JPH07118332A - Method for recovering fluoromonomer - Google Patents

Method for recovering fluoromonomer

Info

Publication number
JPH07118332A
JPH07118332A JP26631493A JP26631493A JPH07118332A JP H07118332 A JPH07118332 A JP H07118332A JP 26631493 A JP26631493 A JP 26631493A JP 26631493 A JP26631493 A JP 26631493A JP H07118332 A JPH07118332 A JP H07118332A
Authority
JP
Japan
Prior art keywords
monomer
latex
group
unreacted
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26631493A
Other languages
Japanese (ja)
Other versions
JP3525462B2 (en
Inventor
Masayuki Tamura
正之 田村
Takashi Saegi
孝志 三枝木
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP26631493A priority Critical patent/JP3525462B2/en
Publication of JPH07118332A publication Critical patent/JPH07118332A/en
Application granted granted Critical
Publication of JP3525462B2 publication Critical patent/JP3525462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To efficiently and quantitatively extract and recover a fluoromonomer which is liq. at room temp. from a latex obtd. by the emulsion polymn. of the fluoromonomer by bringing the latex into contact with a specific fluorinous solvent. CONSTITUTION:An unreacted fluoromonomer which is liq. at room temp. [e.g. a fluorovinyl compd. of formula I (wherein a is 0-3; and b is 1-5) having a carboxylate group] is recovered from a latex obtd. by the emulsion polymn. of the monomer by bringing the latex into contact with a fluorinous solvent boiling at 10-250 deg.C and selected from the group consisting of hydrochlorofluorocarbons of formulas II and l. hydrofluorocarbons (e.g. C4F9C2B5), and fluorocarbons (e.g. C6F14). An unreacted liq. monomer in the latex is extracted and recovered with the solvent easily, efficiently, and quantitatively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は常温で液状のフッ素化モ
ノマーの乳化重合ラテックスに含まれる未反応の該モノ
マーを回収する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering unreacted monomer contained in an emulsion polymerization latex of a fluorinated monomer which is liquid at room temperature.

【0002】[0002]

【従来の技術】フッ素系重合体は乳化重合、懸濁重合、
溶液重合、塊状重合などの方法で製造されているが、乳
化重合は重合槽の容積効率が高く、重合中の除熱や撹拌
時のトルクが低いなどの利点があり採用されている。乳
化重合では、四弗化エチレンのごとき常温で気体のモノ
マーは重合後パージすることで容易に回収が行なわれて
いる。しかし、常温で液状の未反応フッ素化モノマーは
生成したラテックス中に含まれており、特に官能基を含
有するモノマーなどはラテックス凝集時に変性し回収率
が低下する可能性があり、凝集に先立ち回収することが
好ましい。
BACKGROUND OF THE INVENTION Fluorine-based polymers are emulsion polymerization, suspension polymerization,
Although produced by a method such as solution polymerization or bulk polymerization, emulsion polymerization is adopted because it has advantages such as high volumetric efficiency in a polymerization tank, low heat during polymerization and low torque during stirring. In emulsion polymerization, monomers that are gaseous at room temperature, such as tetrafluoroethylene, are easily recovered by purging after polymerization. However, the unreacted fluorinated monomer that is liquid at room temperature is contained in the produced latex, and especially monomers containing functional groups may be modified during latex aggregation and the recovery rate may decrease. Preferably.

【0003】従来、液状のフッ素化モノマーの回収に弗
素化塩素化飽和炭化水素の溶剤が用いられて、ラテック
スと該溶剤を混合静置し、二層分離した該溶剤に含まれ
る該モノマーを抽出回収する方法が採用されていた(特
公昭62−56886)。しかし従来用いられていたト
リクロロトリフルオロエタンのごときクロロフルオロカ
ーボンは入手が容易で安価であるものの、大気中のオゾ
ン層を破壊するおそれがあるとされ、その使用が制限さ
れるため代替抽出溶剤の適用が要請されている。
Conventionally, a solvent of a fluorinated chlorinated saturated hydrocarbon is used for recovering a liquid fluorinated monomer, and the latex and the solvent are mixed and allowed to stand, and the monomer contained in the solvent separated into two layers is extracted. The method of collecting was adopted (Japanese Patent Publication No. 62-56886). However, although chlorofluorocarbons such as trichlorotrifluoroethane that have been conventionally used are easily available and inexpensive, they are said to have the potential to destroy the ozone layer in the atmosphere, and their use is limited, so application of alternative extraction solvents Has been requested.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前述
の問題点を解決しようとするものである。すなわち、常
温で液状のフッ素化モノマーの乳化重合ラテックスに含
まれる未反応の該モノマーを定量的に効率よく抽出回収
できる方法を提供する。また、オゾン層を破壊するおそ
れがない抽出溶剤を用いる回収方法を提供するものであ
る。
The object of the present invention is to solve the above-mentioned problems. That is, there is provided a method capable of quantitatively and efficiently extracting and recovering unreacted monomers contained in an emulsion polymerization latex of a fluorinated monomer that is liquid at room temperature. Further, the present invention provides a recovery method using an extraction solvent that does not damage the ozone layer.

【0005】[0005]

【課題を解決するための手段】本発明は、常温で液状の
フッ素化モノマーを乳化重合して得られるラテックスか
ら、未反応の前記液状のフッ素化モノマーを回収するに
当たり、沸点が10〜250℃であり、CF2 ClCF
2 CFHCl、CF3 CF2 CHCl2 、ハイドロフル
オロカーボンおよびフルオロカーボンからなる群から選
ばれる少なくとも1種類のフッ素系溶剤と前記ラテック
スとを接触せしめ、前記フッ素系溶剤により前記未反応
モノマーを抽出回収することを特徴とするフッ素化モノ
マーの回収方法を提供する。
The present invention has a boiling point of 10 to 250 ° C. in recovering the unreacted liquid fluorinated monomer from a latex obtained by emulsion polymerization of a liquid fluorinated monomer at room temperature. And CF 2 ClCF
2 CFHCl, CF 3 CF 2 CHCl 2 , at least one fluorine-based solvent selected from the group consisting of hydrofluorocarbons and fluorocarbons is brought into contact with the latex, and the unreacted monomer is extracted and recovered by the fluorine-based solvent. Provided is a method for recovering a characteristic fluorinated monomer.

【0006】本発明における特定のフッ素系溶剤として
は、リサイクル性、常温での取扱い易さなどより沸点2
0〜200℃のものが好ましく、さらには液状のフッ素
化モノマーを抽出後の蒸留分離の容易さなどより該モノ
マーとの沸点差が20℃以上であるものが特に好まし
い。具体的には、ハドロフルオロカーボン(HFC)お
よびフルオロカーボン(FC)としては、構造が直鎖
状、分岐状、環状のいずれであってもよいが、炭素数は
HFC及びFCでは4〜12個の範囲が好ましい。HF
Cとして、C4925 、(CF32 CFCFH
CFHCF3 、C613H、C61325 およびC8
1725 から選ばれる少なくとも1種類のフッ素
系溶剤が、また、FCとして、化2から選ばれる少なく
とも1種類のフッ素系溶剤が、特性上および工業的に入
手が容易で特に好ましい。これらのフッ素溶剤は単独で
あるいは混合溶剤として使用され得るものである。
The specific fluorine-based solvent in the present invention has a boiling point of 2 due to its recyclability and ease of handling at room temperature.
Those having a temperature of 0 to 200 ° C. are preferable, and those having a boiling point difference of 20 ° C. or more with the monomer are particularly preferable in view of the ease of distillation separation after extraction of the liquid fluorinated monomer. Specifically, the structures of the hadrofluorocarbon (HFC) and the fluorocarbon (FC) may be linear, branched, or cyclic, but the number of carbon atoms is 4 to 12 in HFC and FC. Ranges are preferred. HF
As C, C 4 F 9 C 2 H 5 , (CF 3 ) 2 CFCFH
CFHCF 3 , C 6 F 13 H, C 6 F 13 C 2 H 5 and C 8
At least one type of fluorine-based solvent selected from F 17 C 2 H 5 and at least one type of fluorine-based solvent selected from Chemical Formula 2 as FC are particularly preferable because of their properties and industrial availability. These fluorine solvents can be used alone or as a mixed solvent.

【0007】[0007]

【化2】 [Chemical 2]

【0008】抽出操作は通常、ラテックスに前記のフッ
素系溶剤を加え、撹拌または振とうした後静置させるも
ので、該モノマーを含むフッ素系溶剤が下層に分離す
る。抽出操作は分離した下層を抜きだした後、新たに該
フッ素系溶剤を加え上記操作を数回繰り返すことで、未
反応のモノマーを定量的に回収することができる。
In the extraction operation, the above-mentioned fluorine-containing solvent is usually added to the latex, and the mixture is stirred or shaken and then allowed to stand, and the fluorine-containing solvent containing the monomer is separated into the lower layer. In the extraction operation, the unreacted monomer can be quantitatively recovered by extracting the separated lower layer, adding the fluorine-based solvent newly, and repeating the above operation several times.

【0009】抽出操作時のラテックス/フッ素系溶剤の
混合割合は、20/1〜1/10の範囲が用いられる
が、あまりにフッ素系溶剤の混合比率を高めると抽出回
数は少なくできるが溶剤中のモノマー濃度が著しく低く
なり、蒸留回収時の装置容積が大きくなり好ましくな
い。一方、フッ素系溶剤の混合比率が小さすぎると抽出
回数が多くなり好ましくない。より好ましくは10/1
〜1/2の範囲である。
The mixing ratio of latex / fluorine solvent during the extraction operation is in the range of 20/1 to 1/10. If the mixing ratio of the fluorine solvent is increased too much, the number of extractions can be reduced, but It is not preferable because the monomer concentration becomes remarkably low and the apparatus volume during distillation recovery becomes large. On the other hand, if the mixing ratio of the fluorine-based solvent is too small, the number of extractions will increase, which is not preferable. More preferably 10/1
It is in the range of ½.

【0010】本発明の抽出処理は、常温で液状のフッ素
化モノマーを含有する乳化重合系のラテックスに対して
適用される。液状のフッ素化モノマーとしては、種々の
ものが例示され得るが、カルボン酸基、スルホン酸基、
リン酸基の如き官能基をペンダント側鎖に含有するフッ
素化モノマー、特にパーフルオロ系モノマーが好適であ
る。そして通常乳化重合系は、特定の液状フッ素化モノ
マーと常温でガス状のフッ素化したエチレン系不飽和単
量体との共重合系である場合が一般的である。
The extraction treatment of the present invention is applied to an emulsion polymerization type latex containing a fluorinated monomer which is liquid at room temperature. Examples of the liquid fluorinated monomer may include various ones, a carboxylic acid group, a sulfonic acid group,
A fluorinated monomer containing a functional group such as a phosphoric acid group in a pendant side chain, particularly a perfluoro-based monomer is preferable. The emulsion polymerization system is usually a copolymerization system of a specific liquid fluorinated monomer and a fluorinated ethylenically unsaturated monomer that is gaseous at room temperature.

【0011】本発明で好適な特定液状フッ素化モノマー
としては、カルボン酸基もしくはカルボン酸基に変換し
得るカルボン酸型官能基あるいは、スルホン酸基もしく
はスルホン酸基に変換し得るスルホン酸型官能基を有す
る重合能あるフッ素化官能性単量体(1)が例示され得
る。かかるフッ素化官能性単量体(1)は、生成ポリマ
ーの用途、性能などを考慮すると、 通常はフルオロビニ
ル化合物、特にパーフルオロ系であることが望ましい。
The specific liquid fluorinated monomer suitable in the present invention is a carboxylic acid group or a carboxylic acid type functional group capable of being converted into a carboxylic acid group, or a sulfonic acid group or a sulfonic acid type functional group capable of being converted into a sulfonic acid group. An example is a fluorinated functional monomer (1) having a polymerization ability. It is usually desirable that the fluorinated functional monomer (1) is a fluorovinyl compound, particularly a perfluoro type, in consideration of the use and performance of the produced polymer.

【0012】好適なものとしては、カルボン酸型官能基
を有するモノマーは、一般式CF2=CF(OCF2
FCF3a O(CF2b COOCH3 (但し、式中
のaは0〜3、bは1〜5である)で表されるフルオロ
ビニル化合物が例示される。スルホン酸型官能基を有す
るモノマーは、一般式CF2 =CF(OCF2 CFCF
3c O(CF2d SO2 F(但し、式中のcは0〜
3、dは1〜5である)で表されるフルオロビニル化合
物が例示される。
Preferably, the monomer having a carboxylic acid type functional group has the general formula CF 2 ═CF (OCF 2 C
FCF 3) a O (CF 2 ) b COOCH 3 ( where, a in the formula is 0 to 3, b is fluorovinyl compound represented by from 1 to 5) are exemplified. A monomer having a sulfonic acid type functional group has a general formula CF 2 ═CF (OCF 2 CFCF
3 ) c O (CF 2 ) d SO 2 F (provided that c in the formula is 0 to
3, and d is 1 to 5).

【0013】次に、フッ素化したエチレン系不飽和単量
体(2)としては、四弗化エチレン、三フッ化塩化エチ
レン、六フッ化プロピレン、三フッ化エチレン、フッ化
ビニリデン、フッ化ビニルなどが例示され、好適には一
般式CF2 =CZY(ここで、Z、Yはフッ素原子、塩
素原子、水素原子、または−CF3 である)で表される
フッ素化オレフィン化合物である。なかでもパーフルオ
ロオレフィン化合物が好ましく、特に四フッ化エチレン
が好適である。
Next, as the fluorinated ethylenically unsaturated monomer (2), ethylene tetrafluoride, ethylene trifluoride chloride, propylene hexafluoride, ethylene trifluoride, vinylidene fluoride, vinyl fluoride are used. And the like, and is preferably a fluorinated olefin compound represented by the general formula CF 2 ═CZY (wherein Z and Y are a fluorine atom, a chlorine atom, a hydrogen atom, or —CF 3 ). Of these, perfluoroolefin compounds are preferable, and tetrafluoroethylene is particularly preferable.

【0014】本発明においては、前記官能性単量体
(1)およびエチレン系不飽和単量体(2)の各モノマ
ー化合物を、それぞれ2種類以上で使用することもで
き、またこれらの化合物の他に、他の成分、例えば式C
2 =CR45 (ここで、R4 、R5 は水素原子、炭
素数1〜8のアルキル基または芳香核を示す)で表され
るオレフィン化合物(3)、式CF2 =CFORf(R
fは炭素数1〜10のパーフルオロアルキル基を示す)
の如きフルオロビニルエーテル、式CF2 =CF−CF
=CF2 、式CF2 =CFO(CF2e OCF=CF
2 (eは1〜4)の如きジビニルモノマーなどの1種ま
たは2種以上を併用することもできる。オレフィン化合
物(3)の好ましい代表例としては、エチレン、プロピ
レン、ブテン−1、イソブチレン、スチレン、α−メチ
ルスチレン、ペンテン−1、ヘキセン−1、ヘプテン−
1、3−メチル−ブテン−1、4−メチル−ペンテン−
1などが挙げられ、なかでも製造上および生成共重合体
の性能上などから、エチレン、プロピレン、イソブチレ
ンなどの使用が特に好ましい。また、例えばジビニルモ
ノマーの併用によって得られる共重合体を架橋し、膜の
如き成形物にした場合の機械的強度を改善せしめること
が可能である。
In the present invention, each of the functional monomer (1) and the ethylenically unsaturated monomer (2) may be used in a combination of two or more kinds. Besides, other ingredients such as the formula C
H 2 = CR 4 R 5 (wherein R 4 and R 5 represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aromatic nucleus), an olefin compound (3) represented by the formula CF 2 = CFORf ( R
f represents a perfluoroalkyl group having 1 to 10 carbon atoms)
Such fluorovinyl ethers of the formula CF 2 = CF-CF
= CF 2, wherein CF 2 = CFO (CF 2) e OCF = CF
It is also possible to use one kind or two or more kinds of divinyl monomers such as 2 (e is 1 to 4) in combination. Preferred representative examples of the olefin compound (3) include ethylene, propylene, butene-1, isobutylene, styrene, α-methylstyrene, pentene-1, hexene-1, and heptene-.
1,3-methyl-butene-1,4-methyl-pentene-
1, etc. Among them, use of ethylene, propylene, isobutylene and the like is particularly preferable from the viewpoint of production and performance of the produced copolymer. Further, it is possible to improve the mechanical strength when a copolymer obtained by using a divinyl monomer in combination is crosslinked to form a molded article such as a film.

【0015】本発明におけるラテックス中の生成フッ素
化重合体における前記の官能性単量体(1)、 フッ素化
オレフィン化合物(2)、 更には前記オレフィン化合物
(3)その他の成分の組成割合は、性能に関係するので
重要である。
The composition ratio of the functional monomer (1), the fluorinated olefin compound (2), and the olefin compound (3) and other components in the fluorinated polymer produced in the latex of the present invention is It is important because it is related to performance.

【0016】まず、官能性単量体(1)の存在量は、イ
オン交換容量と直接関係するが、共重合体中1〜50モ
ル%、好ましくは3〜35モル%が好適である。該単量
体(1)の存在量が大きすぎると、イオン交換膜など成
形物とした場合の機械的強度を損ない、更には含水量の
増大によるイオン交換性能の低下をきたし、またあまり
に少ない存在量ではイオン交換機能を示さないので好ま
しくない。
First, the amount of the functional monomer (1) present is directly related to the ion exchange capacity, but it is preferably 1 to 50 mol%, preferably 3 to 35 mol% in the copolymer. When the amount of the monomer (1) present is too large, the mechanical strength of the formed product such as an ion exchange membrane is impaired, and further, the ion exchange performance is deteriorated due to an increase in water content, and the amount is too small. The amount is not preferable because it does not exhibit an ion exchange function.

【0017】而して、本発明の共重合体中における前記
(1)の化合物の残りは、前記(2)と更には(3)そ
の他の化合物が占めることになるが、(3)のオレフィ
ン化合物の存在量は、電気的、機械的および耐塩素性な
どに大きく関係するので重要である。従って、 オレフィ
ン化合物(3)を併用する場合には、 オレフィン化合物
(3)/フッ素化オレフィン化合物(2)のモル比が、
好ましくは5/95〜70/30、特には10/90〜
60/40にするのが好適である。また、フルオロビニ
ルエーテルやジビニルエーテルなどを併用する場合に
も、共重合体中30モル%以下、好ましくは2〜20モ
ル%程度の割合とするのが好適である。
Thus, the remainder of the compound of (1) in the copolymer of the present invention is occupied by the other compounds of (2) and (3), but the olefin of (3). The abundance of the compound is important because it is greatly related to electrical, mechanical and chlorine resistance. Therefore, when the olefin compound (3) is used in combination, the molar ratio of olefin compound (3) / fluorinated olefin compound (2) is
Preferably 5/95 to 70/30, especially 10/90 to
60/40 is preferable. Further, when fluorovinyl ether or divinyl ether is used in combination, the proportion of the copolymer is preferably 30 mol% or less, more preferably about 2 to 20 mol%.

【0018】本発明の乳化重合系では、生成ポリマーの
イオン交換容量は、 0. 5〜2. 2ミリ当量/グラム乾
燥樹脂という広い範囲から選択されるが、特徴的なこと
は、イオン交換容量を大きくしても、生成共重合体の分
子量を高くでき、従って共重合体の機械的性質や耐久性
は低下することがないのである。イオン交換容量は、上
記の範囲でも、共重合体の種類に応じて異なるが、好ま
しくは0.8ミリ当量/グラム乾燥樹脂以上、特に1.
0ミリ当量/グラム乾燥樹脂以上の場合が、イオン交換
膜としての機械的性質および電気化学的性能上好まし
い。また、本発明で得られるフッ素化合重合体の分子量
は、イオン交換膜としての機械的性能および製膜性と関
係するので重要であり、 TQ の値で表示すると、150
℃以上、 好ましくは170〜340℃、特に180〜3
00℃程度とするのが好適である。
In the emulsion polymerization system of the present invention, the ion exchange capacity of the produced polymer is selected from a wide range of 0.5 to 2.2 meq / g dry resin. Even if the value is increased, the molecular weight of the produced copolymer can be increased, and therefore the mechanical properties and durability of the copolymer will not be reduced. The ion exchange capacity varies depending on the type of the copolymer even in the above range, but is preferably 0.8 meq / g dry resin or more, particularly 1.
The case of 0 meq / g dry resin or more is preferable from the viewpoint of mechanical properties and electrochemical performance as an ion exchange membrane. The molecular weight of the fluorine compound polymer obtained in the present invention, since the relationship between mechanical performance and film formability as an ion-exchange membrane is important, when viewed in the value of T Q, 0.99
℃ or more, preferably 170 ~ 340 ℃, especially 180 ~ 3
The temperature is preferably about 00 ° C.

【0019】本明細書中において「TQ 」なる言葉は次
のように定義されるものである。即ち、 共重合体の分子
量に関係する容量流速100mm3 /秒を示す温度がT
Q と定義される。ここにおいて容量流速は、共重合体を
30kg/cm2 加圧下、一定温度の径1mm、長さ2
mmのオリフィスから熔融流出せしめ、流出する共重合
体量をmm3 /秒の単位で示したものである。
In the present specification, the term "T Q " is defined as follows. That is, the temperature at which the volumetric flow rate of 100 mm 3 / sec related to the molecular weight of the copolymer is T
Defined as Q. Here, the volumetric flow rate is such that the copolymer is pressurized at 30 kg / cm 2 and the diameter is 1 mm and the length is 2 at a constant temperature.
The amount of the copolymer melted and flowed out from the orifice of mm is shown in the unit of mm 3 / sec.

【0020】また、「イオン交換容量」については次の
通りである。即ち、H型の陽イオン交換樹脂膜を、 1N
のHCl中で60℃、5時間放置し、完全にH型に転換
し、HClが残存しないように水で充分洗浄した。その
後、このH型の膜0.5gを、0.1NのNaOH25
cm3 に水を25cm3 加えてなる溶液中に、室温で2
日間静置した。次いで膜をとり出して、溶液中のNaO
Hの量を0.1NのHClで逆滴定することにより求め
るものである。
The "ion exchange capacity" is as follows. That is, an H-type cation exchange resin membrane is
It was left to stand in HCl of 60 ° C. for 5 hours, completely converted to H-form, and washed sufficiently with water so that HCl did not remain. Then, 0.5 g of this H-type film was added to 0.1N NaOH 25
at room temperature in a solution of 25 cm 3 of water added to 3 cm 3.
Let stand for days. The membrane is then removed and NaO in solution is removed.
It is determined by back titrating the amount of H with 0.1 N HCl.

【0021】本発明においては、官能性単量体とフッ素
化オレフィン化合物との共重合反応を、水性媒体中で実
施する。通常は、水性媒体の使用量を水性媒体/官能性
単量体の重量比で20/1以下にし、好ましくは10/
1以下に制御して実施するのが良い。水性媒体の使用量
が多すぎる場合には、共重合反応速度が著しく低下し、
高い共重合体収量を得るために長時間を要することにな
る。また、水性媒体が多すぎると高イオン交換容量にし
た場合に高い分子量を達成するのが難しくなる。更に水
性媒体の多量使用には、次の如き難点が認められる。例
えば、反応装置の大型化あるいは共重合体分離回収など
作業操作面の不利があげられる。
In the present invention, the copolymerization reaction between the functional monomer and the fluorinated olefin compound is carried out in an aqueous medium. Usually, the amount of the aqueous medium used is 20/1 or less in terms of the weight ratio of the aqueous medium / functional monomer, preferably 10 /
It is better to control it to 1 or less. If the amount of the aqueous medium used is too large, the copolymerization reaction rate is significantly reduced,
It will take a long time to obtain a high copolymer yield. Further, if the amount of the aqueous medium is too large, it becomes difficult to achieve a high molecular weight when the ion exchange capacity is high. Furthermore, the following problems are recognized when a large amount of aqueous medium is used. For example, there are disadvantages in terms of work operation such as enlargement of reactor or separation and recovery of copolymer.

【0022】次に本発明においては、1kg/cm2
上の共重合反応圧力を採用することが好適である。共重
合反応圧力が低すぎる場合には、共重合反応速度を実用
上満足し得る高さに維持することができず、高分子量の
共重合体の形成に難点が認められる。また、共重合反応
圧力が低すぎると、生成共重合体のイオン交換容量が極
端に高くなり、含水量増大などによる機械的強度、イオ
ン交換性能の低下傾向が増大することになる。なお、共
重合反応圧力は、工業的実施における反応装置上または
作業操作上などを考慮して、50kg/cm2 以下から
選定されるのが好ましい。かかる範囲よりも高い共重合
反応圧力の採用は可能であるが、本発明の目的を比例的
に向上せしめ得るものではない。従って、本発明におい
ては、共重合反応圧力を1〜50kg/cm2 、好まし
くは3〜30kg/cm2 の範囲から選定するのが最適
である。
Next, in the present invention, it is preferable to adopt a copolymerization reaction pressure of 1 kg / cm 2 or more. If the copolymerization reaction pressure is too low, the copolymerization reaction rate cannot be maintained at a level that is practically satisfactory, and it is difficult to form a high molecular weight copolymer. On the other hand, if the copolymerization reaction pressure is too low, the ion exchange capacity of the produced copolymer becomes extremely high, and the mechanical strength and the ion exchange performance tend to decrease due to an increase in water content. Incidentally, the copolymerization reaction pressure is preferably selected from 50 kg / cm 2 or less in consideration of the reaction apparatus in industrial practice or work operation. It is possible to employ a copolymerization reaction pressure higher than this range, but it is not possible to proportionally improve the object of the present invention. Therefore, in the present invention, the copolymerization reaction pressure is optimally selected from the range of 1 to 50 kg / cm 2 , preferably 3 to 30 kg / cm 2 .

【0023】本発明の共重合反応に際しては、前記反応
条件の他の条件や操作は、特に限定されることなく広い
範囲にわたって採用され得る。例えば、共重合反応温度
は、重合開始源の種類や反応モル比などにより最適値が
選定され得るが、通常は余りに高温度や低温度は工業的
実施に対して不利となるので、10〜90℃、好ましく
は20〜80℃程度から選定される。
In the copolymerization reaction of the present invention, other conditions and operations other than the above reaction conditions can be adopted over a wide range without particular limitation. For example, as the copolymerization reaction temperature, an optimum value can be selected depending on the type of the polymerization initiation source, the reaction molar ratio, etc. However, usually, too high temperature or too low temperature is disadvantageous for industrial practice, and therefore 10 to 90 C., preferably about 20 to 80.degree.

【0024】本発明において重合開始源としては、前記
の好適な反応温度において高い活性を示すものを選定す
るのが望ましい。例えば、室温以下でも高活性の電離性
放射線を採用することもできるが、通常はアゾ化合物や
パーオキシ化合物を採用する方法が工業的実施に対して
有利である。本発明で好適に採用される重合開始源は、
前記共重合反応圧力下に10〜90℃程度で高活性を示
すジコハク酸パーオキサイド、ベンゾイルパーオキサイ
ド、ラウロイルパーオキサイド、ジペンタフルオロプロ
ピオニルパーオキサイド等のジアシルパーオキサイド、
2,2−アゾビス(2−アミジノプロパン)塩酸塩、
4,4−アゾビス(4−シアノワレリアン酸)、アゾビ
スイソブチロニトリル等のアゾ化合物、t−ブチルパー
オキシイソブチレート、t−ブチルパーオキシピバレー
ト等のパーオキシエステル類、ジイソプロピルパーオキ
シジカーボネート、ジ−2−エチルヘキシルパーオキシ
ジカーボネート等のパーオキシジカーボネート、ジイソ
プロピルベンゼンハイドロパーオキサイド等のハイドロ
パーオキサイド類、過硫酸カリウム、過硫酸アンモニウ
ム等の無機過酸化物およびそれらのレドックス系等であ
る。
In the present invention, it is desirable to select, as the polymerization initiation source, one that exhibits high activity at the above-mentioned suitable reaction temperature. For example, ionizing radiation that is highly active even at room temperature or lower can be adopted, but the method of using an azo compound or a peroxy compound is usually advantageous for industrial practice. The polymerization initiation source preferably adopted in the present invention is
Diacyl peroxide such as disuccinic acid peroxide, benzoyl peroxide, lauroyl peroxide, and dipentafluoropropionyl peroxide, which show high activity at about 10 to 90 ° C. under the copolymerization reaction pressure,
2,2-azobis (2-amidinopropane) hydrochloride,
Azo compounds such as 4,4-azobis (4-cyanovaleric acid) and azobisisobutyronitrile, peroxyesters such as t-butylperoxyisobutyrate and t-butylperoxypivalate, diisopropylperoxide Peroxydicarbonates such as oxydicarbonate, di-2-ethylhexyl peroxydicarbonate, hydroperoxides such as diisopropylbenzene hydroperoxide, inorganic peroxides such as potassium persulfate and ammonium persulfate and their redox systems Is.

【0025】本発明において重合開始剤濃度は、全単量
体に対して0.0001〜3重量%、好ましくは0.0
01〜2重量%程度である。開始剤濃度を下げることに
よって、生成共重合体の分子量を高めることが可能にな
り、高イオン交換容量を保持することが困難である。開
始剤濃度をあまり高くすると、分子量の低下傾向が増
し、高イオン交換容量で高分子量の共重合体の生成に対
して不利となる。その他通常の水性媒体重合において用
いられる界面活性剤、分散剤、緩衝剤、分子量調整剤等
を添加することもできる。
In the present invention, the concentration of the polymerization initiator is 0.0001 to 3% by weight, preferably 0.0
It is about 1 to 2% by weight. By decreasing the initiator concentration, it becomes possible to increase the molecular weight of the produced copolymer, and it is difficult to maintain a high ion exchange capacity. If the initiator concentration is too high, the molecular weight tends to decrease, which is disadvantageous to the formation of a high molecular weight copolymer with a high ion exchange capacity. In addition, surfactants, dispersants, buffers, molecular weight modifiers and the like used in ordinary aqueous medium polymerization can be added.

【0026】本発明においては、生成共重合体濃度を4
0重量%以下、好ましくは30重量%以下に制御して実
施するのが好適である。あまり高濃度にすると、撹拌負
荷の増大、除熱困難、フッ素化オレフィンモノマーの拡
散不充分などの難点がみとめられる。
In the present invention, the concentration of the produced copolymer is 4
It is suitable to carry out the control at a content of 0% by weight or less, preferably 30% by weight or less. If the concentration is too high, problems such as increased stirring load, heat removal difficulty, and insufficient diffusion of fluorinated olefin monomer are found.

【0027】以上の如くして水性媒体中での乳化重合に
より得られるラテックスは、前記の如くフッ素系溶剤を
加えて未反応液状モノマーを抽出分離する。なお、四フ
ッ化エチレンの如きガス状モノマーの未反応物は、パー
ジ法などにより容易に分離回収され得る。次いで未反応
モノマーが分離回収されたラテックスに塩酸あるいは硫
酸等の酸を添加しポリマーを凝集させる。その他塩析、
あるいは凍結凝集、機械的凝集等の周知乃至公知の凝集
手段が採用され得る。
As described above, in the latex obtained by emulsion polymerization in an aqueous medium, the fluorine-based solvent is added as described above to extract and separate the unreacted liquid monomer. In addition, unreacted substances of gaseous monomers such as tetrafluoroethylene can be easily separated and recovered by a purging method or the like. Next, an acid such as hydrochloric acid or sulfuric acid is added to the latex from which the unreacted monomer has been separated and recovered to coagulate the polymer. Other salting out,
Alternatively, well-known or known aggregating means such as freeze agglutination and mechanical agglutination can be adopted.

【0028】凝集したポリマーを充分水洗し、次いでメ
タノール、アセトン等の水溶性有機溶剤を用いて水を置
換する。ポリマーを風乾した後、ポリマー100重量に
対し100cm3 好ましくは400〜600cm3 以上
のメタノールを加え、更に好ましくはこれに硫酸を添加
し撹拌しつつ20℃以上で1〜50時間処理する。次い
で、ポリマーとメタノールを分離し、硫酸を添加した場
合はこれを除くためにメタノールで洗浄を行った後、減
圧下に40〜80℃で乾燥させてポリマーを得る。
The coagulated polymer is thoroughly washed with water, and then the water is replaced with a water-soluble organic solvent such as methanol or acetone. After air-drying the polymer, 100 cm 3 is preferable to use the polymer 100 wt added 400~600Cm 3 or more methanol, more preferably it to process 1-50 hours adding sulfuric acid while stirring 20 ° C. or higher. Then, the polymer and methanol are separated, and when sulfuric acid is added, the polymer is washed with methanol to remove it, and then dried at 40 to 80 ° C. under reduced pressure to obtain a polymer.

【0029】本発明によれば、高イオン交換容量および
高分子量を有し、且つ加熱熔融による成形性に優れたイ
オン交換基含有フッ素化重合体が円滑有利に得られる。
例えば、水性媒体中での共重合上りのフッ素化重合体
は、−COOR1 含有の官能性単量体を使用した場合で
も、TQ が300℃を超えているが、メタノールなどで
加熱接触処理することにより、TQ を220℃程度に下
げることが可能である。TQ が300℃以上のフッ素化
重合体では、加熱熔融成形が著しく困難であり、フィル
ム、シート状などに成形できないが、本発明によるフッ
素化重合体は押出成形などによってもフィルム、シート
状などに容易に成形することができる。
According to the present invention, an ion exchange group-containing fluorinated polymer having a high ion exchange capacity and a high molecular weight and excellent in moldability by heating and melting can be obtained smoothly and advantageously.
For example, a fluorinated polymer that has just been copolymerized in an aqueous medium has a T Q of more than 300 ° C. even when a functional monomer containing —COOR 1 is used, but is subjected to a heat contact treatment with methanol or the like. By doing so, it is possible to lower T Q to about 220 ° C. With a fluorinated polymer having a T Q of 300 ° C. or higher, hot melt molding is extremely difficult and cannot be formed into a film or sheet, but the fluorinated polymer according to the present invention can be formed into a film or sheet by extrusion molding or the like. Can be easily molded.

【0030】本発明の好適な実施態様で得られるフッ素
化重合体は、適宜手段にて製膜され得る。例えば、必要
により官能基を加水分解でカルボン酸基に転換するが、
かかる加水分解処理は製膜前でも製膜後でも可能であ
る。通常は製膜後に加水分解処理する方が望ましい。製
膜手段には種々のものが採用可能であり、例えば加熱溶
融成形、ラテックス成形、適当な溶液に溶解させての注
型成形など公知乃至周知の方法を適宜採用し得る。
The fluorinated polymer obtained in the preferred embodiment of the present invention can be formed into a film by an appropriate means. For example, if necessary, the functional group is converted into a carboxylic acid group by hydrolysis,
Such hydrolysis treatment can be performed before or after film formation. Usually, it is desirable to carry out hydrolysis treatment after film formation. Various kinds of film forming means can be adopted, and for example, known or well-known methods such as heat melting molding, latex molding, and casting molding by dissolving in a suitable solution can be appropriately adopted.

【0031】本発明における生成フッ素化重合体からの
イオン交換膜は、種々の優れた性能を有するために、各
種分野、目的、用途などに広範囲に採用され得る。例え
ば拡散透析、電解還元燃料電池の隔膜などとして特に耐
蝕性が要求される分野で好適に使用される。なかでも、
アルカリ電解用の陽イオン選択性隔膜として使う場合に
は、従来のイオン交換膜では得られなかった高い性能を
発揮し得るものである。
The ion exchange membrane made from the produced fluorinated polymer according to the present invention has various excellent performances and thus can be widely used in various fields, purposes and applications. For example, it is preferably used as a membrane for diffusion dialysis, electrolytic reduction fuel cells, and the like, especially in the field where corrosion resistance is required. Above all,
When used as a cation-selective membrane for alkaline electrolysis, it can exhibit high performance that cannot be obtained with conventional ion exchange membranes.

【0032】例えば、本発明のフッ素化重合体からの陽
イオン交換樹脂膜にて、陽極と陰極とを区画して陽極室
と陰極室とを構成し、陽極室に塩化アルカリ水溶液を供
給して電解し陰極室から水酸化アルカリを得る、いわゆ
る二室型槽の場合でも、2規定以上の濃度の塩化ナトリ
ウム水溶液を原料として5〜20A/dm2 の電流密度
で電解することにより、40%以上の高濃度の水酸化ナ
トリウムが90%以上の高電流効率で長期にわたって安
定して製造できる。更に、4.5V以下の低い槽電圧で
の電解が可能である。
For example, the cation exchange resin membrane of the fluorinated polymer of the present invention divides the anode and cathode into an anode chamber and a cathode chamber, and an alkaline chloride aqueous solution is supplied to the anode chamber. Even in the case of a so-called two-chamber type tank which is electrolyzed to obtain an alkali hydroxide from the cathode chamber, 40% or more is obtained by electrolyzing at a current density of 5 to 20 A / dm 2 using a sodium chloride aqueous solution having a concentration of 2 N or more as a raw material. It is possible to stably produce high concentration sodium hydroxide with high current efficiency of 90% or more for a long period of time. Further, electrolysis is possible at a low cell voltage of 4.5 V or less.

【0033】[0033]

【実施例】【Example】

[実施例1]0.2リットルのステンレス製オートクレ
ーブに、イオン交換水100g、C817COONH4
を0. 2g、Na2 HPO4 ・12H2 Oを0. 5g、
NaH2 PO4 ・2H2 Oを0.3g、(NH42
28 を0.026gおよびCF2 =CFO(CF2
3 COOCH3 を20g仕込み、液体窒素下で充分脱気
した。その後、55℃に昇温し、四フッ化エチレンを系
内に導入し圧力を10.4kg/cm2 に保持した。
3.3時間撹拌後、未反応の四フッ化エチレンをパージ
し、反応を終了させた。生成した共重合体は共重合した
CF2 =CFO(CF23 COOCH3 を20モル%
含む組成のラテックスで、生成量は15.5gであっ
た。
[Example 1] A 0.2-liter stainless steel autoclave was charged with 100 g of ion-exchanged water and C 8 F 17 COONH 4.
0.2 g, 0.5 g Na 2 HPO 4 .12 H 2 O,
0.3 g of NaH 2 PO 4 .2H 2 O, (NH 4 ) 2 S
0.026 g of 2 O 8 and CF 2 ═CFO (CF 2 ).
20 g of 3 COOCH 3 was charged and thoroughly degassed under liquid nitrogen. Then, the temperature was raised to 55 ° C., ethylene tetrafluoride was introduced into the system, and the pressure was maintained at 10.4 kg / cm 2 .
After stirring for 3.3 hours, unreacted tetrafluoroethylene was purged to terminate the reaction. The produced copolymer is 20 mol% of the copolymerized CF 2 ═CFO (CF 2 ) 3 COOCH 3.
The amount of latex produced was 15.5 g.

【0034】ラテックスは未反応のCF2 =CFO(C
23 COOCH3 を含んでいるが、ラテックス中の
ポリマー粒子に含浸されて均一層となっている。該ラテ
ックス100gに対しCF2 ClCF2 CHFCl(以
下、HCFC225cbという。沸点54℃)を30g
加え、分液ロート中10分間振とうした後30分間静置
した。下層のHCFC225cb層を分離した後、再び
HCFC225cbを同量加え抽出操作をくり返した。
6回抽出操作を行ったところ、HCFC225cb層お
よび水層ともガスクロマトグラフィーでCF2 =CFO
(CF23 COOCH3 は検出されず定量的に抽出さ
れることがわかった。HCFC225cbの各抽出層を
集め蒸留し、 CF2 =CFO(CF23 COOCH3
を11.5g回収した。
The latex contains unreacted CF 2 ═CFO (C
Although it contains F 2 ) 3 COOCH 3 , it is impregnated with polymer particles in the latex to form a uniform layer. 30 g of CF 2 ClCF 2 CHFCl (hereinafter referred to as HCFC225cb, boiling point 54 ° C.) is added to 100 g of the latex.
In addition, the mixture was shaken in a separating funnel for 10 minutes and then left standing for 30 minutes. After separating the lower HCFC225cb layer, the same amount of HCFC225cb was added again and the extraction operation was repeated.
When the extraction operation was performed 6 times, CF 2 ═CFO was found by gas chromatography for both the HCFC225cb layer and the aqueous layer.
It was found that (CF 2 ) 3 COOCH 3 was not detected and was quantitatively extracted. The extraction layers of HCFC225cb were collected and distilled to obtain CF 2 = CFO (CF 2 ) 3 COOCH 3
11.5 g was recovered.

【0035】[実施例2]抽出溶剤をHCFC225c
bに換えて、C4925 (沸点68℃)を用いる
以外は実施例1と同様にして、抽出操作を行ったところ
未反応のCF2 =CFO(CF23 COOCH3 が1
1.3g回収された。
[Example 2] HCFC225c was used as the extraction solvent.
An extraction operation was carried out in the same manner as in Example 1 except that C 4 F 9 C 2 H 5 (boiling point 68 ° C.) was used instead of b, and unreacted CF 2 ═CFO (CF 2 ) 3 COOCH 3 Is 1
1.3 g was recovered.

【0036】[実施例3]抽出溶剤としてC613
(沸点72℃)を用いる以外は実施例1と同様にして抽
出操作を行ったところ、未反応のCF2 =CFO(CF
23 COOCH3が12.0g回収された。
Example 3 C 6 F 13 H as an extraction solvent
When an extraction operation was performed in the same manner as in Example 1 except that (boiling point 72 ° C.) was used, unreacted CF 2 ═CFO (CF
2 ) 1COg of 3 COOCH 3 was recovered.

【0037】[実施例4]0.2リットルのステンレス
製オートクレーブに、イオン交換水を120g、C8
17COONH4 を0. 42g、Na2 HPO4 ・12H
2 Oを 0. 6g、 NaH2 PO4 ・2H2 Oを0.3
5g、(NH4228 を0.064g、(CH
32 CHOHを0・03gおよびCF2 =CFO(C
22 SO2 Fを12g仕込み、液体窒素下で充分脱
気した。その後、60℃に昇温し、四フッ化エチレンを
系内に導入し圧力を11.7kg/cm2 に保持した。
5.5時間撹拌後未反応の四フッ化エチレンをパージ
し、反応を終了させた。
Example 4 In a 0.2 liter stainless steel autoclave, 120 g of ion-exchanged water and C 8 F were added.
17 COONH 4 to 0. 42g, Na 2 HPO 4 · 12H
2 O and 0. 6 g, the NaH 2 PO 4 · 2H 2 O 0.3
5 g, 0.064 g of (NH 4 ) 2 S 2 O 8 and (CH
3 ) 0.03 g of 2 CHOH and CF 2 ═CFO (C
12 g of F 2 ) 2 SO 2 F was charged and sufficiently degassed under liquid nitrogen. Then, the temperature was raised to 60 ° C., ethylene tetrafluoride was introduced into the system, and the pressure was maintained at 11.7 kg / cm 2 .
After stirring for 5.5 hours, unreacted tetrafluoroethylene was purged to terminate the reaction.

【0038】生成した共重合体は共重合したCF2 =C
FO(CF22 SO2 Fを13.7モル%含む組成の
ラテックスで、生成量は19.8gであった。 ラテック
スは未反応のCF2 =CFO(CF22 SO2 Fを含
んでいるが、ラテックス中のポリマー粒子に含浸されて
均一層となっている。該ラテックス100gに対しHC
FC225cbを30g加え、実施例1と同様の抽出条
件で未反応のCF2 =CFO(CF22 SO2 Fの抽
出層を集め、蒸留によりCF2 =CFO(CF22
2 Fを4.1g回収した。抽出操作を6回繰り返すこ
とにより、水層およびHCFC225cb層ともガスク
ロマトグラフィーでCF2 =CFO(CF22 SO2
Fは検出されず、定量的に抽出されることがわかった。
The resulting copolymer is a copolymerized CF 2 ═C
A latex having a composition containing 13.7 mol% of FO (CF 2 ) 2 SO 2 F, and the amount produced was 19.8 g. The latex contains unreacted CF 2 ═CFO (CF 2 ) 2 SO 2 F, but is impregnated with polymer particles in the latex to form a uniform layer. HC to 100 g of the latex
FC225cb (30 g) was added, and unreacted CF 2 = CFO (CF 2 ) 2 SO 2 F extraction layers were collected under the same extraction conditions as in Example 1, and CF 2 = CFO (CF 2 ) 2 S was obtained by distillation.
4.1 g of O 2 F was recovered. By repeating the extraction operation 6 times, CF 2 ═CFO (CF 2 ) 2 SO 2 was obtained by gas chromatography for both the aqueous layer and the HCFC225cb layer.
It was found that F was not detected and was quantitatively extracted.

【0039】[比較例1]抽出溶剤としてCF2 ClC
FCl2 (オゾン破壊係数0.8)を用いる以外は実施
例1と同様にして抽出操作を行ったところ、未反応のC
2 =CFO(CF23 COOCH3 が11.1g回
収された。
[Comparative Example 1] CF 2 ClC as an extraction solvent
An extraction operation was performed in the same manner as in Example 1 except that FCl 2 (ozone depletion potential: 0.8) was used.
11.1 g of F 2 = CFO (CF 2 ) 3 COOCH 3 was recovered.

【0040】[比較例2]抽出溶剤としてCH2 Cl2
を用いる以外は実施例1と同様にして抽出操作を行った
ところ、静置後も水層が白濁しCH2 Cl2 層との分離
が充分でなく、水層にCH2 Cl2 が一部溶解すること
がわかった。
[Comparative Example 2] CH 2 Cl 2 as an extraction solvent
When an extraction operation was performed in the same manner as in Example 1 except that the above was used, the aqueous layer became cloudy even after standing and the CH 2 Cl 2 layer was not sufficiently separated, and CH 2 Cl 2 was partially contained in the aqueous layer. It was found to dissolve.

【0041】[比較例3]抽出溶剤としてCHCl2
3 を用いる以外は実施例1と同様にして抽出操作を行
ったが、静置後も水層とCHCl2 CF3 層が分離しな
かった。
[Comparative Example 3] CHCl 2 C as an extraction solvent
The extraction operation was performed in the same manner as in Example 1 except that F 3 was used, but the aqueous layer and the CHCl 2 CF 3 layer were not separated even after standing.

【0042】[比較例4]抽出溶剤としてCFCl2
3 を用いる以外は実施例1と同様にして抽出操作を行
ったが、静置後も水層とCFCl2 CH3 層が分離しな
かった。
[Comparative Example 4] CFCl 2 C as an extraction solvent
An extraction operation was performed in the same manner as in Example 1 except that H 3 was used, but the aqueous layer and the CFCl 2 CH 3 layer were not separated even after standing.

【0043】[0043]

【発明の効果】ラテックス中の液状の未反応のフッ素化
モノマーが、特定のフッ素系溶剤による抽出操作で、定
量的に高効率で容易に回収される。
Industrial Applicability The liquid unreacted fluorinated monomer in the latex is quantitatively highly efficiently and easily recovered by the extraction operation with a specific fluorine-based solvent.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】常温で液状のフッ素化モノマーを乳化重合
して得られるラテックスから、未反応の前記液状のフッ
素化モノマーを回収するに当たり、沸点が10〜250
℃であり、CF2 ClCF2 CFHCl、CF3 CF2
CHCl2 、ハイドロフルオロカーボンおよびフルオロ
カーボンからなる群から選ばれる少なくとも1種類のフ
ッ素系溶剤と前記ラテックスとを接触せしめ、前記フッ
素系溶剤により前記未反応モノマーを抽出回収すること
を特徴とするフッ素化モノマーの回収方法。
1. A boiling point of 10 to 250 in recovering the unreacted liquid fluorinated monomer from a latex obtained by emulsion polymerization of a liquid fluorinated monomer at room temperature.
C., CF 2 ClCF 2 CFHCl, CF 3 CF 2
At least one kind of fluorine-based solvent selected from the group consisting of CHCl 2 , hydrofluorocarbon and fluorocarbon is brought into contact with the latex, and the unreacted monomer is extracted and recovered by the fluorine-based solvent. Recovery method.
【請求項2】常温で液状のフッ素化モノマーが、カルボ
ン酸基もしくはカルボン酸基に変換し得るカルボン酸型
官能基、あるいはスルホン酸基もしくはスルホン酸基に
変換し得るスルホン酸型官能基を有するモノマーである
請求項1の回収方法。
2. A fluorinated monomer that is liquid at room temperature has a carboxylic acid group or a carboxylic acid type functional group that can be converted into a carboxylic acid group, or a sulfonic acid group or a sulfonic acid type functional group that can be converted into a sulfonic acid group. The method according to claim 1, which is a monomer.
【請求項3】カルボン酸型官能基を有するモノマーが、
一般式CF2 =CF(OCF2 CFCF3a O(CF
2b COOCH3 (但し、式中のaは0〜3、bは1
〜5である)で表されるフルオロビニル化合物である請
求項2の回収方法。
3. A monomer having a carboxylic acid type functional group,
The general formula CF 2 = CF (OCF 2 CFCF 3 ) a O (CF
2 ) b COOCH 3 (where a is 0 to 3 and b is 1
The recovery method according to claim 2, which is a fluorovinyl compound represented by
【請求項4】スルホン酸型官能基を有するモノマーが、
一般式CF2 =CF(OCF2 CFCF3c O(CF
2d SO2 F(但し、式中のcは0〜3、dは1〜5
である)で表されるフルオロビニル化合物である請求項
2の回収方法。
4. A monomer having a sulfonic acid type functional group,
The general formula CF 2 = CF (OCF 2 CFCF 3 ) c O (CF
2 ) d SO 2 F (where c is 0 to 3 and d is 1 to 5 in the formula)
The recovery method according to claim 2, which is a fluorovinyl compound represented by
【請求項5】ハイドロフルオロカーボンが、C49
25 、(CF32 CFCFHCFHCF3 、C6
13H、C61325 およびC81725 からな
る群から選ばれる少なくとも1種類である請求項1〜4
のいずれかの回収方法。
5. The hydrofluorocarbon is C 4 F 9 C.
2 H 5 , (CF 3 ) 2 CFCFHCFHCF 3 , C 6 F
5. At least one selected from the group consisting of 13 H, C 6 F 13 C 2 H 5 and C 8 F 17 C 2 H 5.
Either of the collection methods.
【請求項6】フルオロカーボンが化1から選ばれる少な
くとも1種類である請求項1〜4のいずれかの回収方
法。 【化1】
6. The recovery method according to claim 1, wherein the fluorocarbon is at least one kind selected from Chemical formula 1. [Chemical 1]
JP26631493A 1993-10-25 1993-10-25 Recovery method of fluorinated monomer Expired - Fee Related JP3525462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26631493A JP3525462B2 (en) 1993-10-25 1993-10-25 Recovery method of fluorinated monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26631493A JP3525462B2 (en) 1993-10-25 1993-10-25 Recovery method of fluorinated monomer

Publications (2)

Publication Number Publication Date
JPH07118332A true JPH07118332A (en) 1995-05-09
JP3525462B2 JP3525462B2 (en) 2004-05-10

Family

ID=17429209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26631493A Expired - Fee Related JP3525462B2 (en) 1993-10-25 1993-10-25 Recovery method of fluorinated monomer

Country Status (1)

Country Link
JP (1) JP3525462B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505128A (en) * 1996-12-06 2001-04-17 アドバンスト・ファイトニックス・リミテッド Material processing
WO2008069301A1 (en) * 2006-12-08 2008-06-12 Daikin Industries, Ltd. Process for the recovery of fluoromonomers
JP2008144028A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Method for recovering fluoromonomer
WO2012173153A1 (en) * 2011-06-15 2012-12-20 旭硝子株式会社 Method for producing fluorine-containing copolymer
US9604180B2 (en) 2011-05-18 2017-03-28 Asahi Glass Company, Limited Fluorinated copolymer and ion exchange membrane
US9682370B2 (en) 2011-05-18 2017-06-20 Asahi Glass Company, Limited Process for producing fluorinated copolymer
WO2018235911A1 (en) * 2017-06-21 2018-12-27 Agc株式会社 Method for producing fluorine-containing polymer, fluorine-containing polymer having functional group and electrolyte membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505128A (en) * 1996-12-06 2001-04-17 アドバンスト・ファイトニックス・リミテッド Material processing
WO2008069301A1 (en) * 2006-12-08 2008-06-12 Daikin Industries, Ltd. Process for the recovery of fluoromonomers
JP2008144028A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Method for recovering fluoromonomer
JP4720734B2 (en) * 2006-12-08 2011-07-13 ダイキン工業株式会社 Method for recovering fluoromonomer
US8344192B2 (en) 2006-12-08 2013-01-01 Daikin Industries, Ltd. Process for the recovery of fluoromonomers
JP5332617B2 (en) * 2006-12-08 2013-11-06 ダイキン工業株式会社 Method for recovering fluoromonomer
US9604180B2 (en) 2011-05-18 2017-03-28 Asahi Glass Company, Limited Fluorinated copolymer and ion exchange membrane
US9682370B2 (en) 2011-05-18 2017-06-20 Asahi Glass Company, Limited Process for producing fluorinated copolymer
WO2012173153A1 (en) * 2011-06-15 2012-12-20 旭硝子株式会社 Method for producing fluorine-containing copolymer
JPWO2012173153A1 (en) * 2011-06-15 2015-02-23 旭硝子株式会社 Method for producing fluorine-containing copolymer
US9624329B2 (en) 2011-06-15 2017-04-18 Asahi Glass Company, Limited Process for producing fluorinated copolymer
WO2018235911A1 (en) * 2017-06-21 2018-12-27 Agc株式会社 Method for producing fluorine-containing polymer, fluorine-containing polymer having functional group and electrolyte membrane

Also Published As

Publication number Publication date
JP3525462B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
JP5482652B2 (en) Method for producing fluoropolymer and fluorine-containing ion exchange membrane
EP1939222B2 (en) Process for producing an AQUEOUS POLYTETRAFLUOROETHYLENE EMULSION, AND POLYTETRAFLUOROETHYLENE FINE POWDER AND POROUS MATERIAL PRODUCED FROM THE SAME
JP6098643B2 (en) Method for producing fluorine-containing copolymer
JPS63449B2 (en)
US9624329B2 (en) Process for producing fluorinated copolymer
EP0030104B1 (en) Process for preparing organic dispersion of acid-type fluorinated polymer
WO2012088258A1 (en) Fluoropolymer compositions and purification methods thereof
JP3525462B2 (en) Recovery method of fluorinated monomer
US9340632B2 (en) Process for producing fluorinated copolymer
JP3804197B2 (en) Method for recovering fluorinated monomers
JP4253928B2 (en) Method for producing fluorocarbon polymer particles
JPS6256886B2 (en)
JPH06234816A (en) Production of perfluorocarbon polymer having sulfonic acid type functional group
JPS62288614A (en) Production of perfluorocarbon polymer having sulfonic acid type functional group
JPH06199958A (en) Production of perfluorocarbon polymer having sulfonic acid-type functional group
JP4674399B2 (en) Method for producing fluorocarbon polymer particles
JP3470427B2 (en) Method for producing alkoxycarbonyl group-containing fluoropolymer
JPH1135638A (en) Production of perfluorocarbon polymer having sulfonic acid type functional group
JPH06199959A (en) Production of perfluorocarbon polymer having sulfonic acid-type functional group
JP2011052186A (en) Coagulation separation method for fluorine-containing polymer
JPH0689075B2 (en) Process for producing perfluorocarbon polymer having sulfonic acid type functional group
JPH1149817A (en) Aggregation of alkoxycarbonyl group-containing fluorine-containing polymer
JPS5865727A (en) Improved fluoring-containing cation exchange resin membrane
JPH1149818A (en) Aggregation of fluorine-containing polymer containing alkoxycarbonyl group
JPH08325335A (en) Production of perfluorocarbon copolymer having sulfonic acid-type functional group

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120227

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120227

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130227

LAPS Cancellation because of no payment of annual fees