JPH07118288B2 - Parallel charged beam shaping lens - Google Patents
Parallel charged beam shaping lensInfo
- Publication number
- JPH07118288B2 JPH07118288B2 JP1206457A JP20645789A JPH07118288B2 JP H07118288 B2 JPH07118288 B2 JP H07118288B2 JP 1206457 A JP1206457 A JP 1206457A JP 20645789 A JP20645789 A JP 20645789A JP H07118288 B2 JPH07118288 B2 JP H07118288B2
- Authority
- JP
- Japan
- Prior art keywords
- slit
- lens
- magnetic lens
- distance
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007493 shaping process Methods 0.000 title claims description 7
- 230000003287 optical effect Effects 0.000 claims description 18
- 238000010884 ion-beam technique Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 7
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 claims description 6
- 230000005465 channeling Effects 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 description 16
- 238000011144 upstream manufacturing Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010587 phase diagram Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004347 surface barrier Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体産業分野をはじめ材料科学分野におい
て、高エネルギーイオンビームのチャネリング現象を利
用して、試料の結晶構造を分析する装置の機能、構造を
向上させる技術に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention has a function of an apparatus for analyzing a crystal structure of a sample by utilizing a channeling phenomenon of a high energy ion beam in the field of material science including the field of semiconductor industry. , Technology for improving structure.
(従来の技術) 膨大な量の情報をコンピュータで処理する場合、記憶容
量を増大し処理速度を高速化することが求められる。そ
のためICの高集積化がLSIからVLSIへ、また3次元ICへ
と開発が進められている。これに伴って、個々の素子や
その配線等は極微小化し多層化し、また表面から極めて
浅い領域が活性層として使われつつある。このようなIC
の開発、プロセス研究においては、表面および表面皮下
における結晶構造や結晶性評価が極めて重要であり、そ
のためには、高エネルギー(MeV)イオンビームによる
ラザフォード後方散乱法(RBS)や粒子励起X線法(PIX
E)におけるチャネリング現象を利用した分析手法が有
効であるとわかってきている。(Prior Art) When a huge amount of information is processed by a computer, it is required to increase the storage capacity and the processing speed. Therefore, the development of high integration of IC is progressing from LSI to VLSI and to three-dimensional IC. Along with this, individual elements, wirings thereof, and the like are extremely miniaturized and multilayered, and a region extremely shallow from the surface is being used as an active layer. IC like this
In the development and process research of ER, it is extremely important to evaluate the crystal structure and crystallinity on the surface and under the surface. For that purpose, the Rutherford backscattering method (RBS) and the particle excitation X-ray method with a high energy (MeV) ion beam are used. (PIX
It has been found that the analysis method using the channeling phenomenon in E) is effective.
このような技術的背景のもとに、従来のチャネリング測
定用ビームラインは、第4図に示すような構成配置をし
ている。すなわち、真空槽(1)の真空下で、数MeVの
バンデグラフ(Van de Graaff)型などの加速器で発生
させた陽子またはヘリウムイオンビーム(2)が直径1m
m程度の2組の上流および下流のスリット(3)(4)
で0.01°程度の広がり角にコリメートされ、2軸ゴニオ
メータ(5)上の単結晶などの試料(6)に照射され
る。試料から後方散乱されたイオンは通常シリコン表面
障壁型などの半導体検出器(7)で検出され、槽外で増
幅器(8)で増幅されたあと、マルチチャネル波高分析
器(9)によりエネルギー分析される。Under such a technical background, the conventional channeling measurement beam line has the configuration and arrangement shown in FIG. That is, in the vacuum of the vacuum chamber (1), a proton or helium ion beam (2) generated by a Van de Graaff type accelerator of several MeV has a diameter of 1 m.
Two sets of upstream and downstream slits (3) (4) of about m
Is collimated to a spread angle of about 0.01 °, and the sample (6) such as a single crystal on the biaxial goniometer (5) is irradiated. Ions backscattered from the sample are usually detected by a semiconductor detector (7) such as a silicon surface barrier type, amplified by an amplifier (8) outside the chamber, and then energy-analyzed by a multichannel wave height analyzer (9). It
このダブルスリット(3)(4)によるコリメーション
性能は、第5図の上方の図から幾何学的に導くことがで
きる。先ず、次のようにパラメータを定義する。The collimation performance by the double slits (3) and (4) can be geometrically derived from the upper diagram of FIG. First, the parameters are defined as follows.
α :試料(6)表面に照射されるビームの最大広がり
角(発散角) β :入射ビームの最大広がり角(発散角) d1 :上流スリット(3)の口径 d2 :下流スリットの口径 L′:上流および下流スリット(3)(4)間の距離 下流スリット(4)が有効に働く条件2L′β>d2を満た
すとき、ダブルスリット(3)(4)で限定される広が
り角αは、上下流スリットの対向するエッジを結ぶ2本
の一点鎖線でつくられる角度になり次式で与えられる。α: Maximum divergence angle (divergence angle) of the beam irradiated on the surface of the sample (6) β: Maximum divergence angle (divergence angle) of the incident beam d 1 : Diameter of upstream slit (3) d 2 : Diameter of downstream slit L ′: Distance between upstream and downstream slits (3) and (4) When the condition 2L′β> d 2 where the downstream slit (4) effectively works, the spread angle α limited by the double slits (3) and (4) Is an angle formed by two one-dot chain lines connecting the opposite edges of the upstream and downstream slits, and is given by the following equation.
上式は分子項に上、下流スリットの口径が和であらわれ
るため、ビームの平行性を高めるため、両口径を同じよ
うに小さくする必要があることがわかる。d1=d2〜と
おくと、 となる。 It can be seen that the above equation shows the sum of the diameters of the upper and lower slits in the molecular term, and therefore it is necessary to reduce both diameters in the same way in order to enhance the parallelism of the beam. If d 1 = d 2 ~, Becomes
一方、上流スリット(3)を通過したイオンのうち、下
流スリット(4)を貫通する割合ηは、イオンが発散円
錐に一様に分布していると近似して評価すると、 となる すなわち、広がり角αはを小さくするに従って比例し
て小さくなるが、イオン電流はの2乗に比例して減少
してゆくことがわかる。On the other hand, of the ions that have passed through the upstream slit (3), the ratio η that penetrates the downstream slit (4) is evaluated by approximating that the ions are uniformly distributed in the divergent cone, That is, it is understood that the spread angle α decreases in proportion as the spread angle α decreases, but the ion current decreases in proportion to the square of.
具体的に常識的なパラメータ数値β=1mrad(0.06
°)、d1=d2=1mmおよびL′=3mを代入すると、α=
0.7mrad(0.04°)、η=0.063(6.3%)を得る。Specifically common sense parameter value β = 1mrad (0.06
Substituting d 1 = d 2 = 1 mm and L ′ = 3 m, α =
0.7mrad (0.04 °) and η = 0.063 (6.3%) are obtained.
位相空間での上流および下流スリット(3)(4)のカ
ッティングの様子は、第5図の下方の位相図(A′)〜
(D′)のように表される。The state of cutting the upstream and downstream slits (3) and (4) in the phase space is shown in the lower phase diagram (A ′) to FIG.
It is expressed as (D ').
入射ビームが位相空間で円形のエミッタンスを持つとす
ると、上流スリット(3)で縦長に切出される(図
A′)。そして長さL′のドリフト空間を進につれて、
χ→χ+χ′L′、χ′→χ′の変換に従って変形し
(図B)、そのあと下流スリット(4)で切り出される
ことにより、より小さい広がり角αとなる(図C′)。
試料表面では(図D′)となる。従って、このドリフト
空間が長いほど、下流スリットで切り出されるビーム広
がり角が小さくなることは、位相空間でも認識できる。Assuming that the incident beam has a circular emittance in the phase space, it is vertically cut out by the upstream slit (3) (Fig. A '). And as the drift space of length L'progresses,
It is transformed according to the transformation of χ → χ + χ′L ′ and χ ′ → χ ′ (FIG. B), and then cut out by the downstream slit (4) to have a smaller spread angle α (FIG. C ′).
It becomes (Fig. D ') on the sample surface. Therefore, it can be recognized also in the phase space that the longer the drift space, the smaller the beam divergence angle cut out by the downstream slit.
(発明が解決しようとする問題点) 従来技術のダブルスリット方式では、前記解析に示され
ているように次の根本的な問題がある。(Problems to be Solved by the Invention) The conventional double slit method has the following fundamental problems as shown in the above analysis.
照射イオンビームの平行性を高めるためには2スリット
の口径をともに小さくするか、2スリット間距離を長く
する必要があるが、何れにしても照射イオン電流を犠牲
にすることになる。すなわち入射イオンビームの切り出
し効率が低いために、その僅かの割合しか照射イオン電
流として利用できない。従って実用的な測定を可能とす
ると、現在の実績以上に性能を向上させることは望めな
い。In order to improve the parallelism of the irradiation ion beam, it is necessary to reduce the diameters of the two slits or increase the distance between the two slits, but in any case, the irradiation ion current is sacrificed. That is, since the cutting out efficiency of the incident ion beam is low, only a small proportion thereof can be used as the irradiation ion current. Therefore, if practical measurement is possible, it is not possible to expect any improvement in performance beyond the current performance.
従来技術ではどうしてもビームラインを長くすることが
必要で、このことは装置構成をいろいろの点で困難にす
る。The prior art inevitably requires a long beamline, which makes the device configuration difficult in many respects.
(問題を解決するための手段) 本発明は、従来技術のダブルスリット方式における、広
がり角αで示される照射ビームの集束性の向上と貫通イ
オン電流率ηで示される照射イオンビームの電流強度の
確保との相互的矛盾性を解消させるためになされたもの
であって、1つの上流スリットに対し、従来技術の下流
スリットに代え下流にダブレットの四重極磁気レンズを
配置し、その間の距離を磁気レンズの焦点距離に等し
く、さらにスリットの開き幅を入射ビームの拡がり角と
前記距離との積より小さくなるようにして、照射ビーム
のコリメーション性を高度化するとともにイオンビーム
の貫流効率を高度化することを解決手段とする。(Means for Solving the Problem) The present invention is to improve the focusing property of the irradiation beam represented by the divergence angle α and the current intensity of the irradiation ion beam represented by the penetrating ion current ratio η in the conventional double slit system. This was done in order to eliminate the mutual inconsistency with the securing, and instead of the downstream slit of the prior art, a doublet quadrupole magnetic lens is arranged downstream with respect to one upstream slit, and the distance between them is reduced. It is equal to the focal length of the magnetic lens, and the aperture width of the slit is smaller than the product of the divergence angle of the incident beam and the distance to improve the collimation property of the irradiation beam and the through-flow efficiency of the ion beam. Doing is the solution.
すなわち、本発明の平行荷電ビーム成形レンズは、全体
的構成として、高エネルギーイオンビームによるラザフ
ォード後方散乱法(RBS)または粒子励磁X線法(PIX
E)のチャネリング現象を利用して結晶構造分析をする
装置のビームラインにおいて、1つのスリットとその下
流に磁気レンズとを設け、両者間の距離を磁気レンズの
焦点距離にほぼ等しくし、入射ビームの最大拡がり角と
前記距離との積よりスリットの開き幅を小さく設定した
光学系を設けたことを特徴とする。That is, the parallel charged beam shaping lens of the present invention has, as an overall configuration, a Rutherford backscattering method (RBS) by a high energy ion beam or a particle excitation X-ray method (PIX).
In the beam line of the device for crystal structure analysis using the channeling phenomenon of E), one slit and a magnetic lens are provided downstream of the slit, and the distance between the two is made almost equal to the focal length of the magnetic lens. Is provided with an optical system in which the slit opening width is set to be smaller than the product of the maximum divergence angle and the distance.
(作用) 本発明においては、スリットと磁気レンズとの特定関係
の組合わせにより、上流のスリットで切り出されたイオ
ンビーム全体を広がり角の小さな角ビームに成形して試
料表面に導くことができるので、ビーム利用効率の高い
平行ビーム成形光学系が得られる。(Operation) In the present invention, the combination of the specific relationship between the slit and the magnetic lens makes it possible to shape the entire ion beam cut out by the upstream slit into an angular beam having a small divergence angle and guide it to the sample surface. A parallel beam shaping optical system with high beam utilization efficiency can be obtained.
またビームの利用効率の高い分だけ、同じイオン電流の
従来技術のダブルスリット系に比べてビームラインを短
くできるので、短いビームラインで平行度の高いビーム
が得られる。Since the beam utilization efficiency is high, the beam line can be shortened as compared with the conventional double slit system having the same ion current, so that a beam with high parallelism can be obtained with a short beam line.
またビームの利用効率の高い分だけ、同じ長さの従来技
術のダブルスリット系に比べ、上流スリットの口径を小
さくすることができ、それに反比例して照射ビームの平
行性は高くなる。In addition, the diameter of the upstream slit can be made smaller than that of the conventional double slit system having the same length due to the high beam utilization efficiency, and the parallelism of the irradiation beam becomes inversely proportional to this.
(実施例) 以下、本発明を実施例により一層、具体的に説明する。
第1図は本発明の1実施例の平行荷電ビーム成形レンズ
の光学系の構成配置を示す。(Examples) Hereinafter, the present invention will be described more specifically with reference to Examples.
FIG. 1 shows a structural arrangement of an optical system of a parallel charged beam shaping lens according to an embodiment of the present invention.
第1図において、試料チャンバーを含む真空槽(1)の
真空下で数MeVのバンデグラフ型などの加速器で発生さ
せた陽子またはヘリウムイオンビーム(2)は直径1mm
程度のスリット(3)で切り出されたのち、ビームダク
ト(10)を経てダブレットの四重極磁気レンズ(11)
(12)に入射し、ここで集束されて2軸ゴニオメータ
(5)上に取付けられた単結晶の試料(6)に照射され
る。In Fig. 1, the proton or helium ion beam (2) generated by a Van de Graaff type accelerator of several MeV under vacuum in the vacuum chamber (1) containing the sample chamber has a diameter of 1 mm.
After being cut out with a slit (3) of a size, it passes through a beam duct (10) and doublet quadrupole magnetic lens (11).
It is incident on (12), where it is focused and irradiated on a single crystal sample (6) mounted on a biaxial goniometer (5).
四重極磁気レンズ(11)(12)はそれぞれ第2図(イ)
(ロ)に示すような構造をした非軸対称レンズで、単独
では一方向に集束作用、他方向には発散作用が働くが、
互いに極性の異る2つのレンズを2連(ダブレット)に
組合わせ、適当な強さに励磁することによって軸に垂直
な2方向とも集束作用を起こさせることができる。Quadrupole magnetic lenses (11) and (12) are shown in Fig. 2 (a), respectively.
With a non-axisymmetric lens having the structure shown in (b), the focusing action works in one direction and the divergence work in the other direction,
By combining two lenses having different polarities in a double line (doublet) and exciting to an appropriate strength, it is possible to cause a focusing action in both directions perpendicular to the axis.
この本発明のスリット(3)−ダブレット四重極磁気レ
ンズ(11)(12)系のコリメーション性能は第3図の上
部に示す光学レンズ系に置換し後で説明するが、本発明
では第3図を参照し、スリット(3)の開き幅すなわち
口径dは入射ビームの最大拡がり角βとスリット−磁気
レンズ間距離Lとの積より小さくなるよう設定し、磁気
レンズ(11)(12)の焦点距離fをスリット磁気レンズ
間距離Lにほぼ等しくしている。The collimation performance of the slit (3) -doublet quadrupole magnetic lens (11) (12) system of the present invention will be described later by replacing it with the optical lens system shown in the upper part of FIG. With reference to the drawing, the opening width of the slit (3), that is, the aperture diameter d is set to be smaller than the product of the maximum divergence angle β of the incident beam and the slit-magnetic lens distance L, and the magnetic lens (11) (12) The focal length f is made substantially equal to the distance L between the slit magnetic lenses.
こうして試料(6)に照射され、試料から後方散乱され
たイオンは、通常シリコン表面障壁型(半導体)アニユ
ラー型検出器(7)またはコイン型検出器(13)で検出
され、槽外で従来技術と同様増幅器(8)で増幅された
あと、マルチチャネル型波高分析器(9)によりエネル
ギー分析される。Ions irradiated to the sample (6) in this way and backscattered from the sample are usually detected by the silicon surface barrier (semiconductor) Aniular type detector (7) or coin type detector (13), and are detected outside the bath by the conventional technique. After being amplified by the amplifier (8) in the same manner as above, the energy is analyzed by the multi-channel wave height analyzer (9).
本発明のコリメーション性能を簡単のため第3図の上部
に示す光学レンズ系を用いて説明する。幾何光学に基づ
いて、図示のような光線路を描くことができる。ここで
次のようにパラメータを定義する。For the sake of simplicity, the collimation performance of the present invention will be described using the optical lens system shown in the upper part of FIG. Based on geometrical optics, the optical path as shown can be drawn. Here, the parameters are defined as follows.
α:試料(6)表面に照射されるビームの最大広がり角
(発散角) β:入射ビームの最大広がり角(発散角) d :上流スリット(3)の口径 L :スリット(3)、磁気レンズ(11)(12)間距離 f :磁気レンズの焦点距離 本発明ではレンズ焦点距離fとスリット−レンズ間距離
Lとを等しくしているのでL=fである。α: Maximum divergence angle (divergence angle) of the beam irradiated on the sample (6) surface β: Maximum divergence angle (divergence angle) of the incident beam d: Aperture of upstream slit (3) L: Slit (3), magnetic lens (11) (12) Distance f: Focal length of magnetic lens In the present invention, since the lens focal length f and the slit-lens distance L are made equal, L = f.
この光学系により試料表面に照射されるイオンビームの
広がり角αは、スリット口径から出た平行ビームが試料
側の焦点位置(14)で焦点を結ぶ光学路から次式で与え
られる。The divergence angle α of the ion beam irradiated on the sample surface by this optical system is given by the following equation from an optical path in which the parallel beam emitted from the slit aperture is focused at the focus position (14) on the sample side.
α=d/f=d/L この式から、入射ビームの広がり角βと試料照射ビーム
の広がり角αとの大小関係が導かれる。α = d / f = d / L From this equation, the magnitude relationship between the divergence angle β of the incident beam and the divergence angle α of the sample irradiation beam is derived.
本発明のようにLβ>dとすればα<βとなり平行性は
高まる。本発明と異なりLβ<dとすればα>βとなり
平行性は低下する。If Lβ> d as in the present invention, α <β and parallelism is enhanced. Unlike the present invention, if Lβ <d, α> β and parallelism decreases.
このことから、この光学系を平行ビーム成形光学系とし
て動作させるためには、βの大きさに応じて適当なLと
dを本発明のように選択必要があることが知られる。ま
たスリット口径dの調節だけで広がり角αを任意に設定
できることが知られる。From this, it is known that in order to operate this optical system as a parallel beam shaping optical system, it is necessary to select appropriate L and d according to the magnitude of β as in the present invention. Further, it is known that the spread angle α can be arbitrarily set only by adjusting the slit aperture d.
本発明の光学系の最も大きな特徴として、スリットで絞
られたあとのイオンはβの大小に関係なく100%輸送さ
れ試料に照射されるということである。このことはβの
大きい質の良くないイオン源を用いる場合、同じ条件で
は従来技術のダブルスリット方式に比較して格段に大き
いイオン電流を与える。その分スリット口径を小さくし
て、照射イオンの平行性をより高めることができる。ま
たは、ビームラインを短くすることができる。The most important feature of the optical system of the present invention is that 100% of the ions after being narrowed down by the slit are transported and irradiate the sample regardless of the magnitude of β. This means that when an unfavorable ion source with a large β is used, a significantly larger ion current is given under the same conditions as compared with the conventional double slit method. The slit aperture can be reduced accordingly, and the parallelism of irradiation ions can be further enhanced. Alternatively, the beam line can be shortened.
具体的に常識的な値d=1mmおよびL=3mを代入すると
α=0.7mrad(0.04°)を得る。Specifically, by substituting common sense values d = 1 mm and L = 3 m, α = 0.7 mrad (0.04 °) is obtained.
本発明による位相空間でのスリット(3)と磁気レンズ
(11)(12)の動作の様子は、第3図の下部に示す位相
図(A)〜(E)のように表わされる。The operation states of the slit (3) and the magnetic lenses (11) and (12) in the phase space according to the present invention are represented as phase diagrams (A) to (E) shown in the lower part of FIG.
入射ビームが位相空間で円形のエミッタンスを持つもの
とすると、先ずスリット(3)において縦長の短冊状に
切り出される(図A)。そして長さLのドリフト空間を
進むにつれてχ→χ+χ′L、χ′→χ′の変換に従っ
て変形し磁気レンズ(11)(12)直前で(図B)のよう
になる。磁気レンズを通る次の変換を受け(薄レンズ近
似)χ→χ、χ′→χ′−χ/f、(図C)のように変形
され、結果的には縦方向に縮小され(ただし、面積は一
定)、平行性が高められる。そのあと、試料表面までド
リフト空間を飛び、上記と同じ変形を受け図4(図D)
となって試料に照射される。レンズの下流ではどの位置
に試料を置いてもビームの平行性は同じである。レンズ
下流の焦点位置(14)では、ビーム径が微小(クロスオ
ーバー点)となる。Assuming that the incident beam has a circular emittance in the phase space, it is first cut into a vertically long strip at the slit (3) (Fig. A). Then, as it goes through the drift space of length L, it is deformed according to the transformation of χ → χ + χ′L and χ ′ → χ ′, and becomes as shown in FIG. B immediately before the magnetic lenses (11) and (12). It undergoes the following transformation through a magnetic lens (thin lens approximation) and is transformed as χ → χ, χ ′ → χ′−χ / f, (Fig. C), and consequently is reduced in the vertical direction (however, Area is constant), parallelism is enhanced. After that, it flew in the drift space to the sample surface and was subjected to the same deformation as above.
And the sample is irradiated. The beam parallelism is the same no matter where the sample is placed downstream of the lens. At the focus position (14) downstream of the lens, the beam diameter is very small (crossover point).
(発明の効果) 本発明によると、高エネルギーイオンビームによる結晶
構造分析装置として上流スリットを通過したあとのイオ
ンを100%試料に照射することができ従来技術のダブル
スリット方式に較べて効率がよく、またその特徴を利用
して上流スリットの口径を絞って照射イオンの平行性を
向上させ、またスリット−磁気レンズ間距離のドリフト
空間長さを短くして装置の構成を有利とすることができ
る。(Effects of the Invention) According to the present invention, as a crystal structure analyzer using a high-energy ion beam, 100% of the sample can be irradiated with ions after passing through the upstream slit, which is more efficient than the conventional double slit method. Further, by utilizing the characteristics, the diameter of the upstream slit can be narrowed to improve the parallelism of the irradiation ions, and the drift space length of the distance between the slit and the magnetic lens can be shortened to make the configuration of the device advantageous. .
【図面の簡単な説明】 第1図は本発明の1実施例の平行荷電ビーム成形レンズ
の光学系の構成配置を示す縦断側、第2図(イ)はその
1つの四重極磁気レンズの正面図、第2図(ロ)は他の
四重極磁気レンズの正面図、第3図は第1図の光学系を
光学レンズに置換しての幾何光路図を上部に示し、それ
との関連により各部位置における位相図を下部に示す
図、第4図は従来技術のダブルスリット方式の光学系の
構成配置を示す縦断側面図、第5図はその光学系の幾何
光路図を上部に示しそれとの関連により各部位置におけ
る位相図を下部に示す図である。 (1)……真空槽、(2)……イオン、(3)(4)…
…スリット、(5)……ゴニオメータ、(6)……試
料、(7)(13)……半導体検出器、(8)……増幅
器、(9)……マルチチャネル波高分析器、(10)……
ビームダクト、(11)(12)……四重極磁気レンズ、
(14)……焦点位置、(α)(β)……ビーム広がり
角、(d1)(d2)(d)()……スリット口径、
(L)……スリット−磁気レンズ間距離、(L′)……
上下流スリット間距離。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal section showing the configuration of an optical system of a parallel charged beam shaping lens according to an embodiment of the present invention, and FIG. 2 (a) shows one quadrupole magnetic lens thereof. A front view, FIG. 2 (b) is a front view of another quadrupole magnetic lens, and FIG. 3 shows a geometric optical path diagram in which the optical system of FIG. FIG. 4 is a diagram showing a phase diagram at each position in the lower part, FIG. 4 is a vertical sectional side view showing a configuration arrangement of a conventional double slit type optical system, and FIG. 5 is a geometrical optical path diagram of the optical system shown in the upper part. It is a figure which shows the phase diagram in each part position in the lower part by the relation of. (1) ... vacuum chamber, (2) ... ion, (3) (4) ...
… Slit, (5) …… Goniometer, (6) …… Sample, (7) (13) …… Semiconductor detector, (8) …… Amplifier, (9) …… Multichannel wave height analyzer, (10) ......
Beam duct, (11) (12) …… quadrupole magnetic lens,
(14) .... focal position, (alpha) (beta) ...... beam divergence, (d 1) (d 2) (d) () ... slit aperture,
(L) …… Distance between slit and magnetic lens, (L ′) ……
Distance between upstream and downstream slits.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲徳▼重 敬三 大阪府松原市田井城3丁目132―23 (72)発明者 福山 博文 兵庫県神戸市垂水区本多聞6丁目6―14 (72)発明者 木村 誠 兵庫県神戸市灘区篠原伯母野山町2―3― 1 (72)発明者 足立 成人 兵庫県神戸市灘区篠原伯母野山町2―3― 1 (56)参考文献 特開 平1−48363(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Toku ▼ Keizo Shige, 3-chome Taichiro, Matsubara-shi, Osaka 132-23 (72) Hirofumi Fukuyama 6-6-14 Honda, Tarumi-ku, Kobe-shi, Hyogo Prefecture (72) ) Inventor Makoto Kimura 2-3-1, Noboru Shinohara, Nada-ku, Kobe-shi, Hyogo Prefecture (72) Inventor Adachi Adult 2-3-1 Unno-cho, Shinohara, Nada-ku, Kobe, Hyogo Prefecture (56) References 1-48363 (JP, A)
Claims (1)
ード後方散乱法(RBS)または粒子励起X線法(PIXE)
のチャネリング現象を利用して結晶構造分析をする装置
のビームラインにおいて、 1)1つのスリットとその下流に配置する磁気レンズと
からなり、 2)スリット開き幅は入射ビームの最大拡がり角とスリ
ット−磁気レンズ間距離との積よりも小さくなるよう設
定し、 3)磁気レンズの焦点距離をスリット−磁気レンズ間距
離にほぼ等しくした、光学系を設けたことを特徴とする
平行荷電ビーム成形レンズ。1. Rutherford backscattering method (RBS) or particle excited X-ray method (PIXE) with high energy ion beam
In the beam line of the apparatus for crystal structure analysis utilizing the channeling phenomenon of 1), it consists of 1) a slit and a magnetic lens arranged downstream of it, 2) the slit opening width is the maximum divergence angle of the incident beam and the slit- A parallel charged beam shaping lens characterized in that an optical system is provided, which is set to be smaller than the product of the distance between the magnetic lenses, and 3) the focal length of the magnetic lens is substantially equal to the distance between the slit and the magnetic lens.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1206457A JPH07118288B2 (en) | 1989-08-08 | 1989-08-08 | Parallel charged beam shaping lens |
EP90109351A EP0398335B1 (en) | 1989-05-17 | 1990-05-17 | Converged ion beam apparatus |
US07/524,432 US5063294A (en) | 1989-05-17 | 1990-05-17 | Converged ion beam apparatus |
DE69026751T DE69026751T2 (en) | 1989-05-17 | 1990-05-17 | Ion beam focusing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1206457A JPH07118288B2 (en) | 1989-08-08 | 1989-08-08 | Parallel charged beam shaping lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0371543A JPH0371543A (en) | 1991-03-27 |
JPH07118288B2 true JPH07118288B2 (en) | 1995-12-18 |
Family
ID=16523697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1206457A Expired - Fee Related JPH07118288B2 (en) | 1989-05-17 | 1989-08-08 | Parallel charged beam shaping lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07118288B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6448363A (en) * | 1987-08-18 | 1989-02-22 | Nissin Electric Co Ltd | Surface analyzer |
-
1989
- 1989-08-08 JP JP1206457A patent/JPH07118288B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0371543A (en) | 1991-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0398335B1 (en) | Converged ion beam apparatus | |
Malmqvist | Comparison between PIXE and XRF for applications in art and archaeology | |
Chen et al. | An imaging proton spectrometer for short-pulse laser plasma experiments | |
Thellier et al. | [21] Physical methods to locate metal atoms in biological systems | |
Torrisi et al. | Proton emission from thin hydrogenated targets irradiated by laser pulses at 1016 W/cm2 | |
JPH07118288B2 (en) | Parallel charged beam shaping lens | |
Kruse et al. | High depth resolution ERDA of H and D by means of an electrostatic spectrometer | |
Torrisi et al. | Target normal sheath acceleration by fs laser and advanced carbon foils with gold films and nanoparticles | |
Zhu et al. | Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics | |
Nishiura et al. | Detection of alpha particles from 7Li (p, α) 4He and 19F (p, α) 16O reactions induced by laser-accelerated protons using CR-39 with potassium hydroxide–ethanol–water etching solution | |
Loh et al. | Computer simulation of PIXE and μ-PIXE spectra for inhomogeneous thick target analysis | |
Wobrauschek | Total reflection X-ray fluorescencespectrometric determination of trace elementsin the femtogram region: a survey | |
Baumann et al. | Angular distributions of 230, 232Th (n, f) and the third-minimum hypothesis | |
JP6177919B2 (en) | Spin detector, charged particle beam apparatus, and photoelectron spectrometer | |
Kimura et al. | Secondary-electron emission from specularly reflected MeV protons | |
Vokhmyanina et al. | About a contactless transmission of 10 keV electrons through tapering microchannels | |
Semenov et al. | The experience in production of composite refraction lenses from beryllium | |
Poggi et al. | Response of ion implanted silicon detectors to fully stopped Au ions of 11.5 A MeV impinging along crystallographic directions | |
Funsten et al. | Pinhole detection in thin foils used in space plasma diagnostic instrumentation | |
Elston et al. | Experimental studies of electron emission produced by fast, grazing ion-surface interactions | |
Alsulami et al. | Calculation and tabulation of efficiencies for tungsten foil positron moderators | |
Vincze et al. | X-ray optics for synchrotron radiation induced X-ray micro fluorescence at the European synchrotron radiation facility, Grenoble | |
JPS62113052A (en) | Element analysis | |
JPH07226181A (en) | Ion scattering surface analyzer | |
Yu et al. | Measurement of 1-MeV C-ion beam induced X-ray production cross sections of Fe, Nb, Ru, Ce and Ta |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |