JPH07118844A - Formation of oxidized film - Google Patents

Formation of oxidized film

Info

Publication number
JPH07118844A
JPH07118844A JP28214193A JP28214193A JPH07118844A JP H07118844 A JPH07118844 A JP H07118844A JP 28214193 A JP28214193 A JP 28214193A JP 28214193 A JP28214193 A JP 28214193A JP H07118844 A JPH07118844 A JP H07118844A
Authority
JP
Japan
Prior art keywords
frequency power
power source
target
phase
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28214193A
Other languages
Japanese (ja)
Inventor
Hiroaki Minami
宏明 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIIDE RAITO S M I KK
Original Assignee
RIIDE RAITO S M I KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIIDE RAITO S M I KK filed Critical RIIDE RAITO S M I KK
Priority to JP28214193A priority Critical patent/JPH07118844A/en
Publication of JPH07118844A publication Critical patent/JPH07118844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To always stably form good oxidized films while preventing an abnormal discharge by controlling the phase of a high-frequency power source on a substrate side so as to have a specific delay with the phase of a high-frequency power source on a target side. CONSTITUTION:The target 2 and substrate 3 connected respectively to the high-frequency power sources 5, 7 are arranged to face each other in a sputtering chamber 1 and a sputtering gas is introduced into this chamber. As a result, the target 2 is sputtered and the components thereof are deposited by evaporation on the substrate 3, by which the oxidized film is formed. The phase of the high-frequency power source 7 is controlled by using an automatic phase shifter 9 so as to have the delay of about 40 to 120 deg. at all times with the phase of the high-frequency power source 5 on the target side. As a result, the film forming speed is approximately constantly stabilized and a low film thickness distribution is maintained regardless of the differences in the sputtering devices and batches.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に半導体素子の製造
・加工や薄膜作成技術に於いて、高周波を用いたスパッ
タリングによって例えばAl23、SiO2のような絶
縁物・酸化物等からなる酸化膜を形成する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly applied to manufacturing and processing of semiconductor elements and thin film forming technology, by sputtering using high frequency, for example, insulators and oxides such as Al 2 O 3 and SiO 2. And a method for forming an oxide film made of.

【0002】[0002]

【従来の技術】従来より、絶縁物をスパッタリングによ
り成膜するために高周波スパッタリング技術が広く使用
されている。良好な酸化膜を形成するためには、成膜速
度、膜厚分布、ステップカバレッジ等が重要な要素であ
る。そのために、高周波スパッタリングは、通例スパッ
タガスの流量・圧力、ターゲット側の入射電力、基板側
の電圧等の成膜条件を制御して行われ、またスパッタガ
スに混合ガスを用いることがある。
2. Description of the Related Art Conventionally, a high frequency sputtering technique has been widely used for forming an insulating film by sputtering. In order to form a good oxide film, the film formation rate, film thickness distribution, step coverage, etc. are important factors. Therefore, the high frequency sputtering is usually performed by controlling the film forming conditions such as the flow rate / pressure of the sputtering gas, the incident power on the target side, the voltage on the substrate side, and the mixed gas may be used as the sputtering gas.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の高周波スパッタリングによる酸化膜の形成方法
では、上記成膜条件を制御しているにも拘らず、成膜速
度がバッチ毎に変化したり、膜厚分布が使用するスパッ
タリング装置やバッチ毎に異なったり、成膜作業が長時
間に亘ると、高周波電源の位相のずれまたは変化によっ
て異常放電を生じることがあるという問題があった。例
えば、同一の成膜条件で同じスパッタガスを用いた場合
でも、ターゲット側の高周波電源と基板側の高周波電源
との位相差が約10゜変化すると、成膜速度が10オン
グストローム程度変化し、かつ膜厚分布が2〜5%程度
まで変化すると共に、膜質も異なったものになる。
However, in the above-described conventional method for forming an oxide film by high-frequency sputtering, the film forming rate changes from batch to batch despite the film forming conditions being controlled. There is a problem in that the film thickness distribution varies depending on the sputtering apparatus or batch used, or when the film forming operation is performed for a long time, an abnormal discharge may occur due to the phase shift or change of the high frequency power source. For example, even when the same sputtering gas is used under the same film forming conditions, if the phase difference between the high frequency power source on the target side and the high frequency power source on the substrate changes by about 10 °, the film forming rate changes by about 10 Å, and The film quality changes as the film thickness distribution changes to about 2 to 5%.

【0004】このため、高周波電源の位相を最適に制御
することが重要であるが、従来は、スパッタリング装置
の安定性を確保するために、ターゲット側と基板側との
高周波電源のケーブル長を変えることによって制御する
程度の対策が施されていたに過ぎない。
Therefore, it is important to optimally control the phase of the high frequency power source, but conventionally, in order to secure the stability of the sputtering apparatus, the cable length of the high frequency power source on the target side and the substrate side is changed. Only measures were taken to control it.

【0005】そこで、請求項1記載の酸化膜の形成方法
は、上述した従来の問題点に鑑みてなされたものであ
り、その目的とするところは、酸化物をスパッタリング
により成膜する場合に於いて、使用する装置やバッチに
関わり無く、異常放電の発生を防止しつつ常に安定して
良好な酸化膜を形成することができる方法を提供するこ
とにある。
Therefore, the method for forming an oxide film according to claim 1 has been made in view of the above-mentioned conventional problems, and an object thereof is to form an oxide film by sputtering. Another object of the present invention is to provide a method capable of always forming a stable and good oxide film while preventing the occurrence of abnormal discharge regardless of the apparatus or batch used.

【0006】[0006]

【課題を解決するための手段】本発明は、上述した目的
を達成するためのものであり、以下にその内容を図面に
示した実施例を用いて説明する。
The present invention is to achieve the above-mentioned object, and the contents thereof will be described below with reference to the embodiments shown in the drawings.

【0007】即ち、本発明は、基板側の高周波電源とタ
ーゲット側の高周波電源との位相差が、スパッタリング
による酸化膜の形成、例えば成膜速度、膜厚分布に与え
る影響に着目してなされたものであり、請求項1記載の
酸化膜の形成方法は、酸化物をスパッタリングすること
によって酸化膜を形成する際に、基板側の高周波電源
が、ターゲット側の高周波電源に対して常に約40゜〜
120゜の範囲内で位相遅れを有するように最適制御し
ながら成膜することを特徴とする。
That is, the present invention has been made paying attention to the influence of the phase difference between the high frequency power source on the substrate side and the high frequency power source on the target side on the formation of an oxide film by sputtering, for example, the film formation rate and the film thickness distribution. In the method of forming an oxide film according to claim 1, when the oxide film is formed by sputtering an oxide, the high frequency power source on the substrate side is always about 40 ° with respect to the high frequency power source on the target side. ~
It is characterized in that the film is formed while optimally controlling so as to have a phase delay within a range of 120 °.

【0008】[0008]

【作用】本願発明者は、以下に詳述するように、ターゲ
ット側高周波電源に対する基板側高周波電源の位相差が
或る特定の範囲内にある場合、成膜速度及び膜厚分布が
略一定に安定することを見い出した。従って、請求項1
記載の酸化膜の形成方法によれば、使用するスパッタリ
ング装置やバッチの異同に関わり無く、常に成膜速度を
略一定に安定させかつ膜厚分布を低く維持することがで
きる。
As described in detail below, the inventor of the present application makes the film forming rate and the film thickness distribution substantially constant when the phase difference of the substrate side high frequency power source with respect to the target side high frequency power source is within a certain specific range. I found it to be stable. Therefore, claim 1
According to the method for forming an oxide film described above, the film formation rate can always be stabilized at a substantially constant level and the film thickness distribution can be kept low regardless of the sputtering apparatus and batch used.

【0009】[0009]

【実施例】図1には、本発明の方法を実施するのに適し
た高周波スパッタリング装置の構成全体が図示されてい
る。スパッタチャンバ1内には、電極の上に水平に置か
れたターゲット2の上方に、基板3が基板ホルダにより
平行に保持されている。ターゲット2は、前記電極がタ
ーゲット側のマッチングホックス4を介してターゲット
側の高周波電源5に接続され、基板3は、基板側のマッ
チングホックス6を介して基板側の高周波電源7に接続
されている。両電源5、7は共通の発振器8を有する
が、ターゲット側の高周波電源5と発振器8との間に
は、自動的に位相を推移させるためのオートフェーズシ
フタ9が挿入されている。また、ターゲット2とターゲ
ット側マッチングホックス4との間、及び基板3と基板
側マッチングホックス6との間には、それぞれターゲッ
ト2及び基板3に実際に印加される高周波の位相を検出
するための高周波位相検出器10、11が設けられ、か
つオートフェーズシフタ9に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows the overall construction of a high frequency sputtering apparatus suitable for carrying out the method of the present invention. In the sputtering chamber 1, a substrate 3 is held in parallel by a substrate holder above a target 2 placed horizontally on an electrode. The target 2 is connected to the high frequency power source 5 on the target side via the matching hox 4 on the target side, and the substrate 3 is connected to the high frequency power source 7 on the substrate side via the matching hox 6 on the substrate side. . Both power supplies 5 and 7 have a common oscillator 8, but an auto phase shifter 9 for automatically shifting the phase is inserted between the high frequency power supply 5 on the target side and the oscillator 8. Further, between the target 2 and the target-side matching hox 4 and between the substrate 3 and the substrate-side matching hox 6, high-frequency waves for detecting the phases of high-frequency waves actually applied to the target 2 and the substrate 3, respectively. Phase detectors 10 and 11 are provided and connected to the auto phase shifter 9.

【0010】上述した構成の高周波スパッタリング装置
を使用し、基板側高周波電源7とターゲット側高周波電
源5との位相差を変化させて、位相差と酸化膜の成膜速
度及び膜厚分布との関係について研究した。基板側電源
7の出力を2kW、ターゲット側電源5の出力を15k
Wとし、ターゲットとして純度99.9%のAl23
使用し、投入電力を7.5kW、スパッタガスとしてA
rガスの流量を140cm3/min、ガス圧を20×10-3
Torr、基板側の負のバイアス電圧を−130Vとする成
膜条件下で、基板3上にAl23膜を形成した。オート
フェーズシフタ9を用いて位相差を変化させたところ、
図2及び図3に示すような結果が得られた。
By using the high-frequency sputtering apparatus having the above-mentioned structure, the phase difference between the substrate-side high-frequency power source 7 and the target-side high-frequency power source 5 is changed so that the relationship between the phase difference and the oxide film deposition rate and film thickness distribution. I studied about. The output of the board side power supply 7 is 2 kW and the output of the target side power supply 5 is 15 kW
W, using Al 2 O 3 with a purity of 99.9% as a target, input power of 7.5 kW, and sputtering gas of A
Flow rate of r gas is 140 cm 3 / min, gas pressure is 20 × 10 -3
An Al 2 O 3 film was formed on the substrate 3 under the film forming conditions of Torr and the substrate-side negative bias voltage of −130V. When the phase difference was changed using the auto phase shifter 9,
The results shown in FIGS. 2 and 3 were obtained.

【0011】図2及び図3に於いて、横軸は、基板側高
周波電源のターゲット側高周波電源に対する位相差即ち
位相の遅れであり、縦軸は、それぞれAl23膜の成膜
速度及び膜厚分布である。図2から明かなように、成膜
速度は、位相差が約40゜〜120゜の範囲で390±
10オングストローム/minの略一定で安定した高い値
を示しているが、その両側で急激に低下している。特に
40゜以下の位相差では成膜速度が20オングストロー
ム/min以上も低下し、また位相差を120゜以上にす
ると、成膜速度が遅くなるだけでなく異常放電の状態を
生じた。図3によれば、約40゜〜160゜の位相差で
は、膜厚分布が2%以下の略一定の低い値に安定してい
るが、40゜以下では急激に上昇して悪化することが分
かる。また、本実施例では、ターゲット側の入射電力を
2〜4W/cm2とし、基板側の負のバイアス電圧を−5
0〜−200Vとしたとき、良好な結果が得られること
が分かった。
2 and 3, the horizontal axis represents the phase difference, that is, the phase delay, of the substrate-side high-frequency power source with respect to the target-side high-frequency power source, and the vertical axes represent the deposition rate of the Al 2 O 3 film and the phase difference, respectively. It is a film thickness distribution. As is clear from FIG. 2, the film forming rate is 390 ± 300 when the phase difference is in the range of about 40 ° to 120 °.
A stable and high value of 10 angstroms / min is shown, but the values sharply decrease on both sides. In particular, when the phase difference was 40 ° or less, the film forming rate decreased by 20 Å / min or more, and when the phase difference was 120 ° or more, not only the film forming rate became slow, but also abnormal discharge occurred. According to FIG. 3, in the phase difference of about 40 ° to 160 °, the film thickness distribution is stable at a substantially constant low value of 2% or less, but at 40 ° or less, it rapidly rises and deteriorates. I understand. Further, in this embodiment, the incident power on the target side is set to 2 to 4 W / cm 2, and the negative bias voltage on the substrate side is set to -5.
It was found that good results were obtained when the voltage was set to 0 to -200V.

【0012】従って、本発明によれば、基板側高周波電
源のターゲット側高周波電源に対する位相遅れを常に約
40゜〜120゜の範囲の値に制御することが好まし
く、これによって、安定的に成膜速度を略一定の高い値
に維持しかつ膜厚分布を略一定の低い値に抑制できるこ
とが、容易に理解される。
Therefore, according to the present invention, it is preferable that the phase delay of the high frequency power source on the substrate side with respect to the high frequency power source on the target side is always controlled to a value in the range of about 40 ° to 120 °. It is easily understood that the velocity can be maintained at a substantially constant high value and the film thickness distribution can be suppressed at a substantially constant low value.

【0013】図1の高周波スパッタリング装置を用いて
基板3の表面に酸化物の膜を形成する場合、基板側高周
波電源7には、共通の発振器8から所定の高周波が印加
される。他方、ターゲット側高周波電源5には、発振器
8の高周波が、予め設定した40゜〜120゜の範囲内
で基板側が遅れるような位相のずれを生じさせるよう
に、オートフェーズシフタ9を介して印加される。ター
ゲット2には、ターゲット側電源5からマッチングボッ
クス4を介して高周波電圧が印加される。基板3には、
電源7からマッチングボックス6を介して、上述したよ
うにターゲット側より位相を遅らせた高周波電圧が印加
される。ターゲット2及び基板3に印加された高周波の
位相は、それぞれ高周波位相検出器10、11により検
出されてオートフェーズシフタ9にフィードバックされ
る。そして、実際に印加された高周波の位相差と予め設
定された位相差とが相違する場合には、その差を解消す
るようにオートフェーズシフタ9がターゲット側電源5
に印加する高周波の位相を調整する。これにより、基板
側高周波電源とターゲット側高周波電源との位相差が、
常に酸化膜を形成するのに最適な条件に自動的に制御さ
れる。
When an oxide film is formed on the surface of the substrate 3 using the high frequency sputtering apparatus shown in FIG. 1, a predetermined high frequency is applied to the substrate side high frequency power source 7 from a common oscillator 8. On the other hand, the high frequency power of the oscillator 8 is applied to the target side high frequency power source 5 via the auto phase shifter 9 so as to cause a phase shift such that the substrate side is delayed within a preset range of 40 ° to 120 °. To be done. A high-frequency voltage is applied to the target 2 from the target-side power supply 5 via the matching box 4. On the substrate 3,
As described above, the high frequency voltage having the phase delayed from the target side is applied from the power supply 7 through the matching box 6. The phases of the high frequencies applied to the target 2 and the substrate 3 are detected by the high frequency phase detectors 10 and 11, respectively, and fed back to the auto phase shifter 9. Then, when the phase difference of the actually applied high frequency and the preset phase difference are different from each other, the auto phase shifter 9 causes the target side power source 5 to eliminate the difference.
Adjust the phase of high frequency applied to. Thereby, the phase difference between the board-side high-frequency power supply and the target-side high-frequency power supply,
It is automatically controlled to the optimum conditions for always forming an oxide film.

【0014】[0014]

【発明の効果】本発明は、以上のように構成されている
ので、以下に記載されるような効果を奏する。
Since the present invention is constituted as described above, it has the following effects.

【0015】請求項1記載の酸化膜の形成方法によれ
ば、基板側高周波電源とターゲット側高周波電源との位
相差を積極的に制御することによって、使用する装置や
バッチを変更した場合でも、成膜速度が略一定の高い値
に安定的に維持され、それによって異常放電が有効に防
止され、しかも膜厚分布を2%以下の低い値に抑制する
ことができるから、常に安定して良好な酸化膜を形成す
ることができる。
According to the oxide film forming method of the first aspect, by positively controlling the phase difference between the high frequency power source on the substrate side and the high frequency power source on the target side, even when the apparatus or batch used is changed, The film formation rate is stably maintained at a substantially constant high value, whereby abnormal discharge is effectively prevented, and the film thickness distribution can be suppressed to a low value of 2% or less, so that it is always stable and good. An oxide film can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による方法を実施するのに適した高周波
スパッタリング装置全体の構成の一例を示す図である。
FIG. 1 is a diagram showing an example of the overall configuration of a high-frequency sputtering apparatus suitable for carrying out the method according to the present invention.

【図2】基板側高周波電源のターゲット側高周波電源に
対する位相差に関するAl23膜の成膜速度を示す線図
である。
FIG. 2 is a diagram showing a deposition rate of an Al 2 O 3 film with respect to a phase difference between a substrate side high frequency power source and a target side high frequency power source.

【図3】基板側高周波電源のターゲット側高周波電源に
対する位相差に関するAl23膜の膜厚分布を示す線図
である。
FIG. 3 is a diagram showing a film thickness distribution of an Al 2 O 3 film with respect to a phase difference between a substrate side high frequency power source and a target side high frequency power source.

【符号の説明】[Explanation of symbols]

1 スパッタチャンバ 2 ターゲット 3 基板 4 ターゲット側マッチングホックス 5 ターゲット側高周波電源 6 基板側マッチングホックス 7 基板側高周波電源 8 発振器 9 オートフェーズシフタ 10、11 高周波位相検出器 1 Sputter Chamber 2 Target 3 Substrate 4 Target Side Matching Hox 5 Target Side High Frequency Power Supply 6 Substrate Side Matching Hox 7 Substrate Side High Frequency Power Supply 8 Oscillator 9 Auto Phase Shifter 10, 11 High Frequency Phase Detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物のスパッタリングにより酸化膜を
形成する方法であって、 基板側の高周波電源を、その位相がターゲット側の高周
波電源の位相に対して常に約40゜〜120゜の遅れを
有するように制御することを特徴とする酸化膜の形成方
法。
1. A method of forming an oxide film by sputtering an oxide, wherein the high frequency power source on the substrate side is always delayed by about 40 ° to 120 ° with respect to the phase of the high frequency power source on the target side. A method for forming an oxide film, which is characterized by controlling to have.
JP28214193A 1993-10-18 1993-10-18 Formation of oxidized film Pending JPH07118844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28214193A JPH07118844A (en) 1993-10-18 1993-10-18 Formation of oxidized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28214193A JPH07118844A (en) 1993-10-18 1993-10-18 Formation of oxidized film

Publications (1)

Publication Number Publication Date
JPH07118844A true JPH07118844A (en) 1995-05-09

Family

ID=17648646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28214193A Pending JPH07118844A (en) 1993-10-18 1993-10-18 Formation of oxidized film

Country Status (1)

Country Link
JP (1) JPH07118844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044474A1 (en) * 2007-10-04 2009-04-09 Canon Anelva Corporation Vacuum thin film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044474A1 (en) * 2007-10-04 2009-04-09 Canon Anelva Corporation Vacuum thin film forming apparatus

Similar Documents

Publication Publication Date Title
US5116482A (en) Film forming system using high frequency power and power supply unit for the same
US5728278A (en) Plasma processing apparatus
EP0908531B1 (en) Apparatus and method for forming a thin film of a compound
US4871433A (en) Method and apparatus for improving the uniformity ion bombardment in a magnetron sputtering system
US5292417A (en) Method for reactive sputter coating at least one article
US5609690A (en) Vacuum plasma processing apparatus and method
US4874494A (en) Semiconductor manufacturing apparatus
GB2173822A (en) Planarizing semiconductor surfaces
JP2689931B2 (en) Sputtering method
US4818359A (en) Low contamination RF sputter deposition apparatus
JP2004107688A (en) Bias sputtering film deposition method and bias sputtering film deposition system
Vossen A sputtering technique for coating the inside walls of through-holes in substrates
JPH07118844A (en) Formation of oxidized film
CA2048470C (en) Plasma processing apparatus having an electrode enclosing the space between cathode and anode
US6425990B1 (en) Method for fabricating transparent conductive ITO film
JPH05320891A (en) Sputtering device
Iriarte Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering
US5753090A (en) Small size sputtering target and high vacuum sputtering apparatus using the same
JPS58167767A (en) Formation of thin film
JP2998257B2 (en) Insulating film forming method
JPS61261472A (en) Bias sputtering method and its apparatus
JPS6350025A (en) Production apparatus for semiconductor
JP3506782B2 (en) Manufacturing method of optical thin film
JPH0649936B2 (en) Bias spattering device
JPH05109668A (en) Manufacture of semiconductor device