化などにより、融点や軟化点を下
げ溶融成形を可能にしたり、ホットメルト接着剤として
使用する提案がなされている。例えば特開昭51−87
542号、特開昭51−96831号、特開昭53−5
0239号の各公報には、水溶性かつホットメルト性の
あるPVA系接着剤が開示されているが、これらホット
メルト性のPVA系ポリマーのみで繊維化しようとする
と、ホットメルト時の粘度を下げて接着性を大きくする
ため、PVAの重合度を600以下と低くしており、低
強度繊維しか得られないばかりでなく、熱接着性繊維と
して使用しようとすると、繊維化時配向していた分子が
熱接着時溶融して緩和するため、繊維が大きく収縮し、
実用的に使用することは困難である。
Against this background, even in PVA-based polymers, the melting point and softening point are lowered to enable melt molding by internal plasticization due to copolymerization modification or post-reaction modification and external plasticization due to mixing of a plasticizer, or hot melt. Proposals for use as an adhesive have been made. For example, JP-A-51-87
No. 542, JP-A-51-96831, JP-A-53-5.
Each of the publications of No. 0239 discloses a water-soluble and hot-melt PVA-based adhesive, but if it is attempted to fiberize only these hot-melt PVA-based polymers, the viscosity at the time of hot-melt is lowered. In order to increase the adhesiveness, the degree of polymerization of PVA is as low as 600 or less, so that not only low-strength fiber can be obtained, but when it is used as a heat-adhesive fiber, molecules that are oriented during fiberization Melts and relaxes during heat-bonding, so the fiber shrinks greatly,
It is difficult to use practically.

【0006】特公昭47−29579号や特公昭47−
42050号の各公報には、PVA溶液にエチレン−酢
ビコポリマーのエマルジョンを添加し、湿式紡糸して得
られる繊維はヒートシール性を有し、紙や不織布のバイ
ンダー繊維または主体繊維として使用できることが記載
されている。しかし、これらの公報の繊維製造法は芒硝
水溶液による脱水凝固法であり、スキンーコアが生成す
る不均一凝固紡糸であるため、高強度繊維とすることは
できない。
Japanese Patent Publication No. 47-29579 and Japanese Patent Publication No. 47-
In each publication of No. 42050, a fiber obtained by adding an ethylene-vinyl acetate copolymer emulsion to a PVA solution and performing wet spinning has heat sealability and can be used as a binder fiber or a main fiber of paper or a nonwoven fabric. Has been described. However, the fiber production methods of these publications are dehydration coagulation methods using an aqueous solution of Glauber's salt, and are non-uniform coagulated spinning in which a skin core is formed, and therefore cannot be made into high-strength fibers.

【0007】また特公昭41−6605号公報や特公昭
47−31376号公報には、完全ケン化PVAと部分
ケン化PVAを混合紡糸することにより、易フィブリル
化性繊維とすることが記載されている。しかしこれらの
技術は易フィブリル化繊維を目的としており、熱接着性
についての記載はない。また、これらの公報の繊維製造
法は芒硝水溶液による脱水凝固法であり、スキンーコア
が生成する不均一凝固紡糸であるため、高強度繊維とす
ることはできない。
Further, Japanese Patent Publication No. 41-6605 and Japanese Patent Publication No. 47-31376 describe that a fiber which can be easily fibrillated is prepared by mixing and spinning a completely saponified PVA and a partially saponified PVA. There is. However, these techniques are aimed at easily fibrillated fibers, and there is no description of thermal adhesiveness. Further, the fiber production methods of these publications are dehydration coagulation methods using an aqueous solution of Glauber's salt, and since they are heterogeneous coagulated spinning in which a skin core is formed, high strength fibers cannot be obtained.

【0008】また特公昭51−28729号公報には、
PVAとポリアクリロニトリルとアクリルニトリルグラ
フト重合PVAを共通溶媒のジメチルスルホキシド(以
下DMSOと略記)に溶解し、湿式紡糸して得られたゲ
ル糸条を延伸し、そして叩解した自己接着性合成パルプ
が記載されているが、PVAもポリアクリロニトリルも
分解なしに熱溶融することは困難なため熱接着性繊維を
得ることができない。
Further, Japanese Patent Publication No. 51-28729 discloses that
PVA, polyacrylonitrile, and acrylonitrile graft polymerization PVA is dissolved in dimethylsulfoxide (hereinafter abbreviated as DMSO), which is a common solvent, and a gel yarn obtained by wet spinning is drawn and beaten to describe a self-adhesive synthetic pulp. However, since it is difficult to heat melt PVA and polyacrylonitrile without decomposition, a heat-adhesive fiber cannot be obtained.

【0009】また特開昭52−5318号公報には、低
重合度かつ低ケン化度PVAと繊維形成能を有するポリ
マーとを混合または複合紡糸し、水洗処理することによ
り低重合度かつ低ケン化度のPVAを除去して極細繊維
を製造することが提案されているが、本発明とは目的が
まったく違い、耐水性の熱接着性繊維は得ることができ
ない。
Further, in JP-A-52-5318, a low polymerization degree and a low saponification degree PVA and a polymer having a fiber-forming ability are mixed or composite-spun and washed with water to obtain a low polymerization degree and a low saponification degree. It has been proposed to produce ultrafine fibers by removing the degree of conversion of PVA, but the purpose is completely different from the present invention, and water-resistant heat-bondable fibers cannot be obtained.

【0010】また特開平1−260017号公報には、
ケン化度80〜95モル%のPVA系ポリマーを芯成
分、ケン化度96モル%以上のPVA系ポリマーを鞘成
分とした高強度水崩壊型PVA系複合繊維が提案されて
いる。この複合繊維では、本発明繊維とは目的が異な
り、耐水性の熱接着性繊維は得ることができない。
Further, Japanese Patent Laid-Open No. 1-260017 discloses that
A high-strength water-disintegrating PVA-based composite fiber has been proposed which uses a PVA polymer having a saponification degree of 80 to 95 mol% as a core component and a PVA polymer having a saponification degree of 96 mol% or more as a sheath component. With this conjugate fiber, the purpose is different from that of the fiber of the present invention, and a water-resistant heat-bondable fiber cannot be obtained.

【0011】[0011]

【発明が解決しようとする課題】上記の如く、熱接着性
と耐水性を兼備し、高強度であるPVA系繊維の出現が
強く望まれているが、従来の技術では得られていない。
従って本発明の課題は、耐水性かつ熱接着性を有する高
強度PVA系繊維を得ることにある。またそれを用いた
不織布及び繊維の製造法を提供することにある。
As described above, it has been strongly desired to develop a PVA-based fiber having both high heat-adhesiveness and water resistance and high strength, but it has not been obtained by the conventional technique.
Therefore, an object of the present invention is to obtain a high-strength PVA-based fiber having water resistance and thermal adhesiveness. Moreover, it is providing the manufacturing method of the nonwoven fabric and fiber using it.

【0012】[0012]

【課題を解決するための手段】上記課題に対し、本発明
者らは鋭意検討を重ねた結果、本発明を完成した。すな
わち本発明は、融点が220℃以上であるPVA系ポリ
マーが海成分であり、融点または融着温度が210℃未
満である耐水性ポリマーが島成分である海島構造であっ
て、両ポリマーのブレンド比が98/2〜55/45の
範囲であり、かつ強度が7g/dr以上であることを特
徴とする高強度にして耐水性かつ熱圧着性のPVA系繊
維である。
[Means for Solving the Problems] The present inventors have completed the present invention as a result of intensive studies on the above problems. That is, the present invention has a sea-island structure in which a PVA-based polymer having a melting point of 220 ° C. or higher is a sea component, and a water-resistant polymer having a melting point or a fusion temperature of less than 210 ° C. is an island component, and a blend of both polymers. A high-strength, water-resistant and thermocompression-bondable PVA-based fiber having a ratio of 98/2 to 55/45 and a strength of 7 g / dr or more.

【0013】本発明繊維は、海島構造を有する多成分繊
維であって、融点220℃以上であるPVA系ポリマー
が海成分である。マトリックスとなる海成分PVA系ポ
リマーの融点が220℃未満では本発明繊維の耐熱性、
耐水性が不十分となり実用に耐える繊維を得ることが出
来ない。また高強度繊維を得ることができない。海成分
PVA系ポリマーの融点が225℃以上であるとさらに
好ましい。海成分ポリマーの融点の上限に特別な限定は
ないが、融点が260℃以上であるPVAは一般的では
ない。
The fiber of the present invention is a multi-component fiber having a sea-island structure, and the PVA polymer having a melting point of 220 ° C. or higher is the sea component. When the melting point of the sea component PVA-based polymer that becomes the matrix is less than 220 ° C., the heat resistance of the fiber of the present invention
The water resistance is insufficient and it is not possible to obtain fibers that can be used practically. Also, high strength fibers cannot be obtained. More preferably, the melting point of the sea component PVA-based polymer is 225 ° C. or higher. There is no particular limitation on the upper limit of the melting point of the sea component polymer, but PVA having a melting point of 260 ° C. or higher is not common.

【0014】海成分PVA系ポリマーの具体例をあげる
と、重合度500〜24,000で、ケン化度が99〜
100モル%の高ケン化度PVAである。重合度が15
00〜4000、ケン化度が99.5〜100モル%で
あると耐水性及び熱圧着性の点でさらに好ましい。また
エチレン、アリルアルコール、イタコン酸、アクリル
酸、無水マレイン酸とその開環物、アリールスルホン
酸、ピバリン酸ビニルの如く炭素数が4以上の脂肪酸ビ
ニルエステル、ビニルピロリドン及び上記イオン性基の
一部また全量中和物などの変性ユニットにより変性した
PVAも包含される。変性ユニットの量は1モル%未
満、好ましくは0.5モル%以下である。変性ユニット
の導入法は、共重合でも後反応でも特別な限定はない。
変性ユニットの分布はランダムでも、ブロックでも限定
はない。ブロック的に分布させると結晶化阻害効果が小
さく、ランダムより多く変性しても高融点を保ちうる。
高ケン化度の高融点PVA系ポリマーを連続相とするこ
とにより高融点ポリマー単独繊維に近い性能を得ること
ができ、また繊維の最表層を高融点ポリマーとすること
により、繊維製造工程における硬着を防止することが可
能となる。
Specific examples of the sea component PVA-based polymer include a polymerization degree of 500 to 24,000 and a saponification degree of 99 to.
Highly saponified PVA of 100 mol%. Polymerization degree is 15
It is more preferable that the saponification degree is from 00 to 4000 and the saponification degree is from 99.5 to 100 mol% from the viewpoint of water resistance and thermocompression bonding. In addition, ethylene, allyl alcohol, itaconic acid, acrylic acid, maleic anhydride and ring-opened products thereof, arylsulfonic acid, fatty acid vinyl esters having 4 or more carbon atoms such as vinyl pivalate, vinylpyrrolidone and a part of the above ionic groups. In addition, PVA modified with a modification unit such as a neutralized product is also included. The amount of modifying unit is less than 1 mol%, preferably 0.5 mol% or less. The method of introducing the modifying unit is not particularly limited, whether it is copolymerization or a post reaction.
The distribution of the denaturing unit is not limited to random or block. When distributed in blocks, the crystallization-inhibiting effect is small, and the high melting point can be maintained even if it is modified more than randomly.
By using a high melting point PVA-based polymer having a high degree of saponification as a continuous phase, it is possible to obtain a performance close to that of a single fiber having a high melting point, and by using a high melting point polymer as the outermost layer of the fiber, it becomes It is possible to prevent wearing.

【0015】本発明海島繊維の島成分は融点または融着
温度が210℃未満の耐水性ポリマーを用いる。融点が
210℃以上であると熱圧着温度が高くなり過ぎ、熱圧
着時海成分のPVA系ポリマーの配向性・結晶性を破壊
し易いので好ましくない。また融点を持たない耐水性の
非晶ポリマーであっても、その非晶性ポリマーチップを
所定温度に加熱し、0.1kg/cm2の圧力を10分
間印加した際チップ同志が融着する最低温度を融着温度
とした時、融着温度が210℃未満の耐水性非晶ポリマ
ーは本発明の耐水性ポリマーに包含され、島成分耐水性
ポリマーとして有効に用いることができる。島成分耐水
性ポリマーの融点、あるいは融着温度(以下この温度も
融点という語に含めて使用する)が200℃以下である
とより好ましく、190℃以下であるとさらに好まし
い。さらに海成分と島成分の融点差が15℃以上である
と、熱圧着時の繊維寸法変化が小さくなるので好まし
い。融点差が30℃以上であるとより好ましく、50℃
以上であるとさらに好ましい。融点が210℃未満の耐
水性ポリマーは低配向、低結晶性であるため、繊維のマ
トリックスである海成分に用いると、低強度、低耐熱性
となるので不都合である。また低融点ポリマーが繊維最
表面に存在すると繊維製造工程おいて硬着し易く、この
点からも低融点ポリマーは島成分とすることが必要であ
る。
As the island component of the sea-island fiber of the present invention, a water resistant polymer having a melting point or a fusion temperature of less than 210 ° C. is used. If the melting point is 210 ° C. or higher, the thermocompression bonding temperature becomes too high, and the orientation and crystallinity of the PVA-based polymer of the sea component are easily destroyed during thermocompression bonding, which is not preferable. Even if the water-resistant amorphous polymer does not have a melting point, the minimum temperature at which the amorphous polymer chips fuse to each other when the amorphous polymer chips are heated to a predetermined temperature and a pressure of 0.1 kg / cm 2 is applied for 10 minutes. When the temperature is the fusion temperature, the water resistant amorphous polymer having a fusion temperature of less than 210 ° C. is included in the water resistant polymer of the present invention and can be effectively used as the island component water resistant polymer. The island component water-resistant polymer preferably has a melting point or a fusion temperature (hereinafter, this temperature is also included in the term "melting point") of 200 ° C or lower, and more preferably 190 ° C or lower. Furthermore, it is preferable that the difference in melting point between the sea component and the island component is 15 ° C. or more because the fiber dimensional change during thermocompression bonding becomes small. The melting point difference is more preferably 30 ° C. or higher, and 50 ° C.
It is more preferable that it is above. Since the water-resistant polymer having a melting point of less than 210 ° C. has low orientation and low crystallinity, it is disadvantageous when it is used for the sea component which is the matrix of the fiber because it has low strength and low heat resistance. Further, when the low melting point polymer is present on the outermost surface of the fiber, it is easy to harden in the fiber manufacturing process, and from this point as well, it is necessary to use the low melting point polymer as an island component.

【0016】本発明にいう融点210℃未満の耐水性ポ
リマーの具体例としては、エチレン/ビニルアルコール
コポリマー(モル組成比=50/50〜20/80),
エチレン/酢ビコポリマー(モル組成比=92/8〜2
0/80),ポリビニルブチラール,ポリビニルホルマ
ール,炭素数3〜20の脂肪酸のビニルエステルで変性
されたPVA,変性アクリル樹脂,ポリイソプレンなど
の炭化水素系エラストマー,ポリウレタン系エラストマ
ーなどがあげられる。とりわけ、セルロース系繊維やP
VA系繊維等の親水性繊維への優れた熱接着性、性能再
現性(安定性)、コストの点で、エチレン/ビニルアル
コールコポリマー(モル組成比=50/50〜20/8
0),エチレン/酢ビコポリマー(モル組成比=92/
8〜20/80)のPVA系ポリマーは本発明繊維の島
成分として有用である。島成分ポリマーの重合度に特別
な限定はないが、島成分は、繊維強度に寄与せず、接着
性に寄与することが重要であるから、熱圧着時流動性の
よい低重合度、例えば100〜1000が好ましい。
Specific examples of the water resistant polymer having a melting point of less than 210 ° C. in the present invention include ethylene / vinyl alcohol copolymer (molar composition ratio = 50/50 to 20/80),
Ethylene / vinyl acetate copolymer (molar composition ratio = 92/8 to 2
0/80), polyvinyl butyral, polyvinyl formal, PVA modified with vinyl ester of fatty acid having 3 to 20 carbon atoms, modified acrylic resin, hydrocarbon elastomer such as polyisoprene, polyurethane elastomer and the like. Above all, cellulosic fibers and P
The ethylene / vinyl alcohol copolymer (molar composition ratio = 50/50 to 20/8) is excellent in thermal adhesion to hydrophilic fibers such as VA-based fibers, performance reproducibility (stability), and cost.
0), ethylene / vinyl acetate copolymer (molar composition ratio = 92 /
8-20 / 80) PVA-based polymer is useful as an island component of the fiber of the present invention. There is no particular limitation on the degree of polymerization of the island component polymer, but it is important that the island component does not contribute to the fiber strength but to the adhesiveness. ~ 1000 is preferred.

【0017】本発明海島繊維の海成分/島成分のブレン
ド比は重量比で98/2〜55/45の範囲である。海
成分の高融点PVA系ポリマーが55%より少ないと高
強度繊維が得られない。またこの高融点PVA系ポリマ
ーが55%より少なくなり、低融点耐水性ポリマーが4
5%より多くなると、低融点耐水性ポリマーが海成分と
なる傾向になり、硬着の点で好ましくない。一方、低融
点耐水性ポリマーが2%より少ないと、実用に耐える熱
圧着性能を得ることができない。強度と熱圧着性のバラ
ンスより、海/島ブレンド比が95/5〜60/40で
あるとより好ましく、92/8〜70/30であるとさ
らに好ましい。
The sea component / island component blend ratio of the sea-island fiber of the present invention is in the range of 98/2 to 55/45 by weight. If the content of the high melting point PVA polymer of the sea component is less than 55%, high strength fibers cannot be obtained. The high melting point PVA-based polymer is less than 55%, and the low melting point water resistant polymer is 4%.
When it is more than 5%, the low melting point water resistant polymer tends to become a sea component, which is not preferable in terms of hardening. On the other hand, if the low-melting-point water resistant polymer is less than 2%, the thermocompression bonding performance that can be practically used cannot be obtained. From the balance of strength and thermocompression bonding property, the sea / island blend ratio is more preferably 95/5 to 60/40, and further preferably 92/8 to 70/30.

【0018】また本発明繊維において島成分の低融点ポ
リマーは繊維の最表層に存在することは好ましくない
が、最表層近くに存在することが好ましい。最表層近辺
での海成分の最小厚み(島成分の低融点ポリマーの繊維
最表面までの最近接距離)は、熱圧着時最表層の高融点
PVA系ポリマーが破れ、島成分の低融点耐水性ポリマ
ーが表面に押し出され接着力を得るために重要である。
最表層より0.01〜2μの内側に島成分の少なくとも
一部を存在させることが好ましい。島成分は繊維断面方
向に均一に分布させてもよいが、表面側により集中して
分布させることが好ましい。また島成分は繊維軸方向に
連続であってもよいが、必ずしも連続である必要はな
く、球状或いは断続した細長い棒状あるいはラグビーボ
ール状であってもよい。
In the fiber of the present invention, the low melting point polymer of the island component is not preferably present in the outermost surface layer of the fiber, but is preferably present in the vicinity of the outermost surface layer. The minimum thickness of the sea component (closest distance to the fiber outermost surface of the low melting point polymer of the island component) near the outermost layer is that the high melting point PVA polymer of the outermost layer breaks during thermocompression bonding, and the low melting point water resistance of the island component It is important for the polymer to be extruded on the surface and for adhesion.
It is preferable that at least a part of the island component is present within 0.01 to 2 μm from the outermost layer. The island component may be uniformly distributed in the fiber cross-sectional direction, but it is preferable to distribute it more concentratedly on the surface side. Further, the island component may be continuous in the fiber axis direction, but is not necessarily continuous, and may be spherical or intermittent long and thin rod-like or rugby ball-like.

【0019】本発明繊維は7g/dr以上の強度を有す
る。7g/dr未満の強度では、例えば、本発明繊維の
用途の1つであるヒートシール性湿式不織布の主体繊維
として用いる場合、単繊維の強度が弱いと低強度の紙し
か得ることができない。また他の用途の一つである熱圧
着性可能な乾式不織布において、高強度繊維であると、
低目付化することが可能となり、不織布が柔軟となり、
取扱い性やドレープ性がよくなるが、繊維強度が低いと
低目付化が困難である。また繊維強度が高くなり、不織
布が強くなると不織布の生産速度も向上する。ウェット
ワイパー用基布として親水性のセルロース基材などに本
発明の繊維をブレンドする場合も、繊維強度が大きいと
ブレンド量を減少させうるなどの大きなメリットがあ
る。本発明繊維は熱圧着することによりその機能を発揮
する。熱圧着により多少強度が低下しても十分な強度を
有することが重要であり、このためには熱圧着前の強度
が大きいことが必要である。本発明の繊維は強度が8g
/d以上であることがより好ましく、さらに好ましくは
10g/dである。
The fiber of the present invention has a strength of 7 g / dr or more. When the strength is less than 7 g / dr, for example, when it is used as a main fiber of a heat-sealable wet non-woven fabric, which is one of the applications of the fiber of the present invention, if the strength of the single fiber is weak, only low strength paper can be obtained. In the dry non-woven fabric capable of thermocompression bonding, which is one of the other applications, if it is a high-strength fiber,
It is possible to reduce the basis weight, and the nonwoven fabric becomes flexible,
The handling property and drapeability are improved, but it is difficult to reduce the basis weight when the fiber strength is low. Further, as the fiber strength increases and the nonwoven fabric becomes stronger, the production speed of the nonwoven fabric also improves. Even when the fiber of the present invention is blended with a hydrophilic cellulosic substrate as a base cloth for wet wipers, there is a great merit that the blending amount can be reduced if the fiber strength is high. The fiber of the present invention exerts its function by thermocompression bonding. It is important to have sufficient strength even if the strength is slightly lowered by thermocompression bonding, and for this purpose, the strength before thermocompression bonding is required to be high. The fiber of the present invention has a strength of 8 g.
/ D or more is more preferable, and even more preferably 10 g / d.

【0020】以上のように、本発明繊維は、従来の疎水
性ポリマーにおける芯鞘複合熱接着性繊維では芯を高融
点ポリマーとして、鞘を低融点ポリマーとしているのと
は逆に、海成分を高融点ポリマーとし、島成分を低融点
ポリマーとし、通常は高配向、高結晶性の高融点PVA
系ポリマーによる優れた繊維性能を発揮し、熱圧着(高
温かつ高圧印加)時繊維最表層の高融点PVA系ポリマ
ー相が破れ、表層近くの島を形成している熱接着性の低
融点耐水性ポリマーが、繊維表面に押し出され、別の繊
維の島成分の耐水性ポリマー同志と接着したり、或いは
海成分の高融点ポリマーと接着することにより、熱圧着
性を確保したものである。高配向、高結晶化した高融点
PVAポリマーがマトリックス相を形成するため、島成
分が低配向、低結晶の低融点耐水性ポリマーであっても
強度や寸法安定性が優れており、しかも熱圧着時におい
てもマトリックス相は大きな影響を受けないため、熱圧
着時寸法変化が小さくかつ熱圧着後でも高い強度を得る
ことができる特徴がある。
As described above, in the fiber of the present invention, in contrast to the core-sheath composite heat-adhesive fiber in the conventional hydrophobic polymer in which the core is the high melting point polymer and the sheath is the low melting point polymer, the sea component is High melting point polymer, island component low melting point polymer, usually high orientation, high crystallinity high melting point PVA
Excellent polymer performance due to the base polymer, the high melting point PVA polymer phase of the fiber outermost layer is broken during thermocompression bonding (high temperature and high pressure application), forming islands near the surface layer. The polymer is extruded on the surface of the fiber and adheres to the water resistant polymer of the island component of another fiber, or to the high melting point polymer of the sea component to ensure thermocompression bonding. Highly oriented and highly crystallized high melting point PVA polymer forms a matrix phase, so even if the island component is low oriented and low crystalline low melting point water resistant polymer, it has excellent strength and dimensional stability, and thermocompression bonding Since the matrix phase is not greatly affected by the time, the dimensional change during thermocompression bonding is small and high strength can be obtained even after thermocompression bonding.

【0021】本発明において熱圧着とは、80℃以上の
温度で1kg/cm以上の線圧または2kg/cm2
上の面圧を印加することにより繊維を接着することをい
う。温度が80℃未満、線圧1kg/cm未満、あるい
は面圧2kg/cm2未満では最表層の高融点PVA系
ポリマー相が破れず、島成分の低融点耐水性ポリマーが
繊維表面に押し出されてこないので接着力が低い。最表
層の高融点ポリマーを昇温し柔らかくなった状態で圧力
を加えることにより最表層のポリマー相を破り、表層近
くにある接着成分の低融点ポリマーが押し出され接着す
ることが可能となる。熱圧着温度が高過ぎると、海成分
の分子配向や結晶までこわれる可能性があるので、23
0℃以上とすべきではない。海/島のポリマー仕様、分
布状態及び印加圧力などにより、適正圧着温度は変わる
が、100〜210℃が好ましく、120〜200℃で
あるともっと好ましく、130〜190℃であるとさら
に好ましい。また印加圧力があまり高いと海成分の繊維
構造をこわしてしまい、熱圧着後の繊維強力が低下する
ので好ましくない。熱カレンダーローラーなどによる線
圧は500kg/cm以下が好ましい。線圧が200k
g/cm以下であるともっと好ましく、100kg/c
m以下であるとさらに好ましい。熱プレスなどによる面
圧は1000kg/cm2以下が好ましい。面圧が40
0kg/cm2以下であるともっと好ましく、200k
g/cm2以下であるとさらに好ましい。通常は5〜5
0kg/cmの線圧あるいは10〜100kg/cm2
の面圧が使用される。熱圧着時間は0.01〜10秒程
度の短い時間でも熱圧着可能である。短時間処理で接着
しうることが熱圧着法の極めて重要な特性である。本発
明繊維の場合熱圧着時間を10分以上とすると却って接
着力が低下する傾向にある。この原因は不明であるが、
ポリマーの結晶化に関係すると推測される。このため、
処理時間の長い面圧印加タイプの熱プレス法より処理時
間の短かい線圧印加タイプの熱カレンダーロール法がよ
り好ましく熱圧着に使用しうる。
In the present invention, the thermocompression bonding means that the fibers are bonded by applying a linear pressure of 1 kg / cm or more or a surface pressure of 2 kg / cm 2 or more at a temperature of 80 ° C. or more. When the temperature is less than 80 ° C., the linear pressure is less than 1 kg / cm, or the surface pressure is less than 2 kg / cm 2 , the high melting point PVA polymer phase of the outermost layer is not broken, and the low melting point water resistant polymer of the island component is extruded on the fiber surface. Since it does not come, the adhesive strength is low. By heating the high melting point polymer of the outermost layer and applying pressure in a softened state, the polymer phase of the outermost layer is broken, and the low melting point polymer of the adhesive component near the surface layer can be extruded and adhered. If the thermocompression bonding temperature is too high, the molecular orientation of sea components and even crystals may be broken.
Should not be above 0 ° C. The appropriate pressure bonding temperature varies depending on the sea / island polymer specifications, distribution state, applied pressure, etc., but is preferably 100 to 210 ° C., more preferably 120 to 200 ° C., and further preferably 130 to 190 ° C. If the applied pressure is too high, the fiber structure of the sea component will be broken, and the fiber strength after thermocompression bonding will be reduced, which is not preferable. The linear pressure applied by a thermal calendar roller or the like is preferably 500 kg / cm or less. Linear pressure is 200k
More preferably g / cm or less, 100 kg / c
It is more preferably m or less. The surface pressure by hot pressing or the like is preferably 1000 kg / cm 2 or less. Surface pressure is 40
More preferably 0 kg / cm 2 or less, 200 k
It is more preferably g / cm 2 or less. Usually 5-5
Linear pressure of 0 kg / cm or 10 to 100 kg / cm 2
Surface pressure is used. The thermocompression bonding time can be as short as 0.01 to 10 seconds or so. The ability to bond in a short time is a very important property of the thermocompression bonding method. In the case of the fiber of the present invention, if the thermocompression bonding time is set to 10 minutes or longer, the adhesive force tends to decrease rather. The cause is unknown,
It is assumed to be related to the crystallization of the polymer. For this reason,
The linear pressure application type thermal calender roll method, which has a shorter treatment time, is more preferable than the surface pressure application type heat press method, which has a longer treatment time, and can be preferably used for thermocompression bonding.

【0022】次に本発明繊維を製造する方法について記
載する。上記の高融点PVA系ポリマーと低融点耐水性
ポリマーを98/2〜55/45の割合で溶媒に溶解し
て紡糸原液を得る。ここにいう溶媒とは少なくとも高融
点PVA系ポリマーを溶解する溶媒でなければならな
い。低融点耐水性ポリマーをも溶解する共通溶媒である
ことがより好ましいが、必ずしも溶解しなくとも、高融
点PVA系ポリマー溶液中で10μ以下に分散するよう
粉砕分散が可能であれば使用可能である。分散粒径が5
μ以下であると好ましく、1μ以下であるとさらに好ま
しい。両ポリマーの共通溶媒に溶解しても両ポリマーの
相溶性如何によっては均一透明溶液とはならない。むし
ろ紡糸原液状態で、高融点PVA系ポリマーがマトリッ
クス(海)相、低融点耐水性ポリマーの液滴が島相に微
分散したポリマーブレンド溶液となって、濁りのある均
一微分散相分離液となることが好ましい。勿論、両ポリ
マーの相溶性が良好である場合は均一透明溶液となり、
繊維化時、高融点ポリマーが海成分となるよう原液・紡
糸条件をとれば、本発明繊維を製造しうる。
Next, a method for producing the fiber of the present invention will be described. The above-mentioned high melting point PVA-based polymer and low melting point water resistant polymer are dissolved in a solvent at a ratio of 98/2 to 55/45 to obtain a spinning dope. The solvent mentioned here must be a solvent that dissolves at least the high melting point PVA polymer. A common solvent that also dissolves the low-melting point water-resistant polymer is more preferable, but it is not always necessary to use it, but it can be used if it can be pulverized and dispersed so as to be dispersed in a high-melting point PVA-based polymer solution to 10 μm or less. . Dispersed particle size is 5
It is preferably μ or less, more preferably 1 μ or less. Even if dissolved in a common solvent for both polymers, a homogeneous transparent solution cannot be obtained depending on the compatibility of both polymers. Rather, it is a polymer blend solution in which the high melting point PVA polymer is finely dispersed in the matrix (sea) phase and the low melting point water resistant polymer droplets are finely dispersed in the island phase in the spinning stock solution state, resulting in a turbid homogeneous finely dispersed phase separation liquid. It is preferable that Of course, when the compatibility of both polymers is good, it becomes a uniform transparent solution,
The fiber of the present invention can be produced if the undiluted solution and the spinning conditions are set so that the high-melting point polymer becomes the sea component during fiberization.

【0023】本発明繊維の製造法に用いる溶媒の具体例
として、ジメチルスルホキシド(以下DMSOと略
記)、ジメチルアセトアミド、N−メチルピロリドン、
ジメチルイミダゾリジノンなどの極性溶媒やグリセリ
ン、エチレングリコールなどの多価アルコール類、硝
酸、硫酸などの強酸、ロダン塩、塩化亜鉛などの濃厚水
溶液、及びこれらの溶媒の混合液などがあげられる。と
りわけDMSOが低温溶解性、低毒性、低腐蝕性などの
点で好ましい。溶媒に両ポリマーを添加し、撹拌溶解す
るか、特に相分離液となる場合溶解時微分散するよう撹
拌を強力に行なうとともに脱泡放置時凝集沈降しないよ
う泡が咬み込まぬ程度に低速撹拌を続けるなどの配慮が
好ましい。
Specific examples of the solvent used in the method for producing the fiber of the present invention include dimethyl sulfoxide (hereinafter abbreviated as DMSO), dimethylacetamide, N-methylpyrrolidone,
Examples thereof include polar solvents such as dimethylimidazolidinone, polyhydric alcohols such as glycerin and ethylene glycol, strong acids such as nitric acid and sulfuric acid, concentrated aqueous solutions such as rhodan salts and zinc chloride, and mixed solutions of these solvents. DMSO is particularly preferable in terms of low-temperature solubility, low toxicity, low corrosion and the like. Add both polymers to the solvent and stir to dissolve, or strongly stir to finely disperse when dissolving, especially when it becomes a phase-separated liquid, and also perform low-speed stirring to the extent that bubbles do not bite so as not to coagulate and settle while leaving degassing. Consideration such as continuing is preferable.

【0024】次に、紡糸原液の粘度については、紡糸法
により異なるが、紡糸時ノズル近辺の温度で5〜500
0ポイズが好ましい。例えば乾式紡糸では500〜50
00ポイズ、乾湿式紡糸では80〜800ポイズ、湿式
紡糸では5〜200ポイズになるようにポリマー濃度及
び原液温度を調整する。両ポリマー以外に両ポリマーの
紡糸原液状態及び繊維状態での海島構造制御のため相溶
化剤や相分離促進剤などを適宜添加してもよい。原液に
はその他特定の目的のために種々の添加剤を添加しても
よい。例えば、ポリマーの劣化防止のための酸化防止
剤、光安定剤、紫外線吸収剤、繊維着色のための顔料や
染料、界面張力制御のための界面活性剤、pH調整のた
めの酸あるいはアルカリなどである。
Next, although the viscosity of the spinning dope varies depending on the spinning method, it is 5 to 500 at the temperature near the nozzle during spinning.
0 poise is preferred. For example, in dry spinning, 500 to 50
The polymer concentration and the undiluted solution temperature are adjusted so as to be 00 poise, 80-800 poise for dry-wet spinning, and 5-200 poise for wet spinning. In addition to both polymers, a compatibilizer, a phase separation accelerator, etc. may be appropriately added for controlling the sea-island structure of both polymers in the spinning stock solution state and the fiber state. Various additives may be added to the stock solution for other specific purposes. For example, with antioxidants, light stabilizers, UV absorbers for preventing polymer deterioration, pigments and dyes for fiber coloring, surfactants for controlling interfacial tension, acids or alkalis for pH adjustment, etc. is there.

【0025】次に得られた原液を乾式紡糸、乾湿式紡糸
あるいは湿式紡糸する。乾式紡糸においては、溶媒が蒸
発する間に高融点ポリマーがマトリックス(海成分)、
低融点ポリマーが島となるよう紡糸延伸条件を選定し、
得られた繊維を捲き取る。乾湿式紡糸においては、原液
をノズルより一旦不活性気体層(例えば空気層)に吐出
し、次いで固化液に通し、固化と原液溶媒の抽出を行
い、湿延伸、乾熱延伸を施こし捲き取る。または湿式紡
糸においては、原液をノズルより直接固化液に吐出し、
固化、抽出を行ない、湿延伸、乾熱延伸を施こし捲き取
る。いずれの紡糸法においても高融点ポリマーが海成分
に低融点ポリマーが島成分になるように原液及び紡糸条
件を配慮する必要がある。具体的には海成分となるべき
高融点ポリマーのブレンド比を多くすることが有効であ
る。また原液及び紡糸条件を相分離し易い方向にするこ
とが有効である。
Next, the obtained stock solution is subjected to dry spinning, dry wet spinning or wet spinning. In dry spinning, the high melting point polymer is a matrix (sea component) while the solvent evaporates.
Select the spinning and drawing conditions so that the low melting point polymer becomes islands,
The obtained fiber is wound up. In dry-wet spinning, the stock solution is once discharged from a nozzle into an inert gas layer (for example, an air layer), then passed through a solidification solution, solidification and extraction of the stock solution solvent are performed, wet drawing and dry heat drawing are performed, and the film is wound up. . Or in wet spinning, the stock solution is directly discharged from the nozzle to the solidifying solution,
After solidification and extraction, wet stretching and dry heat stretching are applied and wound up. In either spinning method, it is necessary to consider the stock solution and spinning conditions so that the high melting point polymer becomes the sea component and the low melting point polymer becomes the island component. Specifically, it is effective to increase the blending ratio of the high melting point polymer to be the sea component. In addition, it is effective to set the stock solution and the spinning conditions so as to facilitate phase separation.

【0026】また本発明においては、強度を7g/d以
上とするため、固化過程において均一な固化糸篠とす
る。均一な固化が行なわれたことの確認は延伸後の繊維
断面を光学顕微鏡で観察し、ほぼ円型の断面の繊維が得
られた場合には、均一な固化が行なわれたと判断でき
る。従来、PVAの紡糸に一般的に用いられている濃厚
芒硝水溶液を固化浴に用いると、不均一固化となるた
め、断面がまゆ型となり、延伸配向が十分行なえず7g
/d以上の強度を得ることができない。また原液に硼酸
を添加し、アルカリ性脱水塩類浴に固化する場合、濃厚
芒硝水溶液を固化浴に用いた場合に比べると、均一固化
に近付くため、断面が偏平となるが、円型とはならず不
十分である。一方メタノールやエタノールなどのアルコ
ール類、アセトン、メチルエチルケトンなどのケトン
類、酢酸メチルや酢酸エチルなどの脂肪族エステル類、
及びこれらと原液溶媒との混合溶媒などの海成分となる
高融点PVA系ポリマーに対して固化能を有する有機溶
剤を固化浴に用いると、均一な固化となるため、断面が
ほぼ円型となり、その後の湿延伸及び乾熱延伸により十
分な配向結晶化を行なうことができ、強度7g/dr以
上の達成が可能となる。なお本発明で言う繊維の横断面
形状は、通常の光学顕微鏡を用いて観測されるものであ
る。より均一なゲル糸篠を得るためには、固化浴の温度
を0〜10℃の低温とすることが好ましい。なお、これ
ら固化浴は島成分となる低融点耐水性ポリマーに対して
は必ずしも固化能を有する必要はない。極端には低融点
ポリマーは固化浴に対して可溶であっても、紡糸可能で
ある。但しこの場合高融点ポリマー/低融点ポリマーの
ブレンド比が6/4より低融点ポリマーが多いと固化浴
中に溶出したり、繊維が硬着するので好ましくない。7
/3より低融点ポリマーが少ないとより好ましい。低融
点ポリマーが固化浴に可溶の場合、固化時低融点ポリマ
ーが原液溶媒とともに固化糸篠の表面方向に移動する傾
向にあり、繊維中央部より表層部により多く分布する傾
向にあるので、低融点ポリマーのブレンド量が少なくて
も本発明の目的である熱圧着性の低下が少ないという予
想外の好ましい傾向を見出した。低融点ポリマーのブレ
ンド量が少ないと高強度繊維が得られる利点もある。
Further, in the present invention, since the strength is 7 g / d or more, a uniform solidified yarn is obtained in the solidifying process. To confirm that uniform solidification was performed, the cross section of the fiber after stretching was observed with an optical microscope, and when a fiber having a substantially circular cross section was obtained, it can be determined that uniform solidification was performed. Conventionally, when a concentrated Glauber's salt aqueous solution generally used for spinning PVA is used in the solidifying bath, the solidification becomes nonuniform, resulting in a cocoon-shaped cross section and insufficient stretch orientation.
/ D or more cannot be obtained. In addition, when boric acid is added to the stock solution and solidified in an alkaline dehydration salt bath, compared to the case where a concentrated aqueous solution of Glauber's salt is used in the solidification bath, the solidification approaches uniform solidification, resulting in a flat cross section, but not a circular shape. Is insufficient. On the other hand, alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, aliphatic esters such as methyl acetate and ethyl acetate,
Also, when an organic solvent having a solidifying ability for the high melting point PVA-based polymer, which is a sea component such as a mixed solvent of these and a stock solution solvent, is used in the solidifying bath, uniform solidification occurs, so that the cross section becomes substantially circular, Sufficient oriented crystallization can be performed by subsequent wet stretching and dry heat stretching, and strength of 7 g / dr or more can be achieved. The cross-sectional shape of the fiber referred to in the present invention can be observed by using an ordinary optical microscope. In order to obtain a more uniform gel yarn, it is preferable to set the temperature of the solidifying bath to a low temperature of 0 to 10 ° C. It should be noted that these solidifying baths do not necessarily have to have solidifying ability with respect to the low-melting point water-resistant polymer that is the island component. Extremely low melting polymers can be spun even if they are soluble in the setting bath. In this case, however, if the blending ratio of the high melting point polymer / low melting point polymer is more than 6/4, the amount of the low melting point polymer is too large, it will be eluted in the solidifying bath and the fibers will be hardened, which is not preferable. 7
It is more preferable that the low melting point polymer is less than / 3. When the low-melting point polymer is soluble in the solidifying bath, the low-melting point polymer tends to move in the surface direction of the solidified thread with the stock solution solvent during solidification, and tends to be distributed more in the surface layer than in the central part of the fiber. It has been found that an unexpected preferable tendency is that the decrease in the thermocompression bonding property, which is the object of the present invention, is small even if the blending amount of the melting point polymer is small. If the blending amount of the low melting point polymer is small, there is also an advantage that high strength fibers can be obtained.

【0027】次に本発明繊維の用途について説明する。
本発明繊維は、テント、寒冷沙などの産業資材用布地や
縫い糸、及び不織布などに有効に用い得るが、代表例と
して、不織布について説明する。本発明繊維を少なくと
も10%含有する乾式不織布あるいは湿式不織布は、温
度80〜230℃で線圧1kg/cm以上または面圧2
kg/cm2以上の条件で熱圧着することにより、熱接
着可能な不織布である。本発明繊維の含有量が10%未
満である不織布は上記熱圧着条件では実用に耐える熱圧
着性は得られない。本発明不織布を熱圧着させた時の熱
接着力をさらに高めるためには、本発明繊維の含有量を
20%以上にすると好ましく、30%以上にすると一層
好ましい。本発明不織布を本発明繊維単独あるいは本発
明繊維と他の耐水性繊維、例えば耐水性ビニロンで構成
すると、耐水性かつ熱圧着可能な不織布が得られる。こ
の不織布は袋物やポットなどの3次元構造体に成形加工
する際、熱圧着による接着が可能である。従来の化学接
着剤を用いた成形加工に比べて、高速、簡便、無公害、
安全なプロセスで成形加工しうるため、成形加工費を大
巾に節減することが可能である。本発明不織布は熱圧着
による成形加工により耐水性の3次元構造体を製造しう
ることが大きな特徴である。従って、例えばティバッ
グ、水切り袋、ウェットワイパー、ペーパーポットなど
に有効に使用しうる。
Next, the use of the fiber of the present invention will be described.
The fibers of the present invention can be effectively used for fabrics for industrial materials such as tents and cold chillers, sewing threads, and non-woven fabrics. As a typical example, non-woven fabrics will be described. A dry nonwoven fabric or a wet nonwoven fabric containing at least 10% of the fiber of the present invention has a linear pressure of 1 kg / cm or more or a surface pressure of 2 at a temperature of 80 to 230 ° C.
It is a nonwoven fabric that can be heat-bonded by thermocompression bonding under the condition of kg / cm 2 or more. The nonwoven fabric containing less than 10% of the fiber of the present invention cannot obtain practical thermocompression bonding under the above thermocompression bonding conditions. In order to further enhance the thermal adhesive force when the nonwoven fabric of the present invention is thermocompression bonded, the content of the fiber of the present invention is preferably 20% or more, and more preferably 30% or more. When the nonwoven fabric of the present invention is composed of the fibers of the present invention alone or the fibers of the present invention and other water resistant fibers such as water resistant vinylon, a water resistant and thermocompression-bondable nonwoven fabric is obtained. This non-woven fabric can be bonded by thermocompression bonding when it is formed into a three-dimensional structure such as a bag or a pot. Compared with the conventional molding process using chemical adhesive, it is faster, simpler, and pollution-free.
Since the molding process can be performed in a safe process, it is possible to greatly reduce the molding cost. The nonwoven fabric of the present invention is characterized in that a water-resistant three-dimensional structure can be produced by molding by thermocompression bonding. Therefore, it can be effectively used, for example, in tea bags, drainage bags, wet wipers, paper pots and the like.

【0028】また、親水性のビニロン繊維やレーヨン、
キュプラ、ポリノジック、溶剤系セルロース繊維、綿な
どのセルロース繊維に本発明繊維を10%以上含有させ
た本発明不織布は、熱圧着可能であり、3次元構造体に
成形加工する際、従来の化学接着剤を用いる場合に比
べ、上記メリットを有する熱圧着法を適用することが可
能である。熱圧着された3次元構造体が水或いは熱水に
接触しても十分な強度を有し、特に本発明繊維の島成分
ポリマーがエチレン/ビニルアルコールコポリマーやエ
チレン/酢酸ビニルコポリマーで代表されるPVA系ポ
リマーである場合には、ビニロン繊維やセルロース系繊
維にたいして極めて優れた接着強度を発揮することが特
徴である。したがって従来困難であったセルロース系や
ビニロン系の不織布のヒートシール性確保が可能とな
る。セルロース繊維は自然崩壊性の地球にやさしい繊維
として注目されているが、セルロース繊維を含有した不
織布を3次元構造体に成形加工する際、従来は、化学接
着剤を用いて、接着剤調製→所定量塗布→乾燥・キュア
リングといった複雑な工程を経たり、疎水性の熱接着性
繊維を用いて熱接着法で接着しているが、疎水性の熱接
着性繊維はセルロース繊維と接着力が低いため低強度の
不織布しか得ることができない。本発明不織布を用いる
と、熱圧着法(ヒートシール法)により成形加工するこ
とができ、高速・簡便・無公害で自動化ラインにも容易
に組み込んで製造可能である。しかも、本発明繊維は、
親水性の繊維であるため、ビニロン繊維やセルロース繊
維を湿式法により不織布化する際に、ビニロン繊維やセ
ルロース繊維との均一分散性に優れているため、均一な
性能を有する不織布が得られることとなる。
In addition, hydrophilic vinylon fibers and rayon,
The non-woven fabric of the present invention, which is obtained by adding 10% or more of the present fiber to cellulose fiber such as cupra, polynosic, solvent-based cellulose fiber, and cotton, can be thermocompression-bonded, and when it is processed into a three-dimensional structure, conventional chemical adhesion is used. It is possible to apply the thermocompression bonding method having the above advantages as compared with the case of using the agent. The thermocompression-bonded three-dimensional structure has sufficient strength even when it comes into contact with water or hot water. Particularly, the island component polymer of the fiber of the present invention is PVA represented by ethylene / vinyl alcohol copolymer or ethylene / vinyl acetate copolymer. When it is a polymer, it is characterized in that it exhibits extremely excellent adhesive strength to vinylon fibers and cellulosic fibers. Therefore, it becomes possible to secure the heat-sealing property of a cellulose-based or vinylon-based non-woven fabric, which has been difficult in the past. Cellulose fibers are attracting attention as natural-disintegrating, earth-friendly fibers, but when molding non-woven fabric containing cellulose fibers into a three-dimensional structure, conventionally, chemical adhesives have been used to prepare adhesives → Although a complicated process such as quantitative application → drying / curing is performed, or the heat-bonding method is used to bond the hydrophobic heat-bondable fibers, the hydrophobic heat-bondable fibers have low adhesion to the cellulose fibers. Therefore, only a low-strength nonwoven fabric can be obtained. When the nonwoven fabric of the present invention is used, it can be molded by a thermocompression bonding method (heat sealing method) and can be easily incorporated into an automated line at high speed, with ease and without pollution, and can be manufactured. Moreover, the fiber of the present invention is
Since it is a hydrophilic fiber, when the vinylon fiber or the cellulose fiber is made into a nonwoven fabric by a wet method, it has excellent uniform dispersibility with the vinylon fiber or the cellulose fiber, so that a nonwoven fabric having uniform performance can be obtained. Become.

【0029】本発明不織布の製造法に限定はない。本発
明繊維を捲縮カットして得たステープルを単独、あるい
は上記耐水性ビニロンステープルまたはレーヨン、ポリ
ノジックなどのセルロース繊維ステープルとを混合し
て、カードあるいはランダムウェッバーにかけ、得られ
たウェッブを、ニードルパンチ法、化学接着法、熱接着
法などにより、接着あるいは絡合させて乾式法により不
織布とすることができる。また本発明繊維を1〜10m
mにショートカットし、必要によりパルプ、レーヨン、
ビニロンなどと混抄することにより湿式法不織布(紙も
包含する)とすることも出来る。得られた不織布は熱圧
着性(ヒートシール性)を有することが特徴である。本
発明繊維の水中溶断温度は100℃以上であり主体繊維
として用いることができ、従来のビニロンバインダーや
熱圧着タイプのバインダーを用いて抄紙することにより
ヒートシール性ビニロン紙やヒートシール性セルロース
紙が得られる。乾式法か湿式法かは、その用途に要求さ
れる性能によって適宜選択すべきである。しかしなが
ら、本発明不織布の好ましい製造法は、本発明繊維の熱
圧着性を利用し、本発明繊維を10%以上含有するウェ
ッブを、温度80〜230℃、かつ線圧1kg/cm以
上或いは面圧2kg/cm2以上の条件で熱圧着するこ
とを特徴とする不織布の製造法である。本発明における
熱圧着条件である温度や圧力はウェッブに実際にかかる
温度及び圧力であって、設定温度や設定圧力ではない。
実際の温度及び圧力はサーモラベルや圧力インジケータ
ーなどによって実測することができる。この圧着温度が
80℃未満であったり、線圧が1kg/cm未満あるい
は面圧が2kg/cm2未満では熱圧着による接着力が
低く、実用に耐えない。圧着温度が230℃を越える
と、マトリックスを形成する海成分のPVA系ポリマー
の融点近くになり、配向結晶化した繊維構造がこわれ、
繊維強度が低下したり、収縮したりする。熱圧着による
接着性と圧着後の繊維強度及び寸法安定性の点より、温
度は100〜210℃、線圧が2〜200kg/cm、
または面圧が5〜400kg/cm2であるとより好ま
しく、温度は130〜190℃、線圧が5〜50kg/
cmまたは面圧が10〜100kg/cm2であるとさ
らに好ましい。
The method for producing the nonwoven fabric of the present invention is not limited. The staple obtained by crimp-cutting the fiber of the present invention alone or mixed with the above water-resistant vinylon staple or rayon, cellulose fiber staple such as polynosic, is subjected to card or random webber, and the obtained web is needle punched. Method, a chemical bonding method, a heat bonding method, or the like, and bonded or entangled to form a nonwoven fabric by a dry method. Further, the fiber of the present invention is 1 to 10 m.
Shortcut to m, if necessary, pulp, rayon,
A wet process non-woven fabric (including paper) can be prepared by mixing with vinylon or the like. The obtained non-woven fabric is characterized by having thermocompression bonding properties (heat sealing properties). The fiber of the present invention has a fusing temperature in water of 100 ° C. or higher and can be used as a main fiber, and heat-sealable vinylon paper or heat-sealable cellulose paper can be obtained by making paper using a conventional vinylon binder or thermocompression-bonding type binder. can get. The dry method or the wet method should be appropriately selected depending on the performance required for the application. However, the preferred method for producing the nonwoven fabric of the present invention utilizes the thermocompression bonding property of the fibers of the present invention, a web containing 10% or more of the fibers of the present invention at a temperature of 80 to 230 ° C. and a linear pressure of 1 kg / cm or more or a surface pressure. This is a method for producing a non-woven fabric, which comprises thermocompression bonding under a condition of 2 kg / cm 2 or more. The temperature and pressure which are the thermocompression bonding conditions in the present invention are the temperatures and pressures actually applied to the web, not the set temperature and the set pressure.
The actual temperature and pressure can be measured by a thermo label or a pressure indicator. If the pressure bonding temperature is less than 80 ° C., or if the linear pressure is less than 1 kg / cm or the surface pressure is less than 2 kg / cm 2 , the adhesive strength by thermocompression bonding is low and it cannot be put to practical use. When the pressure bonding temperature exceeds 230 ° C., the melting point of the PVA-based polymer of the sea component forming the matrix becomes close to, and the fiber structure that is oriented and crystallized is broken,
The fiber strength is reduced or the fiber shrinks. From the viewpoint of adhesiveness by thermocompression bonding, fiber strength after compression bonding, and dimensional stability, the temperature is 100 to 210 ° C., the linear pressure is 2 to 200 kg / cm,
Alternatively, the surface pressure is more preferably 5 to 400 kg / cm 2 , the temperature is 130 to 190 ° C., and the linear pressure is 5 to 50 kg / cm 2.
It is more preferable that the cm or the surface pressure is 10 to 100 kg / cm 2 .

【0030】本発明繊維単独、あるいは従来の耐水性ビ
ニロンと本発明繊維を10%以上とを混合したウェッブ
を熱圧着法により製造した不織布は耐水性であり、水に
濡れやすい親水性不織布として極めて有用である。従来
の親水性不織布の製造は、製造工程中に接着剤を付与す
る工程と接着力発現のための乾燥あるいはキュアリング
工程が必須であり、しかも乾燥あるいはキュアリングに
1分以上を要するため高額の設備投資が必要であるとと
もに、品質確保のためラインスピードを抑えざるをえ
ず、高速製造が困難である。また接着剤付与工程〜乾燥
・キュアリング工程の間で接着剤或いはその変質物が設
備に固着し、それが原因で不織布の欠点が発生したり、
設備の運転を停止して固着物を除去、洗浄する必要があ
る。一方、本発明不織布の製造法を用いて親水性の不織
布を製造すると、接着工程が熱圧着法であるため、熱カ
レンダーローラーに通すのみで3秒以内で接着でき、高
速・簡便に製造しうる。また接着剤を使用しないため設
備に接着剤やその変質物が固着しないため、不織布に欠
点が発生することはなく、したがって固着物を洗浄除去
するための設備の運転停止する必要もない。本発明繊維
の使用により、親水性かつ耐水性の不織布を熱圧着法に
製造することが初めて可能となり、高速、簡便、無公害
で製造することが可能となった。
The non-woven fabric produced by the thermocompression bonding method of the web of the present invention alone or a web obtained by mixing the conventional water-resistant vinylon with 10% or more of the present fiber is water-resistant and is extremely hydrophilic as a hydrophilic non-woven fabric. It is useful. In the conventional production of hydrophilic non-woven fabric, a step of applying an adhesive during the production step and a drying or curing step for expressing the adhesive strength are indispensable, and moreover, it takes 1 minute or more for the drying or curing to be expensive. In addition to the need for capital investment, the line speed must be suppressed to ensure quality, making high-speed manufacturing difficult. In addition, during the adhesive application step-drying / curing step, the adhesive or its denatured material adheres to the equipment, which causes defects in the nonwoven fabric,
It is necessary to stop the operation of the equipment to remove adhered substances and wash them. On the other hand, when a hydrophilic nonwoven fabric is manufactured using the nonwoven fabric manufacturing method of the present invention, since the bonding step is a thermocompression bonding method, bonding can be performed within 3 seconds only by passing it through a thermal calendar roller, and high-speed and simple manufacturing is possible. . Further, since no adhesive is used, the adhesive and its degenerated substances do not adhere to the equipment, so that no defect occurs in the nonwoven fabric, and therefore it is not necessary to stop the operation of the equipment for washing and removing the adhered material. The use of the fiber of the present invention makes it possible for the first time to produce a hydrophilic and water-resistant non-woven fabric by a thermocompression bonding method, and it has become possible to produce it at high speed, simply and without pollution.

【0031】本発明におけるパラメーターの定義とその
測定法は次の如くである。 1.融点 結晶性ポリマーの場合、メトラー社示差走査熱量測定装
置(DSC−20)を用い、試料ポリマーを窒素下20
℃/minの速度で昇温した際、吸熱ピークを示す温度
を測定する。
The definition of the parameters and the measuring method thereof in the present invention are as follows. 1. Melting point In the case of a crystalline polymer, a differential scanning calorimeter (DSC-20) manufactured by METTLER CORPORATION was used, and the sample polymer was placed under nitrogen at 20
When the temperature is raised at a rate of ° C / min, the temperature showing an endothermic peak is measured.

【0032】2.融着温度 非晶性ポリマーの場合、ポリマーチップを所定温度の熱
風乾燥機にいれ、0.1kg/cm2の圧力を10分間
印加した際、チップ間の境界が判定できない程度にチッ
プ同志が融着する最低の温度を測定する。
2. Fusing temperature In the case of an amorphous polymer, when the polymer chips are placed in a hot air dryer at a specified temperature and a pressure of 0.1 kg / cm 2 is applied for 10 minutes, the chips melt to the extent that the boundaries between the chips cannot be determined. Measure the lowest temperature to wear.

【0033】3.繊維強度 JISL−1015に準じ、単繊維強度を試長20m
m、引張速度50%/分で引張試験を行なう。
3. Fiber strength In accordance with JIS L-1015, the single fiber strength is 20m.
m, tensile rate 50% / min.

【0034】[0034]

【実施例】以下実施例により、本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。実施例中、%は特にことわりがない限り重量にもと
ずく値である。 実施例1 重合度1750、ケン化度99.9モル%で融点が23
3℃のPVAと、エチレン/ビニルアルコールコポリマ
ー=32/68(モル比),重合度870で融点が18
6℃のクラレ製EVAL−Fを各々15%と5%となる
ように90℃のDMSOに窒素下混合撹拌し、溶解し
た。高融点PVA系ポリマー/低融点耐水性ポリマーの
ブレンド比は75/25であった。得られたブレンド溶
液は曳糸性の良好な半濁溶液で90℃で8時間放置して
も2相に分離する傾向はなく、安定な分散溶液であっ
た。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the examples,% is a value based on weight unless otherwise specified. Example 1 Polymerization degree 1750, saponification degree 99.9 mol%, melting point 23
PVA at 3 ° C., ethylene / vinyl alcohol copolymer = 32/68 (molar ratio), polymerization degree 870, melting point 18
EVAL-F manufactured by Kuraray Co., Ltd. at 6 ° C. was mixed and stirred in DMSO at 90 ° C. under nitrogen so as to be 15% and 5% respectively, and dissolved. The high melting point PVA-based polymer / low melting point water resistant polymer blend ratio was 75/25. The obtained blend solution was a semi-turbid solution having a good spinnability and did not tend to separate into two phases even when left at 90 ° C. for 8 hours, and was a stable dispersion solution.

【0035】この紡糸原液を孔径0.08mm、孔数5
00のノズルを通し、メタノール70%とDMSO30
%よりなる3℃の固化液中に湿式紡糸した。得られた固
化糸篠は白濁状であり、両PVAが相分離していること
が推定された。またこの時固化液には特別な濁りは発生
しなかった。この固化糸に5.0倍の湿延伸を施こし、
メタノール液に浸漬して固化糸篠中のDMSOを抽出洗
浄し、鉱物油系油剤を付与し、100℃で乾燥し、次い
で225℃で全延伸倍率が15倍となるよう乾熱延伸し
た。得られた1000dr/500fのフィラメントに
硬着はなく、水中溶断温度が125℃で耐水性は良好で
あった。単糸強度は12.3g/drであった。また断
面観察より、円型断面であり、高融点のPVAが海成分
で、低融点のEVAL−Fが島成分となっており、その
島数は少なくとも100ケは存在しており、最表面より
1μ以内に島成分が多数存在していることがわかった。
This spinning dope was prepared with a pore diameter of 0.08 mm and a pore number of 5
00 nozzle, methanol 70% and DMSO30
Wet spinning in a solidification solution of 3% at 3 ° C. The obtained solidified itinose was cloudy, and it was estimated that both PVAs were phase-separated. At this time, no special turbidity was generated in the solidified liquid. This solidified yarn is subjected to 5.0 times wet drawing,
DMSO in the solidified silkworm was extracted and washed by immersion in a methanol solution, a mineral oil-based oil agent was added, and the mixture was dried at 100 ° C. and then dry-heat stretched at 225 ° C. so that the total stretching ratio was 15 times. The obtained filament of 1000 dr / 500f had no sticking, the melting temperature in water was 125 ° C, and the water resistance was good. The single yarn strength was 12.3 g / dr. In addition, from the cross-sectional observation, it is a circular cross-section, PVA with a high melting point is a sea component, and EVAL-F with a low melting point is an island component, and the number of islands is at least 100. It was found that many island components exist within 1 μm.

【0036】この繊維をステープル化し、カードにかけ
目付30g/m2のウエッブを作り、これに温度190
℃、線圧60kg/cm、処理時間1秒以下の熱圧着条
件で熱カレンダーロール処理を施こした。カレンダー処
理による寸法変化はあまりなかった。得られた不織布
は、よく接着しており、手で力を入れて揉んでも単糸が
バラケることはなく、タテ6.8km、ヨコ2.2km
の裂断長を示した。また熱圧着後の不織布を沸騰水中に
投入しても特別な変化は見られず耐水性は良好であっ
た。
This fiber is stapled, and a web having a basis weight of 30 g / m 2 is made on a card, and a temperature of 190 is applied to the web.
A thermocalender roll treatment was performed under thermocompression bonding conditions of a temperature of 60 ° C., a linear pressure of 60 kg / cm, and a treatment time of 1 second or less. There was not much dimensional change due to calendering. The obtained non-woven fabric is well adhered, and even if it is rubbed with force by hand, the single yarn does not come apart, and the length is 6.8 km and the width is 2.2 km.
Showed a breaking length of. Further, even if the non-woven fabric after thermocompression bonding was put into boiling water, no special change was observed and the water resistance was good.

【0037】比較例1 実施例1の高融点PVAである重合度1700、ケン化
度99.9モル%のPVAのみをDMSOに16%とな
るよう実施例1と同様に溶解した。得られた溶液は均一
透明液であった。この紡糸原液を実施例1と同様に紡糸
延伸を行なった。固化糸篠はほぼ透明であり、実施例1
のような白濁相分離は見られなかった。得られた繊維の
断面を観察しても均一であり、海島構造はみられなかっ
た。この繊維を、実施例1と同様に、ステープル化し、
カードをかけてウエッブを作り、熱圧着した。得られた
不織布は一見接着しているように見えたが、手で揉むと
単糸は剥がれてきてタテ0.4km、ヨコ0.1kmの
裂断長しかなく、弱い不織布しか得られなかった。
Comparative Example 1 Only PVA having a polymerization degree of 1700 and a saponification degree of 99.9 mol%, which is the high melting point PVA of Example 1, was dissolved in DMSO in the same manner as in Example 1 so as to be 16%. The obtained solution was a uniform transparent liquid. This spinning stock solution was subjected to spinning and drawing in the same manner as in Example 1. The solidified Ishino is almost transparent, and Example 1
No white turbid phase separation was observed. When the cross section of the obtained fiber was observed, it was uniform and no sea-island structure was observed. This fiber was stapled in the same manner as in Example 1,
A card was applied to make a web, and the web was thermocompression bonded. The obtained non-woven fabric seemed to be adhered at first glance, but when it was rubbed by hand, the single yarn was peeled off, and only the breaking length of 0.4 km in length and 0.1 km in width was obtained, and only a weak non-woven fabric was obtained.

【0038】比較例2 実施例1の低融点成分であるEVAL−FのみをDMS
Oに26%となるよう実施例1と同様に溶解した。得ら
れた溶液は透明であった。この紡糸原液を実施例1と同
様に紡糸しようと試みたが、固化液がメタノール/DM
SO=70/30では固化せず紡糸不能であった。固化
液をメタノール100%にしても固化せず紡糸不能であ
った。固化液をアセトン100%にし、湿延伸浴、抽出
浴もアセトンに変更すると紡糸が可能となり、湿延伸を
4.5倍施こし、80℃で乾燥すると硬着の殆どない繊
維が得られた。固化糸篠はほぼ透明であり、得られた繊
維の断面も均一で、海島構造は観察できなかった。この
繊維を実施例1と同様にステープル化し、カードをか
け、ウエッブを作り、熱圧着した。熱圧着時ウエッブの
寸法が半分以上収縮し、得られたものは、接着はよくし
ていたが、粗硬で不織布といえるものではなかった。
Comparative Example 2 Only EVAL-F, which is the low melting point component of Example 1, was added to DMS.
It was dissolved in O in the same manner as in Example 1 so as to be 26%. The resulting solution was clear. An attempt was made to spin this spinning dope in the same manner as in Example 1, but the solidifying solution was methanol / DM.
When SO = 70/30, it did not solidify and could not be spun. Even if the solidified liquid was 100% methanol, it did not solidify and could not be spun. Spinning was possible by changing the solidifying liquid to 100% acetone and changing the wet drawing bath and the extraction bath to acetone. When wet drawing was performed 4.5 times and dried at 80 ° C., fibers with almost no sticking were obtained. The solidified Ishino was almost transparent, the cross section of the obtained fiber was uniform, and the sea-island structure could not be observed. This fiber was stapled in the same manner as in Example 1, carded, a web was formed, and thermocompression bonding was performed. The size of the web shrank by more than half during thermocompression bonding, and the obtained product had good adhesion, but it was coarse and hard and could not be said to be a non-woven fabric.

【0039】比較例3 PVAとEVAL−Fのブレンド比を99/1とする以
外は実施例1と同様に紡糸、延伸した。得られた繊維
は、膠着なく、断面円型で、強度も15.4g/dと高
強度であった。これを実施例1と同様にステープル化
し、カードにかけウエッブを作り、熱圧着処理を行なっ
た。得られた不織布は一見接着しているように見えた
が、手で揉むと簡単に剥がれ、不織布強度が小さかっ
た。本比較例の繊維の如く低融点成分が少量では熱圧着
性向上効果は不十分であった。
Comparative Example 3 Spinning and drawing were carried out in the same manner as in Example 1 except that the blending ratio of PVA and EVAL-F was 99/1. The obtained fiber had a circular cross-section without sticking and had a high strength of 15.4 g / d. This was stapled in the same manner as in Example 1, hung on a card to make a web, and subjected to thermocompression bonding. The obtained non-woven fabric seemed to be adhered at first glance, but it was easily peeled off by rubbing with a hand, and the non-woven fabric strength was low. When the amount of the low melting point component is small like the fiber of this comparative example, the effect of improving the thermocompression bonding property is insufficient.

【0040】比較例4 PVAとEVAL−Fのブレンド比を50/50とする
以外は実施例1と同様に紡糸、延伸しようとした。しか
し、乾燥後糸條は、膠着が激しく、断面も変形してお
り、正常な糸は得られなかった。また固化液に濁りが見
られた。EVAL−Fが、完全な島成分とならず、一部
海成分相を形成したためと推定される。
Comparative Example 4 Spinning and drawing were attempted in the same manner as in Example 1 except that the blending ratio of PVA and EVAL-F was 50/50. However, after drying, the thread was severely stuck and the cross section was deformed, and a normal thread could not be obtained. Turbidity was observed in the solidified liquid. It is presumed that EVAL-F did not form a complete island component but formed a part of the sea component phase.

【0041】実施例2 重合度1750、ケン化度99.3モル%で融点が23
3℃のPVAと、エチレン/ビニルアルコールコポリマ
ー=47/53(モル比),重合度750で融点が16
3℃のクラレ製EVAL−Gとをブレンド比が80/2
0となる混合し、全PVA濃度が25%となるよう窒素
下90℃でDMSOに加熱撹拌溶解した。得られたブレ
ンド溶液はかなり濁っていたが、8時間の静置では凝集
して2相に分離する傾向はみられず安定な分散液であっ
た。この紡糸原液を孔径0.12φ、孔数80のノズル
より12mmのエヤーギャップを通して実施例1と同じ
固化液に乾湿式紡糸した。得られた固化糸篠は白濁状で
あり、両PVAが相分離していることが推定された。ま
たこの時固化液には特別な濁りは発生しなかった。固化
糸篠は、実施例1と同じように、湿延伸、抽出、オイリ
ング、乾燥した。次いで225℃で全延伸倍率が12.
5倍となるよう乾熱延伸を施こし、240d/80fの
フィラメントを得た。この繊維に硬着はなく、水中溶断
温度は124℃と耐水性良好であり、単糸強度は13.
1g/drであった。また断面観察より、円型断面であ
り、高融点のPVAが海成分で、低融点のEVAL−G
が島成分となって100個以上に分散しており、最表面
より1μ以内に島成分が多数存在していることがわかっ
た。
Example 2 Polymerization degree 1750, saponification degree 99.3 mol%, melting point 23
PVA at 3 ° C., ethylene / vinyl alcohol copolymer = 47/53 (molar ratio), polymerization degree 750, melting point 16
Blending ratio with Kuraray EVAL-G at 3 ℃ is 80/2
The mixture was mixed so that the total PVA concentration was 25%, and the mixture was heated and dissolved in DMSO at 90 ° C under nitrogen under stirring. The obtained blended solution was considerably turbid, but it was a stable dispersion without showing a tendency to aggregate and separate into two phases when left standing for 8 hours. The spinning solution was dry-wet spun into the same solidifying solution as in Example 1 through an air gap of 12 mm from a nozzle having a hole diameter of 0.12φ and a hole number of 80. The obtained solidified itinose was cloudy, and it was estimated that both PVAs were phase-separated. At this time, no special turbidity was generated in the solidified liquid. The solidified itoshino was wet-stretched, extracted, oiled, and dried in the same manner as in Example 1. Then, at 225 ° C., the total draw ratio is 12.
It was subjected to dry heat drawing so as to have a draw ratio of 5 to obtain a filament of 240 d / 80 f. This fiber has no sticking, has a water fusion temperature of 124 ° C. in water and has good water resistance, and has a single yarn strength of 13.
It was 1 g / dr. In addition, from cross-section observation, it is a circular cross-section, PVA with a high melting point is a sea component, and EVAL-G with a low melting point.
It was found that the island component was dispersed to 100 or more, and a large number of island components were present within 1 μm from the outermost surface.

【0042】この繊維をステープル化し、カードにかけ
目付30g/m2のウエッブを作り、これに温度190
℃、線圧60kg/cm、処理時間1秒以下の熱圧着条
件で熱カレンダーロール処理を施こした。カレンダー処
理による寸法変化はあまりなかった。得られた不織布
は、よく接着しており、手で揉んでも単糸がバラケるこ
とはなく、タテ7.1km、ヨコ1.4kmの裂断長を
示した。また熱圧着後の不織布を沸騰水中に投入しても
特別な変化は見られず耐水性は良好であった。
This fiber was stapled to give a web having a basis weight of 30 g / m 2 on a card, and a temperature of 190
A thermocalender roll treatment was performed under thermocompression bonding conditions of a temperature of 60 ° C., a linear pressure of 60 kg / cm, and a treatment time of 1 second or less. There was not much dimensional change due to calendering. The obtained non-woven fabric was well adhered, and even if it was rubbed by hand, the single yarn was not distorted, and showed a breaking length of 7.1 km in length and 1.4 km in width. Further, even if the non-woven fabric after thermocompression bonding was put into boiling water, no special change was observed and the water resistance was good.

【0043】この繊維を3mmにカットし、クラレ製紙
用ビニロンVPB−105(バインダー繊維)とを水に
混合分散し、タッピー抄紙装置で抄紙し、脱水後ドラム
乾燥し、本実施例繊維/VPB−105が90/10よ
りなる坪量30g/m2の紙を得た。この紙を富士イン
パルス製ポリシーラーで両面ヒートシールをした。シー
ル部の接着力は、VPB−102(市販クラレ製紙用ビ
ニロンの主体繊維)/VPB−105=90/10で同
様に抄紙、乾燥、ヒートシールした紙に比べて、明らか
に優れていた。この際のシール時の温度は210℃、圧
力は2kg/cmと推定された。
This fiber was cut into 3 mm, and Kuraray papermaking vinylon VPB-105 (binder fiber) was mixed and dispersed in water, paper-made by a tappy paper making machine, dehydrated and drum-dried. A paper having a basis weight of 30/10/105 and a basis weight of 30 g / m 2 was obtained. The paper was heat-sealed on both sides with a Fuji Impulse policyr. The adhesive strength of the seal portion was VPB-102 (main fiber of vinylon for commercial Kuraray papermaking) / VPB-105 = 90/10, which was clearly superior to the paper similarly subjected to papermaking, drying and heat sealing. It was estimated that the sealing temperature at this time was 210 ° C. and the pressure was 2 kg / cm.

【0044】実施例3 DMSOを攪拌しながら、重合度2400、ケン化度9
9.8モル%で融点が235℃のPVAと、重合度が9
40、融着温度が50℃以下のエチレン/酢ビ=32/
68(モル比)コポリマーの35%メタノール溶液とを
添加し、窒素置換し90℃にて加熱溶解した。PVA/
エチレン−酢ビコポリマーのブレンド比を9/1となる
よう混合し、全ポリマー濃度が20%となるよう溶解し
た。得られた溶液は濁っていたが、凝集相分離の傾向は
みられなかった。この紡糸原液を実施例2と同様に湿式
紡糸し、220℃で全延伸倍率が14倍となるよう乾熱
延伸を施こし、2500d/1000fのフィラメント
を得た。この繊維に硬着はなく、水中溶断温度は128
℃であり、単糸強度は15.7g/drであった。また
断面観察よりエチレン/酢ビ=32/68(モル比)コ
ポリマーが島成分となっており、最表面より1μ以内に
島成分が多数存在していることがわかった。
Example 3 While stirring DMSO, the degree of polymerization was 2400 and the degree of saponification was 9
PVA with a melting point of 235 ° C. and a polymerization degree of 9
40, ethylene / vinyl acetate = 32 / with a fusion temperature of 50 ° C or less
A 68% (molar ratio) copolymer of 35% methanol solution was added, the atmosphere was replaced with nitrogen, and the mixture was heated and dissolved at 90 ° C. PVA /
The ethylene-vinyl acetate copolymer was mixed so that the blending ratio was 9/1, and dissolved so that the total polymer concentration was 20%. The obtained solution was cloudy, but there was no tendency for aggregated phase separation. This spinning dope was wet spun in the same manner as in Example 2 and subjected to dry heat drawing at 220 ° C. so that the total draw ratio was 14 times, to obtain a filament of 2500 d / 1000 f. This fiber does not have sticking and its fusing temperature in water is 128.
C., and the single yarn strength was 15.7 g / dr. Further, from the cross-sectional observation, it was found that the ethylene / vinyl acetate = 32/68 (molar ratio) copolymer was an island component, and many island components were present within 1 μm from the outermost surface.

【0045】この繊維をステープル化し、カードにかけ
目付30g/m2のウエッブを作り、これに温度160
℃、線圧20kg/cm、処理時間1秒以下の熱圧着条
件で熱カレンダーロール処理を施こした。カレンダー処
理による寸法変化はあまりなく、得られた不織布はよく
接着しており、手で揉んでも単糸がバラケることはな
く、タテ6.6km、ヨコ1.6kmの裂断長を示し、
十分実用に耐える強度であった。また熱圧着後の不織布
を100℃の熱水に投入しても変化は見られず良好な耐
水性を示した。この不織布を2枚重ねて、3辺を富士イ
ンパルス製ポリシーラーでヒートシールした所、袋状の
ものに成形加工することができ、手で剥離しようとして
も簡単には剥がれない接着力を有する袋が熱圧着法のみ
で得られた。
This fiber was stapled, and a web having a weight per unit area of 30 g / m 2 was formed on a card, and a temperature of 160 g was applied to the web.
A heat calender roll treatment was performed under thermocompression bonding conditions of a temperature of 20 ° C., a linear pressure of 20 kg / cm, and a treatment time of 1 second or less. There is not much dimensional change due to calendering, the obtained non-woven fabric is well adhered, the single yarn does not break even if it is rubbed by hand, and shows a breaking length of 6.6 km in length and 1.6 km in width,
The strength was sufficient for practical use. In addition, no change was observed when the non-woven fabric after thermocompression bonding was added to hot water at 100 ° C., and good water resistance was exhibited. When two non-woven fabrics are stacked and heat-sealed on three sides with a Fuji Impulse policyr, they can be processed into a bag shape and have an adhesive force that does not easily peel off even if peeled by hand. Was obtained only by the thermocompression bonding method.

【0046】実施例4 実施例3で得た本発明ステープル30%と2dのビニロ
ンステープル70%を混合し、カードにかけ目付40g
/m2のウエッブを作り、これに温度180℃、線圧2
0kg/cm、処理時間1秒以下の熱圧着条件で熱カレ
ンダーロール処理を施こした。カレンダー処理による寸
法変化はあまりなく、得られた不織布はよく接着してお
り、手で揉んでも単糸がバラケることはなかった。
Example 4 30% of the staple of the present invention obtained in Example 3 and 70% of 2d vinylon staple were mixed, and 40 g of a basis weight was applied to a card.
/ M 2 web, temperature 180 ℃, linear pressure 2
The heat calendar roll treatment was performed under the thermocompression bonding conditions of 0 kg / cm and a treatment time of 1 second or less. There was not much dimensional change due to calendering, the obtained non-woven fabric was well adhered, and even if it was rubbed by hand, the single yarn did not come apart.

【0047】[0047]

【発明の効果】本発明は、高融点の高ケン化度PVAと
低融点の耐水性ポリマーとを所定のブレンド比で混合
し、低温均一固化紡糸することにより、高融点PVA系
ポリマーを海成分とし、低融点耐水性ポリマーを島成分
とし、低融点耐水性ポリマーを、繊維の最表面には存在
しないが、表層に極く近接して存在せしめ、かつ高強度
としたものである。このような繊維とすることにより、
従来困難であった熱圧着性の高強度親水性繊維を得た。
特に本発明繊維は、高融点の高ケン化度PVAをマトリ
ックスとして海成分に存在せしめて、高配向高結晶化せ
しめており、湿潤下でも寸法が安定しており、通常状態
においては普通の繊維として取り扱うことが可能である
が、熱圧着すると、最表面のマトリックス相が破れ、島
成分の低融点ポリマーが繊維表面に押し出され、繊維同
志が接着されるものである。熱圧着時マトリックス相の
高融点PVAポリマー相は融解しないため、寸法変化が
殆んどなく、かつ熱圧着後も高強度を維持しうる。以上
の如く、本発明繊維は、耐水性と熱圧着性と高強度を兼
備したPVA繊維であり、不織布分野や産業資材用布地
等に用いると、PVA繊維の特徴である親水性、高強
度、高ヤング率、高耐候性、高耐薬品性を維持したま
ま、熱圧着による接着が可能であるため、簡便なプロセ
スにより、無公害で高速生産が可能となる。また乾式法
及び湿式法で得られた不織布は熱圧着性を有するため、
3次元構造体(例えば袋、ポット、箱)などに成形加工
する際、熱圧着法を用いることができ、ヒートシールし
うるため、成形加工が効率的に高速生産しうる。さらに
ビニロンやレーヨンなど親水性素材と混合して不織布化
すると、熱圧着で接着が可能であり、かつ親水性素材の
みで高強度不織布の生産が可能となる。
According to the present invention, a high melting point PVA polymer is mixed with a high melting point PVA polymer and a low melting point water-resistant polymer at a predetermined blending ratio and subjected to uniform low temperature solidification spinning to obtain a high melting point PVA polymer. The low melting point water resistant polymer is used as an island component, and the low melting point water resistant polymer is not present on the outermost surface of the fiber, but is allowed to exist very close to the surface layer and has high strength. By using such fibers,
A high-strength hydrophilic fiber having thermocompression bonding properties, which was difficult in the past, was obtained.
In particular, the fiber of the present invention has a high melting point and a high saponification degree PVA as a matrix and is present in the sea component to be highly oriented and highly crystallized, and the dimension is stable even under wet conditions. However, upon thermocompression bonding, the matrix phase on the outermost surface is broken, the low melting point polymer of the island component is extruded onto the fiber surface, and the fibers are bonded together. Since the high melting point PVA polymer phase of the matrix phase does not melt during thermocompression bonding, there is almost no dimensional change and high strength can be maintained even after thermocompression bonding. As described above, the fiber of the present invention is a PVA fiber having both water resistance, thermocompression bonding property, and high strength, and when used in the field of non-woven fabrics, fabrics for industrial materials, etc., hydrophilicity, high strength, which are characteristics of PVA fiber, Bonding by thermocompression bonding is possible while maintaining high Young's modulus, high weather resistance, and high chemical resistance, so high-speed production without pollution is possible with a simple process. Further, since the non-woven fabric obtained by the dry method and the wet method has thermocompression bonding property,
When molding into a three-dimensional structure (eg, bag, pot, box) or the like, a thermocompression bonding method can be used, and heat sealing can be performed, so that the molding can be efficiently performed at high speed. Further, when it is mixed with a hydrophilic material such as vinylon or rayon to form a non-woven fabric, it can be bonded by thermocompression bonding, and a high-strength non-woven fabric can be produced only with the hydrophilic material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楢村 俊平 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 小林 悟 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 関谷 洋輔 大阪市北区梅田1丁目12番39号 株式会社 クラレ内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Shunpei Naramura, 1621 Sakazu, Kurashiki, Okayama Prefecture, Kuraray Co., Ltd. (72) Inventor Satoru Kobayashi, 1621, Satsuki, Kurashiki, Okayama, Kuraray Co., Ltd. (72) Inventor Yosuke Sekiya 1-1239 Umeda, Kita-ku, Osaka City Kuraray Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 融点が220℃以上であるポリビニルア
ルコール系ポリマーが海成分であり、融点または融着温
度が210℃未満である耐水性ポリマーが島成分である
海島構造繊維であって、両ポリマーのブレンド比が98
/2〜55/45の範囲であり、かつ強度が7g/dr
以上であることを特徴とする高強度にして耐水性かつ熱
圧着性のポリビニルアルコール系繊維。
1. A sea-island structure fiber in which a polyvinyl alcohol-based polymer having a melting point of 220 ° C. or higher is a sea component, and a water-resistant polymer having a melting point or a fusion temperature of less than 210 ° C. is an island component, both polymers Blend ratio of 98
/ 2 to 55/45, and strength is 7 g / dr
The polyvinyl alcohol fiber having high strength, water resistance, and thermocompression bonding characteristics as described above.
【請求項2】 融点が220℃以上であるポリビニルア
ルコール系ポリマーが海成分であり、融点または融着温
度が210℃未満である耐水性ポリマーが島成分である
海島構造繊維であって、両ポリマーのブレンド比が98
/2〜55/45の範囲であり、島成分の少なくとも一
部が繊維の最表面より2μ以内に存在し、かつ強度が7
g/dr以上であることを特徴とする高強度にして耐水
性かつ熱圧着性のポリビニルアルコール系繊維。
2. A sea-island structure fiber in which a polyvinyl alcohol-based polymer having a melting point of 220 ° C. or higher is a sea component, and a water-resistant polymer having a melting point or a fusion temperature of less than 210 ° C. is an island component, both polymers Blend ratio of 98
/ 2 to 55/45, at least a part of the island component is within 2 μm from the outermost surface of the fiber, and the strength is 7
A polyvinyl alcohol fiber having high strength, water resistance, and thermocompression bonding, which is characterized by having g / dr or more.
【請求項3】 融点が220℃以上であるポリビニルア
ルコール系ポリマーと融点または融着温度が210℃未
満である耐水性ポリマーを98/2〜55/45の範囲
で、融点が220℃以上であるポリビニルアルコール系
ポリマーの溶媒中で混合撹拌溶解し、得られた混合溶液
または混合分散液を、融点が220℃以上であるポリビ
ニルアルコール系ポリマーが海成分、融点または融着温
度が210℃未満の耐水性ポリマーが島成分となるよう
に溶液紡糸するとともに、均一固化紡糸をし、湿延伸及
び乾熱延伸を行なうことを特徴とする高強度にして耐水
性かつ熱圧着性のポリビニルアルコール系繊維の製法。
3. A polyvinyl alcohol polymer having a melting point of 220 ° C. or higher and a water resistant polymer having a melting point or a fusion temperature of less than 210 ° C. in the range of 98/2 to 55/45 and a melting point of 220 ° C. or higher. A polyvinyl alcohol-based polymer having a melting point of 220 ° C. or higher is a sea component, and a mixed solution or a mixed dispersion obtained by mixing and dissolving the polyvinyl alcohol-based polymer in a solvent is water-resistant, and the melting point or the fusion temperature is less than 210 ° C. Of high-strength, water-resistant and thermocompression-bonding polyvinyl alcohol fiber characterized by performing solution spinning so that the water-soluble polymer becomes an island component, uniform solidification spinning, and wet stretching and dry heat stretching .
【請求項4】 請求項1の繊維を少なくとも10%含有
する乾式不織布あるいは湿式不織布であって、温度80
〜230℃、線圧1kg/cm以上または面圧2kg/
cm2以上で熱圧着することにより圧着可能であること
を特徴とする不織布。
4. A dry non-woven fabric or wet non-woven fabric containing at least 10% of the fiber according to claim 1, having a temperature of 80.
~ 230 ° C, linear pressure 1kg / cm or more or surface pressure 2kg /
A non-woven fabric characterized by being able to be crimped by thermocompression bonding with a cm 2 or more.
【請求項5】 請求項1の繊維を少なくとも10%含有
するウェッブを、圧着温度80〜230℃かつ線圧1k
g/cm以上または面圧2kg/cm2以上の条件で熱
圧着することを特徴とする不織布の製造法。
5. A web containing at least 10% of the fiber of claim 1 is applied at a pressure of 80 to 230 ° C. and a linear pressure of 1 k.
A method for producing a non-woven fabric, which comprises thermocompression-bonding under a condition of g / cm 2 or more or a surface pressure of 2 kg / cm 2 or more.
JP26502293A 1993-10-22 1993-10-22 Water-resistant and thermo-compressible polyvinyl alcohol fiber Expired - Fee Related JP3254315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26502293A JP3254315B2 (en) 1993-10-22 1993-10-22 Water-resistant and thermo-compressible polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26502293A JP3254315B2 (en) 1993-10-22 1993-10-22 Water-resistant and thermo-compressible polyvinyl alcohol fiber

Publications (2)

Publication Number Publication Date
JPH07118929A true JPH07118929A (en) 1995-05-09
JP3254315B2 JP3254315B2 (en) 2002-02-04

Family

ID=17411498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26502293A Expired - Fee Related JP3254315B2 (en) 1993-10-22 1993-10-22 Water-resistant and thermo-compressible polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JP3254315B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306191A (en) * 1996-09-10 1998-11-17 Bmg Kk Composite of polyvinyl alcohol/ethylene-vinyl alcohol copolymer
JP5069691B2 (en) * 2006-10-13 2012-11-07 株式会社クラレ Embroidery base fabric and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306191A (en) * 1996-09-10 1998-11-17 Bmg Kk Composite of polyvinyl alcohol/ethylene-vinyl alcohol copolymer
JP5069691B2 (en) * 2006-10-13 2012-11-07 株式会社クラレ Embroidery base fabric and manufacturing method thereof

Also Published As

Publication number Publication date
JP3254315B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
EP0648871B1 (en) Water-soluble heat-press-bonding polyvinyl alcohol type binder fiber, nonwoven fabric containing said fiber, and processes for production of said fiber and said nonwoven fabric
JP2013174039A (en) Zone bonded nonwoven fabric manufactured from single polymer system
JPH0124888B2 (en)
EP1658395B1 (en) Method for producing moulded bodies exhibiting thermoregulation properties
EP0438635A2 (en) Polyvinyl alcohol fiber and process for its production
JP3345191B2 (en) Water-soluble and thermocompressible polyvinyl alcohol-based binder fiber
JPH11241225A (en) Conjugate filament having high nitrile content
JP3426703B2 (en) Low-temperature water-soluble nonwoven fabric and method for producing the same
JP3254315B2 (en) Water-resistant and thermo-compressible polyvinyl alcohol fiber
JPH07173724A (en) Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber
JP2002235236A (en) Polyvinyl alcohol-based water-soluble fiber
JP3849809B2 (en) Novel polymer blend fiber and process for producing the same
JP3235924B2 (en) Non-woven fabric using thermocompression bonding polyvinyl alcohol fiber
JPH07126918A (en) Heat-bondable and water-soluble polyvinyl alcohol fiber and heat-bonding method therefor
JPH07278962A (en) Heat-bondable polyacrylonitrile fiber
JPH04174719A (en) Conjugate yarn
JP4156157B2 (en) Water-soluble thermoplastic polyvinyl alcohol fiber and method for producing the same
JP2506419B2 (en) Durable hydrophilic heat-fusible composite fiber
JP3072952B2 (en) Nonwoven fabric, method for producing nonwoven fabric using the same, and interlining
JPH09302520A (en) Production of readily fibrillating fiber
JPH07279026A (en) Thermally contact bonded water-soluble polyvinyl alcohol-based continuous filament nonwoven fabric and its production
JPH07279025A (en) Thermally contact bonded water-resistant polyvinyl alcohol-based continuous filament nonwoven fabric and its production
JPH082138A (en) Water-soluble nonwoven fabric for backlining of book
JP7336282B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPH1161560A (en) Biodegradable staple fiber and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees