JPH07117817B2 - LCD projection display - Google Patents

LCD projection display

Info

Publication number
JPH07117817B2
JPH07117817B2 JP63113936A JP11393688A JPH07117817B2 JP H07117817 B2 JPH07117817 B2 JP H07117817B2 JP 63113936 A JP63113936 A JP 63113936A JP 11393688 A JP11393688 A JP 11393688A JP H07117817 B2 JPH07117817 B2 JP H07117817B2
Authority
JP
Japan
Prior art keywords
image
optical system
radiation
liquid crystal
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63113936A
Other languages
Japanese (ja)
Other versions
JPH01283586A (en
Inventor
和明 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63113936A priority Critical patent/JPH07117817B2/en
Publication of JPH01283586A publication Critical patent/JPH01283586A/en
Publication of JPH07117817B2 publication Critical patent/JPH07117817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 ある程度の大形ディスプレイでは、従来のCRT単体で構
成する場合、製造の難しさもさることながら、重量も重
く奥行が長く、また、消費電力も大きくなる。このた
め、青色画像用、緑色画像用、赤色画像用の三種の小形
で高輝度のCRTを並べてそれぞれの画像をスクリーンに
投影するディスプレイが実用化されている。さらに、よ
り薄形で軽量化が可能な、光源からの光をカラー液晶パ
ネルを通してカラー画像としてスクリーンに投影する投
写方ディスプレイが開発されている。本発明は、この液
晶投写型ディスプレイに関するものである。
[Detailed Description of the Invention] Industrial application In the case of a large-sized display to a certain extent, a conventional CRT alone is not only difficult to manufacture, but also heavy and long in depth, and consumes a large amount of power. . Therefore, three types of small, high-intensity CRTs for blue images, green images, and red images are lined up and a display for projecting each image on the screen has been put into practical use. Further, a projection display for projecting light from a light source as a color image on a screen through a color liquid crystal panel, which is thinner and lighter, has been developed. The present invention relates to this liquid crystal projection display.

従来の技術 これまで液晶投写型ディスプレイは、光源部にキセノン
ランプやメタルハライドランプなど、可視波長域におい
て青成分から赤成分まで比較的バランスよく光が得られ
る高出力の光源を使用し、ダイクロイックミラーなどで
構成した色分解系で青、緑、赤に分離しそれぞれの色画
像用の液晶パネルに入射させ、それによってできた三色
の色画像を投写レンズによって、スクリーンに投影する
方式である。
2. Description of the Related Art Conventionally, liquid crystal projection displays use a high-output light source such as a xenon lamp or a metal halide lamp, which can obtain a relatively well-balanced light from the blue component to the red component in the visible wavelength range, such as a dichroic mirror. It is a system that separates blue, green, and red by the color separation system configured in (3), makes them enter the liquid crystal panel for each color image, and projects the three color images thus formed on the screen by the projection lens.

発明が解決しようとする課題 上記に示したとおり、これまで液晶投写型ディスプレイ
は、光源部にキセノンランプやメタルハライドランプな
ど、可視波長域において青成分から赤成分まで比較的バ
ランスよく光が得られる高出力の光源を使用し、ダイク
ロイックミラーなどで構成した色分解系で青、緑、赤に
分離しそれぞれの色画像用の液晶パネルに入射させい
た。しかしカラーディスプレイとしての色再現では、
青、緑、赤ともブロードなスペクトルしか得られないた
め色純度が悪い。また、液晶パネルのシャッター作用
は、入射した光が液晶内で偏光され、そく偏光角を印加
電圧でコントロールし、階調をだしているが、この偏光
角が入射光の波長によって変化し、とくに短かい波長の
青色では長波長側の透過率が増加し、連続スペクトルの
光源を使用した場合に階調事の青成分の色シフトが大き
いといった問題があった。また、輝線光源を使う場合で
もたとえば高圧水銀ランプでは赤成分に輝線がなく、三
成分系のメタルハライドランプでも現状では、Naの長波
長側の輝線は590nm程度で赤色としては良い色再現が得
られず、またLiの発光では、690nmで放射エネルギーと
しては大きなものが得られるが視感度からはずれるため
輝度がえられないといった問題がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, the liquid crystal projection display has hitherto been a high-performance light source such as a xenon lamp or a metal halide lamp that can obtain light in a relatively well-balanced range from blue components to red components in the visible wavelength range. An output light source was used, and it was separated into blue, green, and red by a color separation system composed of dichroic mirrors and made to enter the liquid crystal panel for each color image. However, in color reproduction as a color display,
Color purity is poor because only blue, green and red spectra are obtained. In addition, the shutter action of the liquid crystal panel is that the incident light is polarized in the liquid crystal, and the polarization angle is controlled by the applied voltage to produce gradation, but this polarization angle changes depending on the wavelength of the incident light. There is a problem in that blue having a short wavelength increases the transmittance on the long wavelength side, and when a light source with a continuous spectrum is used, the color shift of the blue component of gradation is large. Even when a bright line light source is used, for example, a high-pressure mercury lamp has no bright line in the red component, and even with a three-component system metal halide lamp, the bright line on the long wavelength side of Na is about 590 nm, and good color reproduction for red is obtained. In addition, in the case of Li emission, a large amount of radiant energy can be obtained at 690 nm, but there is a problem that luminance cannot be obtained because it deviates from the luminosity.

課題を解決するための手段 上記の課題を解決するために、波長450nmおよび550nm近
辺に輝線放射を持ち、かつ波長300nm以下の紫外域で放
射を出す光源を集光光学系に収め、前記集光光学系から
出た放射のうち紫外放射成分のみを分離し赤色発光蛍光
体を塗布したパネルに導き発光させ、その放射を赤色画
像用の液晶パネルに入射させ、それによってできた赤色
画像をスクリーンに投影し、さらに残りの青及び緑の発
光輝線もそれぞれ分離して液晶パネルに入射させ、それ
によってできた色画像をスクリーンに投影する。
In order to solve the above problems, in order to solve the above problems, a light source having emission lines near wavelengths 450 nm and 550 nm and emitting radiation in the ultraviolet region of wavelength 300 nm or less is contained in the condensing optical system, Of the radiation emitted from the optical system, only the ultraviolet radiation component is separated and guided to a panel coated with a red-emitting phosphor to emit light, which is then incident on a liquid crystal panel for red images, and the resulting red image is displayed on the screen. Then, the remaining blue and green emission lines are separated and made incident on the liquid crystal panel, and the color image formed thereby is projected on the screen.

作用 これによって高出力放電ランプが持つ大きな紫外放射エ
ネルギーを赤色発光として利用するため、ランプのエネ
ルギー効率が向上し、かつ青成分の階調時による色シフ
トも、青成分が輝線であることと長波長側に発光がない
ため色分解系や液晶パネルから透過して混入する黄色か
ら赤にかけての波長のエネルギーがないため、改善する
ことが可能となる。
By doing this, the large ultraviolet radiation energy of the high-output discharge lamp is used for red emission, so the energy efficiency of the lamp is improved, and the color shift due to the gradation of the blue component is that the blue component is a bright line. Since there is no light emission on the wavelength side, there is no energy of the wavelength from yellow to red that is transmitted and mixed from the color separation system or the liquid crystal panel, so that it is possible to improve.

実施例 本発明の一実施例として外管バルブに石英ガラスを使っ
た高圧水銀ランプを光源部とした液晶投写型ディスプレ
イの光源部光学系および色分解光学系について図をもち
いて示す。第1図は、液晶投写型ディスプレイの光源部
光学系および色分解光学系である。図において1は、外
管バルブに石英ガラスを使った高圧水銀ランプで、集光
ミラー2および石英レンズ光学系3で前記高圧水銀ラン
プ1からの放射を平行光にして光源部前面に投写する。
その平行光のうち、波長300nm以下の紫外放射成分を反
射し、それ以上の波長成分を透過するビームスプリッタ
4で紫外放射のみを分離し、赤色発光蛍光体、たとえば
波長620nm付近にシャープなラインスペクトルを持つ希
土類蛍光体(イットリュウム・オキサイド蛍光体)を塗
布したガラスパネル5に導く。紫外放射により赤色に発
光した前記赤色発光蛍光体を塗布したガラスパネル5の
前面に赤色成分の画像を作りだす第1の液晶パネル6を
置き、その映像を第1の投写レンズ7でスクリーン8に
投影する。つぎに前記ビームスプリッタ4で紫外放射の
みを分離した、のこりの可視波長域の放射のうち、波長
400nmから500nmまでの放射を反射しそれ以外の放射を透
過するダイクロイックミラー9で波長435.8nmの水銀輝
線を反射し、青色成分の画像を作りだす第2の液晶パネ
ル10に導き、その映像を第2の投写レンズ11でスクリー
ン8に投影する。さらに前記ビームスプリッタ4および
ダイクロイックミラー9で分離した波長500nm以上の放
射を、反射ミラー12で光路を変え、波長546.1nmの水銀
輝線のみを透過するフィルタ13を通して、緑色成分の画
像を作りだす第3の液晶パネル14に導き、その映像を第
3の投写レンズ15でスクリーン8に投影する。なお第2
図に高圧水銀ランプと赤色発光の希土類蛍光体(イット
リュウム・オキサイド蛍光体)の発光スペクトルを示
す。
Example As an example of the present invention, a light source optical system and a color separation optical system of a liquid crystal projection display using a high pressure mercury lamp using quartz glass as a light source in an outer bulb will be described with reference to the drawings. FIG. 1 shows a light source section optical system and a color separation optical system of a liquid crystal projection display. In the figure, reference numeral 1 denotes a high pressure mercury lamp using quartz glass for an outer bulb, and a condenser mirror 2 and a quartz lens optical system 3 collimate the radiation from the high pressure mercury lamp 1 and project it on the front surface of a light source unit.
Of the collimated light, a beam splitter 4 that reflects ultraviolet radiation components with a wavelength of 300 nm or less and transmits wavelength components with a wavelength of more than 300 nm separates only the ultraviolet radiation, and a red-emitting phosphor, for example, a sharp line spectrum around a wavelength of 620 nm. To a glass panel 5 coated with a rare earth phosphor (yttrium oxide phosphor) having a. A first liquid crystal panel 6 for producing an image of a red component is placed on the front surface of a glass panel 5 coated with the red light emitting phosphor that emits red light by ultraviolet radiation, and the image is projected on a screen 8 by a first projection lens 7. To do. Next, only the ultraviolet radiation is separated by the beam splitter 4, and the
The dichroic mirror 9 that reflects the radiation from 400 nm to 500 nm and transmits the other radiation reflects the mercury emission line with a wavelength of 435.8 nm and guides it to the second liquid crystal panel 10 that produces a blue component image, and the image is displayed as the second image. The image is projected on the screen 8 by the projection lens 11 of. Further, the radiation having a wavelength of 500 nm or more separated by the beam splitter 4 and the dichroic mirror 9 is changed in its optical path by a reflection mirror 12 and is passed through a filter 13 which transmits only a mercury emission line of wavelength 546.1 nm to produce a green component image. The image is guided to the liquid crystal panel 14, and the image is projected on the screen 8 by the third projection lens 15. The second
The figure shows the emission spectra of a high-pressure mercury lamp and a red-emitting rare earth phosphor (yttrium oxide phosphor).

発明の効果 以上述べてきた方法により、これによって高出力放電ラ
ンプが持つ大きな紫外放射エネルギーを赤色発光として
利用するため、ランプのエネルギー効率が向上し、かつ
青成分の階調時による色シフトも、青成分が輝線である
ことと長波長側に発光がないため色分解系や液晶パネル
から透過して混入する黄色から赤にかけての波長のエネ
ルギーがないため、改善することが可能となる色再現の
良い投写型ディスプレイが実現できる。
Effects of the Invention According to the method described above, the large ultraviolet radiant energy possessed by the high-power discharge lamp is utilized as red light emission, whereby the energy efficiency of the lamp is improved, and the color shift due to the gradation of the blue component is also Since the blue component is a bright line and there is no light emission on the long wavelength side, there is no energy of the wavelength from yellow to red that is transmitted and mixed from the color separation system or liquid crystal panel, and it is possible to improve the color reproduction. A good projection display can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例として液晶投写型ディスプレイ
の光源部光学系および色分解光学系の説明図、第2図に
高圧水銀ランプと赤色発光の希土類蛍光体(イットリュ
ウム・オキサイド蛍光体)の発光スペクトル図である。 1……外管バルブに石英ガラスを使った高圧水銀ラン
プ、2……集光ミラー、3……石英レンズ光学系、4…
…ビームスプリッタ、5……波長620nm付近にシャープ
なラインスペクトルを持つ希土類蛍光体(イットリュウ
ム・オキサイド蛍光体)を塗布したガラスパネル、6…
…赤色成分の画像を作りだす第1の液晶パネル、7……
第1の投写レンズ、8……スクリーン、9……ダイクロ
イックミラー、10……青色成分の画像を作りだす第2の
液晶パネル、11……第2の投写レンズ、12……反射ミラ
ー、13……フィルタ、14……緑色成分の画像を作りだす
第3の液晶パネル、15……第3の投写レンズ。
FIG. 1 is an explanatory view of a light source optical system and a color separation optical system of a liquid crystal projection display as an embodiment of the present invention, and FIG. 2 is a high pressure mercury lamp and a red-emitting rare earth phosphor (yttrium oxide phosphor). FIG. 3 is an emission spectrum diagram of 1 ... High-pressure mercury lamp using quartz glass for outer bulb, 2 ... Focusing mirror, 3 ... Quartz lens optical system, 4 ...
... Beam splitter, 5 ... Glass panel coated with rare earth phosphor (yttrium oxide phosphor) having a sharp line spectrum around wavelength 620 nm, 6 ...
… The first liquid crystal panel that creates red component images, 7 ……
1st projection lens, 8 ... screen, 9 ... dichroic mirror, 10 ... second liquid crystal panel for producing blue component image, 11 ... second projection lens, 12 ... reflection mirror, 13 ... Filter, 14 ... 3rd liquid crystal panel that produces green component image, 15 ... 3rd projection lens.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】波長450nmおよび550nm近辺に輝線放射を持
ち、かつ波長300nm以下の紫外域で放射を出す光源を集
光光学系に収め、前記集光光学系から出た放射のうち紫
外放射成分のみを分離し赤色発光蛍光体を塗布したパネ
ルに導き発光させ、その放射を赤色画像用の液晶パネル
に入射させ、それによってできた赤色画像をスクリーン
に投影する第一の投写レンズからなる赤色画像投影光学
系と、前記集光光学系から出た放射のうち紫外放射成分
のみを分離除去した可視放射から緑色成分の放射のみを
分離し緑色画像用の液晶パネルに入射させ、それによっ
てできた緑色画像をスクリーンに投影する第二の投写レ
ンズからなる緑色画像投影光学系と、前記集光光学系か
ら出た放射のうち紫外放射成分および緑色成分を分離除
去した青色成分の放射を青色画像用の液晶パネルに入射
させ、それによってできた青色画像をスクリーンに投影
する第三の投写レンズからなる青色画像投影光学系の、
以上三つの色画像投影光学系からなる液晶投射型ディス
プレイ。
1. An ultraviolet radiation component of radiation emitted from the condensing optical system, in which a light source having emission lines near wavelengths of 450 nm and 550 nm and emitting radiation in the ultraviolet region of wavelength of 300 nm or less is contained in the condensing optical system. A red image consisting of a first projection lens that separates only the light and guides it to a panel coated with a red-light-emitting phosphor to cause it to emit light, which is then incident on the liquid crystal panel for the red image, and the resulting red image is projected onto the screen. The projection optical system and the radiation emitted from the condensing optical system are separated and removed only from the ultraviolet radiation component, and only the green component radiation is separated from the visible radiation and made incident on the liquid crystal panel for the green image, thereby forming the green color. A green image projection optical system consisting of a second projection lens for projecting an image on the screen, and a blue component radiation obtained by separating and removing the ultraviolet radiation component and the green component of the radiation emitted from the condensing optical system. Is incident on the liquid crystal panel for color images, the blue image projection optical system comprising a blue image made by it from the third projection lens for projecting on a screen,
A liquid crystal projection display consisting of the above three color image projection optical systems.
JP63113936A 1988-05-11 1988-05-11 LCD projection display Expired - Lifetime JPH07117817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113936A JPH07117817B2 (en) 1988-05-11 1988-05-11 LCD projection display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113936A JPH07117817B2 (en) 1988-05-11 1988-05-11 LCD projection display

Publications (2)

Publication Number Publication Date
JPH01283586A JPH01283586A (en) 1989-11-15
JPH07117817B2 true JPH07117817B2 (en) 1995-12-18

Family

ID=14624912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113936A Expired - Lifetime JPH07117817B2 (en) 1988-05-11 1988-05-11 LCD projection display

Country Status (1)

Country Link
JP (1) JPH07117817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048562A (en) * 2001-12-12 2003-06-25 삼성전자주식회사 Apparatus for projection image

Also Published As

Publication number Publication date
JPH01283586A (en) 1989-11-15

Similar Documents

Publication Publication Date Title
JP3971717B2 (en) Projector including a narrow-band spectral light source to supplement a broadband spectral light source
US5135300A (en) Projection color display apparatus
JP5741795B2 (en) Projector and control method thereof
KR100222602B1 (en) Reflective shutter projector in which fluorescent layer is used
US7364311B2 (en) Method of manufacturing reflective mirror, illumination device, and projector
JP2001281599A (en) Projection type display device
US7133211B2 (en) Projector with flat light sources
JP2012089454A (en) Light source control device, light source control method, and projector
JPH07117817B2 (en) LCD projection display
CN1276653C (en) Use of resonant microcavity display CRT for the illumination of a light valve projector
JP2001264880A (en) Projection type display device
JP6036915B2 (en) Projector and control method thereof
KR100447168B1 (en) Projection-type optics system
Bartlett Flat panel head-up display
JPH01128689A (en) Liquid crystal projection display
JP2540248B2 (en) Projection type liquid crystal display
JP2009128856A (en) Projector
JPH05203909A (en) Color display device
JP2947214B2 (en) LCD projection display
JPH02245749A (en) Projection type display device
JPH05165414A (en) Large screen display and image display method
JP2007052047A (en) Light source device and projector device equipped therewith
JPH01157688A (en) Projection type color display device
CN1300997A (en) Color display
JPH0829732A (en) Liquid crystal projector