JPH07118289B2 - Two-dimensional analyzer for sample surface - Google Patents
Two-dimensional analyzer for sample surfaceInfo
- Publication number
- JPH07118289B2 JPH07118289B2 JP63129567A JP12956788A JPH07118289B2 JP H07118289 B2 JPH07118289 B2 JP H07118289B2 JP 63129567 A JP63129567 A JP 63129567A JP 12956788 A JP12956788 A JP 12956788A JP H07118289 B2 JPH07118289 B2 JP H07118289B2
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- sample
- line
- sample surface
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は粒子線ビームによって試料面を走査する型の面
分析装置に関する。TECHNICAL FIELD The present invention relates to a surface analyzer of the type that scans a sample surface with a particle beam.
(従来の技術) 電子線のような粒子線を試料面に収束させて試料面を走
査し、試料から放射される2次放射線を検出する分析は
位置分解能が高いので、試料面における元素の濃度分布
とか状態分布を詳細に測定し画像表示するのに適してい
る。このため従来からEPMAを用いて試料面の元素濃度分
布をカラー画像化して表示するカラーコンテントマッピ
ング法が行われているが、試料面の走査範囲の形はx方
向,y方向夫々の走査幅を設定することにより決められて
いるので、通常は方形に限られている。特に分析したい
領域が歪んだ不定形の場合それに外接するような平行四
辺形に走査範囲を設定する方法が提案されている(特開
昭59-79946号)。また試料面を速送りで走査しつゝ適宜
の2次放射を検出して分析を要する領域か否か判別し、
分析を要する範囲のみ時間をかけて走査するようにして
分析所要時間を短縮する方法が種々提案されているが、
予め分析所要範囲が分っていないから、走査線上で速送
りをしていて分析所要領域に到達し、突然遅送りに切換
えねばならず走査機構に無理がかゝり、分析を要しない
領域でも走査機構は駆動されているから走査機構の移動
量の総和は分析所要領域のみの走査機構移動量に比し大
きく、機構の寿命を短縮することになる。(Prior Art) An analysis in which a particle beam such as an electron beam is focused on a sample surface to scan the sample surface to detect secondary radiation emitted from the sample has a high positional resolution, and therefore the concentration of elements on the sample surface is high. It is suitable for measuring distributions and state distributions in detail and displaying images. For this reason, the color content mapping method has been conventionally used in which the element concentration distribution on the sample surface is converted into a color image and displayed using EPMA, but the shape of the scanning range on the sample surface is defined by the scanning widths in the x and y directions. Since it is decided by setting, it is usually limited to a square. In particular, there has been proposed a method of setting a scanning range in a parallelogram so as to be circumscribed with a distorted amorphous region to be analyzed (Japanese Patent Laid-Open No. 59-79946). In addition, the sample surface is scanned at high speed and appropriate secondary radiation is detected to determine whether or not the area requires analysis.
Various methods have been proposed to reduce the analysis time by scanning only the area requiring analysis over time.
Since the required analysis range is not known in advance, fast-forward on the scan line to reach the required analysis area and suddenly switch to slow-forward, it is impossible for the scanning mechanism, and even in the area that does not require analysis. Since the scanning mechanism is driven, the total amount of movement of the scanning mechanism is larger than the amount of movement of the scanning mechanism in only the analysis required area, which shortens the life of the mechanism.
(発明が解決しようとする課題) 上述した試料面の分析法では分析精度を上げるためには
一画素当り或る程度の時間をかける必要がある。例えば
試料を電子ビームで照射し、試料から放射されるX線を
分光して検出する元素濃度測定で一画素当り1秒程度の
時間をかける。従って試料面を縦横500画素に分けて測
定する場合画素数は500×500=25万個で測定完了に約70
時間を要することになる。他方試料の方は断面形状が様
々であり、そのような試料面を単にその外形に外接する
四辺形を走査範囲として測定するときは分析上不必要な
点に多大の時間をかけることになる。特に上述したよう
に一面の測定に数10時間もかゝる場合は、この無駄な測
定時間をなくすと云うことは重要な課題である。本発明
は粒子線で試料面を走査する型の装置による面分析の能
率向上を目的とするものである。(Problems to be Solved by the Invention) In the above-described sample surface analysis method, it is necessary to take a certain amount of time per pixel in order to improve analysis accuracy. For example, the sample is irradiated with an electron beam, and the element concentration measurement for spectrally detecting the X-rays emitted from the sample takes about 1 second per pixel. Therefore, when measuring the sample surface by dividing it into 500 pixels vertically and horizontally, the number of pixels is 500 x 500 = 250,000, and approximately 70
It will take time. On the other hand, the sample has various cross-sectional shapes, and when measuring a quadrangle that circumscribes such a sample surface as its outer shape as a scanning range, it takes a lot of time for unnecessary points in analysis. Especially, as mentioned above, when the measurement of one surface takes several tens of hours, it is an important issue to eliminate this useless measurement time. An object of the present invention is to improve the efficiency of surface analysis by an apparatus of a type that scans a sample surface with a particle beam.
(課題を解決するための手段) 試料面の2次元的走査は一つの直線に沿って所定範囲を
走査し、次に走査線の位置を走査線と直角方向に少し移
動させて走査すると云う動作を繰返すことにより行われ
る。今上記した走査線の方向をx方向に、それと直交す
る方向をy方向として、上記x,y各方向にx軸y軸を決
めて試料面上の位置をxy座標値で表わすことにする。(Means for Solving the Problem) In the two-dimensional scanning of the sample surface, a predetermined range is scanned along one straight line, and then the position of the scanning line is slightly moved in the direction perpendicular to the scanning line. Is repeated. Now, let us say that the direction of the above-mentioned scanning line is the x direction and the direction orthogonal thereto is the y direction, and the x axis and the y axis are determined for each of the x and y directions, and the position on the sample surface is represented by the xy coordinate value.
本発明はx方向の走査の開始点および終了点のx座標値
をy座標値の関数として記憶装置に記憶させる手段と、
上記記憶装置に記憶されたデータによりy方向の走査範
囲内で各走査線毎にx方向の走査開始点から終了点まで
の間x方向走査を行う走査制御手段を試料面分析装置に
設けた。The present invention comprises means for storing in the storage device the x-coordinate values of the start and end points of the scan in the x-direction as a function of the y-coordinate value.
The sample surface analyzer is provided with scanning control means for performing scanning in the x direction from the scanning start point to the scanning end point in the x direction for each scanning line within the scanning range in the y direction based on the data stored in the storage device.
また分析を要する領域が任意に曲った帯状領域である場
合に対して、上記帯状領域の幅の中心を通る曲線を表わ
すx,y各座標データを記憶装置に記憶させる手段と、そ
の記憶データにより上記曲線上に適宜間隔で走査点を定
め、これら各走査点を通って上記曲線に直交する直線に
沿い上記帯状領域を含む範囲を走査する走査制御プログ
ラムを上記走査制御手段に与えた。Further, in the case where the region requiring analysis is an arbitrarily curved strip-shaped region, means for storing in the storage device x, y coordinate data representing a curve passing through the center of the width of the strip-shaped region, and the stored data Scanning points were set on the curve at appropriate intervals, and a scanning control program for scanning a range including the belt-like region along a straight line passing through each of the scanning points and orthogonal to the curve was given to the scanning control means.
(作用) 本発明によればx方向の走査の開始点と終了点をyの関
数として記憶させる手段により、走査開始点を連ねた線
と終了点を連ねた線とをつないで分析を要する領域に近
接してこれを囲む閉曲線を作るようにすることができ、
この閉曲線の中だけで走査測定を行うことになるので、
分析を要する領域に外接する四辺内で測定するのに比し
測定所要時間が短縮される。(Operation) According to the present invention, a region that requires analysis by connecting the line connecting the scan start points and the line connecting the end points by means for storing the start point and the end point of the scan in the x direction as a function of y You can make a closed curve that surrounds and surrounds
Since the scanning measurement will be performed only in this closed curve,
The time required for the measurement is shortened as compared with the measurement within the four sides circumscribing the area requiring analysis.
また分析領域が任意に曲がった帯状であるとき、この帯
状領域の幅の中心を通る曲線に直交する走査線に沿って
帯状領域の幅だけ走査するので、余分な面積を走査する
ことなく、測定所要時間が短縮される。In addition, when the analysis area is in the shape of an arbitrarily curved strip, the width of the strip area is scanned along the scanning line that is orthogonal to the curve that passes through the center of the width of this strip area, so measurement is performed without scanning an extra area. The time required is reduced.
(実施例) 第1図は本発明の一実施例を示す。Eは電子線マイクロ
アナライザ(EPMA)でSは試料であり、x,y方向移動ス
テージT上にセットされている。CはX線分光用結晶
で、Dは分光されたX線を検出するX線検出器、Pは試
料から放射される2次電子を検出する2次電子検出器で
ある。またMはEPMAの電子光学系の光軸と共軸的に配置
された光学顕微鏡の対物凹面鏡であり、Lは同顕微鏡の
接眼レンズである。TxはステージTをx方向に移動させ
るx駆動装置、Tyは同じくy駆動装置である。dx,dyは
夫々電子ビームeをx方向およびy方向に偏向させる偏
向コイルで、Dx,Dyは夫々x方向,y方向の走査信号発生
回路である。この走査信号は試料像表示用のCRTにも走
査信号として印加されるようになっており、2次電子検
出器Pの出力が輝度信号として上記CRTに印加されて試
料面の2次電子像がCRT上に表示される。CPUは装置の動
作を制御するコンピュータであり、KはCPUに種々のデ
ータ或は指令を入力するキーボードであり、Jはキーボ
ード上のジョイステックである。ジョイステックJはCP
UにステージT駆動の指示を与えて操作するときはジョ
イステックを倒した方向にステージTを動かすことがで
き、電子ビーム移動の指示をCPUに与えたときは電子ビ
ームによる試料面走査の中心点を動かすことができる。
m1は走査範囲記憶用メモリ、m2は測定データ記憶メモリ
である。(Embodiment) FIG. 1 shows an embodiment of the present invention. E is an electron beam microanalyzer (EPMA), and S is a sample, which is set on the x, y-direction moving stage T. C is a crystal for X-ray spectroscopy, D is an X-ray detector for detecting dispersed X-rays, and P is a secondary electron detector for detecting secondary electrons emitted from the sample. Further, M is an objective concave mirror of an optical microscope arranged coaxially with the optical axis of the EPMA electron optical system, and L is an eyepiece lens of the microscope. Tx is an x drive device that moves the stage T in the x direction, and Ty is a y drive device. dx and dy are deflection coils for deflecting the electron beam e in the x and y directions, respectively, and Dx and Dy are scanning signal generation circuits in the x and y directions, respectively. This scanning signal is also applied as a scanning signal to a CRT for displaying a sample image, and the output of the secondary electron detector P is applied as a luminance signal to the CRT to generate a secondary electron image on the sample surface. Displayed on CRT. The CPU is a computer for controlling the operation of the device, K is a keyboard for inputting various data or commands to the CPU, and J is a joystick on the keyboard. Joyce Tech J is CP
When operating the stage T drive instruction to U, the stage T can be moved in the direction in which the joystick is tilted. When the CPU issues an electron beam movement instruction, the center point of the sample surface scanning by the electron beam. Can be moved.
m1 is a scanning range storage memory, and m2 is a measurement data storage memory.
上述装置で第2図に示すような試料断面の分析を行う場
合の動作を説明する。試料断面の寸法が比較的大いとき
は光学顕微鏡を使って分析範囲の指定を行う。接眼レン
ズLを通して試料を見ながら試料の外周に沿って適当な
点Aを出発点として、A点が顕微鏡の視野中心に来るよ
うにジョイステックを操作してステージTを動かし、CP
Uにメモリの指示を与えてそのときのステージTのx,y移
動量即ちx,y座標を記憶させる。以後試料を囲む鎖線F
上の点が視野中心に来るようにジョイステックJを操作
して鎖線FをたどってB点まで至り、その間適宜CPUに
メモリの指示を与えて鎖線F上の多くの点のx,y座標をC
PUに記憶させる。以上の操作を終るとCPUは試料断面を
囲む鎖線閉曲線F上の多くの点の座標データから鎖線F
を折線で再構成し、走査範囲のy座標の最小値,最大値
を求め、その間を所定の走査線本数で割って各走査線の
y座標を決定し、上記再構成された鎖線Fのデータか
ら、上記各走査線毎に鎖線Fと交わる点のx座標を算出
し、このようにして算出したx座標データを各走査線上
の走査始点終点として各走査線のy座標データと共に一
つのテーブルとしてメモリm1に格納する。その後分析動
作をスタートさせるとCPUはメモリm1から走査線のy座
標を読出し、ステージTをy方向に駆動し、次にそのy
座標に対応するx座標のデータによってステージTをx
方向に駆動して所定の走査範囲だけ時間をかけて分析動
作を行う。このようにして鎖線Fで囲まれた領域内だけ
走査を行う。試料断面が小さいときは、走査領域の設定
に光学顕微鏡を使うより、CRT上の2次電子像を用いた
方が設定操作がやり易い。この場合CPUにジョイシステ
ィックJを電子ビーム移動させるよう指示しておき、後
は上述と同様にしてCRT上の試料断面像を見ながら設定
走査を行えばよい。ジョイステックで試料像を移動させ
る代りに、CRT上の試料断面像を静止させておき、ライ
トペンで試料断面像の周囲に閉曲線を画いて走査領域を
指定するようにしてもよい。光学顕微鏡による場合で
も、光学顕微鏡像をテレビカメラで撮像してCRT上に表
示し、ライトペンで走査領域を指定するようにできるこ
とは云うまでもない。The operation in the case of analyzing the sample cross section as shown in FIG. When the sample cross section is relatively large, specify the analysis range using an optical microscope. While observing the sample through the eyepiece L, the appropriate point A is set as the starting point along the outer periphery of the sample, and the joystick is operated so that the point A is in the center of the visual field of the microscope, and the stage T is moved.
A memory instruction is given to U to store the x, y movement amount of the stage T at that time, that is, the x, y coordinates. The chain line F surrounding the sample thereafter
Operate joystick J so that the upper point is in the center of the field of view, and follow chain line F to reach point B, while giving CPU instructions as appropriate to the memory and giving x, y coordinates of many points on chain line F. C
Store in PU. When the above operation is completed, the CPU draws the chain line F from the coordinate data of many points on the chain line closed curve F surrounding the sample cross section.
Is reconstructed with broken lines, the minimum value and the maximum value of the y coordinate of the scanning range are obtained, and the y coordinate of each scanning line is determined by dividing the value by a predetermined number of scanning lines, and the data of the reconstructed chain line F From the above, the x-coordinate of the point intersecting with the chain line F is calculated for each scanning line, and the x-coordinate data thus calculated is used as the scanning start point end point on each scanning line and as one table together with the y coordinate data of each scanning line. Store in memory m1. After that, when the analysis operation is started, the CPU reads the y-coordinate of the scanning line from the memory m1, drives the stage T in the y-direction, and then the y-axis.
The stage T is x by the data of the x coordinate corresponding to the coordinate.
Driving in the direction, the analysis operation is performed over a predetermined scanning range over time. In this way, scanning is performed only within the area surrounded by the chain line F. When the sample cross section is small, the setting operation is easier to perform by using the secondary electron image on the CRT than by using the optical microscope for setting the scanning area. In this case, the CPU may be instructed to move the joystick J with the electron beam, and thereafter, setting scanning may be performed while observing the sample cross-sectional image on the CRT in the same manner as described above. Instead of moving the sample image with the joystick, the sample cross-sectional image on the CRT may be kept still, and a closed curve may be drawn around the sample cross-sectional image with the light pen to specify the scanning region. Even in the case of using the optical microscope, it goes without saying that the optical microscope image can be captured by the television camera and displayed on the CRT, and the scanning area can be designated by the light pen.
上述実施例では試料の走査領域は単連結領域であるが、
試料が管状である場合或は第3図に示すような断面の場
合、走査領域は二重,三重等の多重連結領域となる。こ
の場合一つの走査線上に2以上の偶数個のx座標が対応
することになる。CPUはこれらのx座標を小さい方から
順に読出し、一番小さい値を走査開始点、次を走査終了
点、三番目を再び走査開始点とすると云うように判定し
て走査終了点から次の走査開始点までの間はステージを
速送りする。In the above-mentioned embodiment, the scanning area of the sample is a single connection area,
When the sample is tubular or has a cross section as shown in FIG. 3, the scanning region is a multi-connection region such as double or triple. In this case, one scan line corresponds to an even number of x-coordinates of 2 or more. The CPU reads these x-coordinates in ascending order, determines that the smallest value is the scan start point, the next is the scan end point, and the third is the scan start point again, and the next scan from the scan end point. Fast-forward the stage until the starting point.
次に第1図の装置の他の動作態様を説明する。試料断面
が第4図のようにせまい幅で曲った形をしている場合具
体的にはテープ状試料の側面、任意の断面形を有する物
品の表面のメッキ層の断面の分析の場合に適する分析動
作である。このような場合でも上述した動作態様が適用
できるが、むしろこのような場合は曲がった帯状領域の
幅の中心を通る曲線Gに直交する方向に一定長さlの走
査線Xを引くようにする方が走査領域の設定が楽であ
り、実際の分析時にもステージを速送りする回数とか距
離が少くなって有利である。この動作を行う場合CPUに
予め曲線走査の指示を与え、光学顕微鏡を見ながら視野
中心点によって試料幅の中心線Gをたどって、試料幅の
中心線Gの形をx,yの関係表としてCPUに記憶させる。CP
Uはこの関係表から上記中心線G上に一定間隔で走査点
を決め、そのx,y座標を求める。次に各走査点で上記中
心線と直交する方向をステージTのx方向の単位移動量
に対するy方向移動量として算定し、上記x,y座標と方
向データ(x方向単位移動量に対するy方向移動量)を
メモリm1に格納する。別にキーボードKによって走査幅
lを設定する。CPUは上記メモリm内のデータにより、
各走査点毎に走査線の始点のx,y座標および終点のx座
標と上記した方向データをテーブルにして改めてメモリ
m1に格納する。その後分析動作をスタートさせると、CP
Uはメモリm1の内容を読出し、ステージTを走査線の始
点に移動させ、方向データに従って所定の比率でステー
ジをx,y方向に移動させながら分析を行い、ステージ位
置が走査線の終点のx座標値に達したら、ステージを次
の走査線の始点位置に速送りして次の走査線に沿い分析
を繰返す。Next, another operation mode of the apparatus shown in FIG. 1 will be described. When the cross section of the sample has a curved shape with a narrow width as shown in FIG. 4, it is specifically suitable for the analysis of the side surface of the tape-shaped sample and the cross section of the plating layer on the surface of the article having an arbitrary cross section. This is an analysis operation. Even in such a case, the above-described operation mode can be applied, but in such a case, the scanning line X having a constant length l is drawn in the direction orthogonal to the curve G passing through the center of the width of the curved strip region. This is advantageous because it is easier to set the scanning area, and the number of times the stage is fast-forwarded and the distance are reduced during actual analysis. When this operation is performed, the CPU is instructed to scan the curve in advance, the center line G of the sample width is traced by the center point of the visual field while observing the optical microscope, and the shape of the center line G of the sample width is used as a relation table of x and y. Store in CPU. CP
From this relational table, U determines scanning points on the center line G at regular intervals and obtains their x and y coordinates. Next, at each scanning point, the direction orthogonal to the center line is calculated as the y-direction movement amount of the unit movement amount of the stage T in the x-direction, and the x, y coordinates and direction data (y-direction movement amount for the x-direction unit movement amount) are calculated. Amount) is stored in the memory m1. Separately, the scanning width 1 is set by the keyboard K. The CPU uses the data in the memory m
For each scanning point, the x, y coordinates of the starting point and the x coordinate of the ending point of the scanning line and the above-mentioned direction data are made into a table and stored again in the memory.
Store in m1. After that, when the analysis operation is started, CP
The U reads the contents of the memory m1, moves the stage T to the starting point of the scanning line, performs the analysis while moving the stage in the x and y directions at a predetermined ratio according to the direction data, and the stage position is x at the end point of the scanning line. When the coordinate values are reached, the stage is fast-forwarded to the starting point position of the next scanning line and the analysis is repeated along the next scanning line.
上例では走査線の方向データとしてステージのx方向単
位移動量に対するy方向移動量を用いたが、走査線方向
がy軸方向に近くなると方向データの値が大きくなって
不便であるから、方向の傾きがx軸に対して45°以上の
場合はステージのy方向単位移動量に対するx方向移動
量とするようにした方がよい。これは単にプログラム上
の問題に過ぎない。同様にして走査線の終点の規定の仕
方も上例ではx座標のみを指定するようにしているが、
走査線方向がy軸方向に近くなると走査の始点と終点の
x座標の差が小さくなって終点の位置精度が低下するか
ら、45°の方向を境に終点をy座標で規定するようにし
た方がよい。また試料の幅の中心線をCPUに記憶させる
場合、正確な曲線として記憶させなくても折線近似で記
憶させれば充分である。また上例ではステージの移動に
よって走査を行っているが、この場合走査幅は小さいの
で、ステージTによって上記中心線が電子光学系の光軸
上を通るように試料移動を行わせ、中心線に直交する走
査は電子ビームを振らせることによって行うようにして
もよい。In the above example, the y-direction movement amount for the x-direction unit movement amount of the stage is used as the scanning line direction data. However, when the scanning line direction is close to the y-axis direction, the value of the direction data becomes large, which is inconvenient. When the inclination of the stage is 45 ° or more with respect to the x-axis, it is better to set the movement amount in the x direction to the unit movement amount in the y direction of the stage. This is just a programming problem. Similarly, the method of defining the end point of the scanning line is such that only the x coordinate is specified in the above example.
When the scanning line direction is close to the y-axis direction, the difference between the x-coordinates of the scanning start point and the end point becomes small and the positional accuracy of the end point deteriorates. Therefore, the end point is defined by the y-coordinate at the 45 ° direction. Better. Further, when the center line of the width of the sample is stored in the CPU, it is sufficient to store it by broken line approximation without storing it as an accurate curve. Further, in the above example, scanning is performed by moving the stage, but in this case, since the scanning width is small, the sample is moved by the stage T so that the center line passes on the optical axis of the electron optical system, and the center line is moved. The orthogonal scanning may be performed by oscillating an electron beam.
(発明の効果) 本発明によれば試料面の面分析が必要な領域のみで行わ
れるので分析能率が向上し、その効果は分析領域の実面
積の少い異形である程大となる。また分析を要する範囲
のみで走査機構を動かすので、走査機構の移動総量を少
くすることができ、走査機構の寿命が長くなる。(Effects of the Invention) According to the present invention, since the surface analysis of the sample surface is performed only in the necessary area, the analysis efficiency is improved, and the effect becomes larger as the variation of the actual area of the analysis area becomes smaller. Further, since the scanning mechanism is moved only within the range that requires analysis, it is possible to reduce the total movement amount of the scanning mechanism and prolong the life of the scanning mechanism.
第1図は本発明の一実施例装置のブロック図、第2図は
分析領域が単連結領域である場合の走査領域設定の仕方
の説明図、第3図は多重連結領域の分析領域の図、第4
図は本出願の2番目の発明による試料面走査状態の説明
図である。 E……EPMA、S……試料、T……試料移動ステージ、T
z,Ty……移動ステージTのx方向およびy方向駆動装
置、Dx,Dy……電子ビーム走査信号発生回路、m1……走
査範囲記憶用メモリ、m2……測定データ記憶用メモリ、
K……キーボード、J……ジョイステック、L……光学
顕微鏡の接眼レンズ。FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of how to set a scanning region when an analysis region is a single connected region, and FIG. 3 is a diagram of an analysis region of a multiple connected region. , 4th
The figure is an explanatory view of a sample surface scanning state according to the second invention of the present application. E: EPMA, S: sample, T: sample moving stage, T
z, Ty: x-direction and y-direction driving device for the moving stage T, Dx, Dy: electron beam scanning signal generation circuit, m1: scanning range storage memory, m2: measurement data storage memory,
K ... Keyboard, J ... Joystick, L ... Eyepiece of optical microscope.
Claims (2)
料から放射される2次放射を検出する型の分析装置にお
いて、走査線と直交する方向の走査範囲と個々の走査線
上の走査開始点と終了点の一乃至複数対の走査線方向の
位置を走査線と直交する方向の位置に対応させて記憶装
置に記憶させる手段と、上記記憶装置に記憶されたデー
タにより走査線と直交する方向の走査範囲の始点から終
点にかけて、各走査線毎に走査方向における最初の走査
開始点から最後の走査終了点までの間を走査を要しない
区間を速送りして走査する走査制御手段を設けたことを
特徴とする試料面の2次元的分析装置。1. In an analyzer of a type that scans a sample surface with a particle beam and detects secondary radiation emitted from the sample, a scanning range in a direction orthogonal to the scanning line and a scanning start point on each scanning line. And means for storing one or a plurality of pairs of end points in the scanning line direction in the storage device in correspondence with the positions in the direction orthogonal to the scanning line, and the direction orthogonal to the scanning line by the data stored in the storage device. From the start point to the end point of the scanning range, the scanning control means is provided for fast-forwarding a section that does not require scanning from the first scanning start point to the last scanning end point in the scanning direction for each scanning line. A two-dimensional analyzer for a sample surface, which is characterized in that
料から放射される2次放射を検出する型の分析装置にお
いて、走査面上における任意の曲線を表わす座標データ
を記憶装置に記憶させる手段と、上記記憶装置内のデー
タにより、上記曲線上に適宜間隔で走査点を設定し、各
走査点において上記曲線と直交する直線に沿い上記走査
点を中心に指定長さの範囲を走査する走査制御手段を設
けたことを特徴とする試料面の2次元的分析装置。2. An analyzer which scans a sample surface with a particle beam and detects secondary radiation emitted from the sample. Means for storing coordinate data representing an arbitrary curve on the scan surface in a storage device. And scanning by setting scanning points on the curve at appropriate intervals according to the data in the storage device, and scanning a range of a designated length around the scanning point along a straight line orthogonal to the curve at each scanning point. A two-dimensional analysis apparatus for a sample surface, which is provided with a control means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63129567A JPH07118289B2 (en) | 1988-05-27 | 1988-05-27 | Two-dimensional analyzer for sample surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63129567A JPH07118289B2 (en) | 1988-05-27 | 1988-05-27 | Two-dimensional analyzer for sample surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01298634A JPH01298634A (en) | 1989-12-01 |
JPH07118289B2 true JPH07118289B2 (en) | 1995-12-18 |
Family
ID=15012671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63129567A Expired - Lifetime JPH07118289B2 (en) | 1988-05-27 | 1988-05-27 | Two-dimensional analyzer for sample surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07118289B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2810216B2 (en) * | 1990-06-20 | 1998-10-15 | 株式会社日立製作所 | Pattern inspection method and apparatus |
JPH07119718B2 (en) * | 1990-05-18 | 1995-12-20 | 基弘 岩見 | Analytical method in the depth direction of the sample surface layer |
JP2869827B2 (en) * | 1991-09-17 | 1999-03-10 | 株式会社日立製作所 | Scanning electron microscope |
JP5389766B2 (en) * | 2010-10-15 | 2014-01-15 | 株式会社日立ハイテクノロジーズ | Scanning electron microscope |
JPWO2016075759A1 (en) * | 2014-11-11 | 2017-07-27 | 株式会社日立ハイテクノロジーズ | Charged particle beam apparatus, electron microscope, and sample observation method |
-
1988
- 1988-05-27 JP JP63129567A patent/JPH07118289B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01298634A (en) | 1989-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4803358A (en) | Scanning electron microscope | |
US6528787B2 (en) | Scanning electron microscope | |
US8658987B2 (en) | Circuit-pattern inspection device | |
JP2000346638A (en) | Method for generating measuring procedure file, measuring apparatus and storage medium | |
US5656812A (en) | Electron probe microanalyzer and X-ray analysis using same | |
US7288763B2 (en) | Method of measurement accuracy improvement by control of pattern shrinkage | |
JP3230911B2 (en) | Scanning electron microscope and image forming method thereof | |
JPH06186025A (en) | Three dimensional measuring device | |
JPH07118289B2 (en) | Two-dimensional analyzer for sample surface | |
US5192866A (en) | Sample-moving automatic analyzing apparatus | |
JPS61175779A (en) | Line following system | |
JP2001056438A (en) | Confocal scanning microscope, picture display method thereof and recording medium obtained by recording processing program for executing picture display processing | |
JP2001148016A (en) | Sample inspecting device, sample display device, and sample displaying method | |
JP2787924B2 (en) | Electron beam micro analyzer | |
JP2005181250A (en) | Method and device for inspecting liquid crystal display panel | |
JPH053013A (en) | Automatic focus adjustment system | |
JPH06109437A (en) | Measuring apparatus of three-dimensional shape | |
JP3270687B2 (en) | X-ray analysis method using electron probe microanalyzer and electron probe microanalyzer | |
JP3888747B2 (en) | Electron beam apparatus and stage navigation method | |
KR920010548B1 (en) | Shape measuring method and system of three dimensional curved surface | |
JPH0729536A (en) | Scanning electron microscope | |
JP2001250500A (en) | Scanning electron microscope | |
JP3303441B2 (en) | Electron beam analyzer | |
JP2888368B2 (en) | Position measuring device | |
JPH0479140A (en) | Charged particle beam apparatus and its image processing method |