JPH01283586A - Liquid crystal projection type display - Google Patents

Liquid crystal projection type display

Info

Publication number
JPH01283586A
JPH01283586A JP63113936A JP11393688A JPH01283586A JP H01283586 A JPH01283586 A JP H01283586A JP 63113936 A JP63113936 A JP 63113936A JP 11393688 A JP11393688 A JP 11393688A JP H01283586 A JPH01283586 A JP H01283586A
Authority
JP
Japan
Prior art keywords
liquid crystal
component
optical system
image
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63113936A
Other languages
Japanese (ja)
Other versions
JPH07117817B2 (en
Inventor
Kazuaki Okubo
和明 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63113936A priority Critical patent/JPH07117817B2/en
Publication of JPH01283586A publication Critical patent/JPH01283586A/en
Publication of JPH07117817B2 publication Critical patent/JPH07117817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To improve the energy efficiency of a lamp by separating luminescent components from a convergence optical system which contains a specific light source and emitting the light of a panel which is coated with respective color fluorescent materials of red, blue, and green luminesce, making its light incident on liquid crystal panels for respective color images, and projecting the formed color images on a screen. CONSTITUTION:The light source which has bright line radiation of almost 450 and 550nm in wavelength and emits light in a <=300nm wavelength ultraviolet-ray range is put in the convergence optical system, only an ultraviolet luminescent component is separated from the convergence optical system and guided to the panel 5 coated with a red fluorescent material, and the panel luminesces; and its light is made incident on a liquid crystal panel 6 for a red image, which is thus formed and projected on the screen. Then only a red component is separated from visible light from which only the ultraviolet luminescent component is removed and made incident on a liquid crystal panel 14 for a green image; and a blue component obtained by separating and removing the ultraviolet luminescenent component and green component is made incident on a liquid crystal panel 10 for a blue image, so that the green and blue images which are formed as mentioned above are projected on the screen 8. Consequently, the energy efficiency of the lamp is improved.

Description

【発明の詳細な説明】 産業上の利用分野 ある程度の大形デイスプレィでは、従来のCRT単体で
構成する場合、製造の難しさもさることながら、重量も
重く奥行が長く、また、消費電力も大きくなる。このた
め、青色画像用、緑色画像用、赤色画像用の三種の小形
で高輝度のCRTを並べてそれぞれの画像をスクリーン
に投影するデイスプレィが実用化されている。さらに、
より薄形で軽量化が可能な、光源からの光をカラー液晶
パネルを通してカラー画像としてスクリーンに投影する
投写刃デイスプレィが開発されている。
[Detailed Description of the Invention] For large displays that are used in industrial fields, if they are constructed from a single conventional CRT, it is not only difficult to manufacture, but also heavy and long, and consumes a lot of power. . For this reason, displays have been put into practical use in which three types of small, high-brightness CRTs are lined up for blue images, green images, and red images, and the respective images are projected onto a screen. moreover,
A thinner and lighter projection blade display has been developed that projects light from a light source onto a screen as a color image through a color liquid crystal panel.

本発明は、この液晶投写型デイスプレィに関するもので
ある。
The present invention relates to this liquid crystal projection display.

従来の技術 これまで液晶投写型デイスプレィは、光源部にキセノン
ランプやメタルハライドランプなど、可視波長域におい
て青成分から赤成分まで比較的バランスよ(光が得られ
る高出力の光源を使用し、ダイクロイックミラーなどで
構成した色分解系で青、緑、赤に分離しそれぞれの色画
像用の液晶パネルに入射させ、それによってできた三色
の色画像を投写レンズによって、スクリーンに投影する
方式であった。
Conventional technology Up until now, LCD projection displays have used a high-output light source such as a xenon lamp or a metal halide lamp that produces relatively balanced light from blue to red components in the visible wavelength range, and a dichroic mirror. The system used a color separation system consisting of a color separation system to separate blue, green, and red, and then input the images into a liquid crystal panel for each color image.The resulting three-color image was then projected onto a screen using a projection lens. .

発明が解決しようとする課題 上記に示したとおり、これまで液晶投写型デイスプレィ
は、光源部にキセノンランプやメタルハライドランプな
ど、可視波長域において青成分から赤成分まで比較的バ
ランスよく光が得られる高出力の光源を使用し、ダイク
ロイックミラーなどで構成した色分解系で青、緑、赤に
分離しそれぞれの色画像用の液晶パネルに入射させいた
。しかしカラーデイスプレィとしての色再現では、青、
緑、赤ともブロードなスペクトルしか得られないため色
純度が悪い。また、液晶パネルのシャッター作用は、入
射した光が液晶内で偏光され、そく偏光角を印加電圧で
コントロールし、階調をだしているが、この偏光角が入
射光の波長によって変化し、とくに短かい波長の青色で
は長波長倶りの透過率が増加し、連続スペクトルの光源
を使用した場合に階調下の青成分の色シフトが大きいと
いった問題があった。また、輝線光源を使う場合でもた
とえば高圧水銀ランプでは赤成分に輝線がなく、三成分
系のメタルハライドランプでも現状では、Naの長波長
側の輝線は590nm程度で赤色としては良い色再現が
得られず、またLiの発光では、890 nmで放射エ
ネルギーとしては大きなものが得られるが視感度からは
ずれるため輝度かえられないといった問題がある。
Problems to be Solved by the Invention As stated above, until now, liquid crystal projection displays have used high-speed light sources such as xenon lamps and metal halide lamps in the light source section, which can provide relatively well-balanced light from blue to red components in the visible wavelength range. Using the output light source, the light was separated into blue, green, and red using a color separation system made up of dichroic mirrors, etc., and then incident on a liquid crystal panel for each color image. However, in color reproduction as a color display, blue,
Color purity is poor because only broad spectra can be obtained for both green and red. In addition, the shutter action of a liquid crystal panel is such that the incident light is polarized within the liquid crystal, and the polarization angle is controlled by an applied voltage to produce gradations, but this polarization angle changes depending on the wavelength of the incident light, and in particular, For short blue wavelengths, the transmittance increases at long wavelengths, and when a continuous spectrum light source is used, there is a problem that the color shift of the blue component at the bottom of the gradation is large. Furthermore, even when using an emission line light source, for example, a high-pressure mercury lamp does not have an emission line in the red component, and even with a three-component metal halide lamp, the emission line on the longer wavelength side of Na is currently around 590 nm, which does not provide good color reproduction for red. Furthermore, with the light emission of Li, a large amount of radiant energy can be obtained at 890 nm, but there is a problem in that the brightness cannot be changed because it deviates from the visibility.

課題を解決するだめの手段 上記の課題を解決するために、波長450nmおよび5
50nm近辺に輝線放射を持ち、かつ波長300nm以
下の紫外域で放射を出す光源を集光光学系に収め、前記
集光光学系から出た放射のうち紫外放射成分のみを分離
し赤色発光蛍光体を塗布したパネルに導き発光させ、そ
の放射を赤色画像用の液晶パネルに入射させ、それによ
ってできた赤色画像をスクリーンに投影し、さらに残り
の青及び緑の発光輝線もそれぞれ分離して液晶パネルに
入射させ、それによってできた色画像をスクリーンに投
影する。
Means to Solve the Problems In order to solve the above problems, wavelengths of 450 nm and 5
A light source that has bright line emission near 50 nm and emits radiation in the ultraviolet region with a wavelength of 300 nm or less is housed in a condensing optical system, and only the ultraviolet radiation component of the radiation emitted from the condensing optical system is separated to produce a red-emitting phosphor. The emitted light is directed to a panel coated with light and emitted, the emitted light is incident on a liquid crystal panel for red images, the resulting red image is projected onto a screen, and the remaining blue and green emission lines are also separated and sent to the liquid crystal panel. and project the resulting color image onto a screen.

作用 これによって高出力放電ランプが持つ大きな紫外放射エ
ネルギーを赤色発光として利用するため、ランプのエネ
ルギー効率が向上し、かつ青成分の階調時による色シフ
トも、青成分が輝線であることと長波長側に発光がない
ため色分解系や液晶パネルから透過して混入する黄色か
ら赤にかけての波長のエネルギーがないため、改善する
ことが可能となる。
Effect: Since the large ultraviolet radiation energy of a high-output discharge lamp is used for red light emission, the energy efficiency of the lamp is improved, and the color shift caused by the gradation of the blue component is also long because the blue component is a bright line. Since there is no light emission on the wavelength side, there is no energy of wavelengths from yellow to red that is transmitted through the color separation system or liquid crystal panel and mixed in, making it possible to improve this.

実施例 本発明の一実施例として外管バルブに石英ガラスを使っ
た高圧水銀ランプを光源部とした液晶投写型デイスプレ
ィの光源部光学系および色分解光学系について図をもち
いて示す。第1図は、液晶投写型デイスプレィの光源部
光学系および色分解光学系である。図において1は、外
管バルブに石英ガラスを使った高圧水銀ランプで、集光
ミラー2および石英レンズ光学系3で前記高圧水銀ラン
プ1からの放射を平行光にして光源部前面に投写する。
Embodiment As an embodiment of the present invention, a light source optical system and a color separation optical system of a liquid crystal projection display using a high-pressure mercury lamp having an outer bulb made of quartz glass as a light source will be described with reference to the drawings. FIG. 1 shows a light source optical system and a color separation optical system of a liquid crystal projection display. In the figure, reference numeral 1 denotes a high-pressure mercury lamp whose outer bulb is made of quartz glass. A condensing mirror 2 and a quartz lens optical system 3 convert the radiation from the high-pressure mercury lamp 1 into parallel light and project it onto the front surface of the light source.

その平行光のうち、波長300nm以下の紫外放射成分
を反射し、それ以上の波長成分を透過するビームスプリ
ッタ4で紫外放射のみを分離し、赤色発光蛍光体、たと
えば波長62Onm付近にシャープなラインスペクトル
を持つ希土類蛍光体(イットリュウム・オキサイド蛍光
体)を塗布したガラスパネル5に導く。紫外放射により
赤色に発光した前記赤色発光蛍光体を塗布したガラスパ
ネル5の前面に赤色成分の画像を作りだす第1の液晶パ
ネル6を置き、その映像を第1の投写レンズ7でスクリ
ーン8に投影する。つぎに前記ビームスプリッタ4で紫
外放射のみを分離した、のこりの可視波長域の放射のう
ち、波長400nmから500nmまでの放射を反射し
それ以外の放射を透過するダイクロイックミラー9で波
長435.8nmの水銀輝線を反射し、青色成分の画像
を作りだす第2の液晶パネル10に導き、その映像を第
2の投写レンズ11でスクリーン8に投影する。さらに
前記ビームスプリッタ4およびダイクロイックミラー9
で分離した波長500nm以上の放射を、反射ミラー1
2で光路を変え、波長546.1nmの水銀輝線のみを
透過するフィルタ13を通して、緑色成分の画像を作り
だす第3の液晶パネル14に導き、その映像を第3の投
写レンズ15でスクリーン8に投影する。なお第2図に
高圧水銀ランプと赤色発光の希土類蛍光体(イットリュ
ウム・オキサイド蛍光体)の発光スペクトルを示す。
Of the parallel light, only the ultraviolet radiation is separated by the beam splitter 4, which reflects the ultraviolet radiation component with a wavelength of 300 nm or less and transmits the wavelength component with a wavelength longer than 300 nm. It leads to a glass panel 5 coated with a rare earth phosphor (yttrium oxide phosphor). A first liquid crystal panel 6 that produces a red component image is placed in front of the glass panel 5 coated with the red light-emitting phosphor that emits red light due to ultraviolet radiation, and the image is projected onto a screen 8 by a first projection lens 7. do. Next, the beam splitter 4 separates only the ultraviolet radiation, and out of the remaining radiation in the visible wavelength range, a dichroic mirror 9 that reflects radiation in the wavelength range of 400 nm to 500 nm and transmits the other radiation is used to separate the radiation in the wavelength range of 435.8 nm. The mercury bright line is reflected and guided to a second liquid crystal panel 10 that produces a blue component image, and the image is projected onto a screen 8 by a second projection lens 11. Furthermore, the beam splitter 4 and the dichroic mirror 9
Reflection mirror 1
2 changes the optical path, passes through a filter 13 that transmits only the mercury bright line with a wavelength of 546.1 nm, and guides it to a third liquid crystal panel 14 that produces an image of the green component, and projects the image onto a screen 8 using a third projection lens 15. do. FIG. 2 shows the emission spectra of a high-pressure mercury lamp and a red-emitting rare earth phosphor (yttrium oxide phosphor).

発明の効果 以上述べてきた方法により、これによって高出力放電ラ
ンプが持つ大きな紫外放射エネルギーを赤色発光として
利用するため、ランプのエネルギー効率が向上し、かつ
青成分の階調時による色シフトも、青成分が輝線である
ことと長波長側に発光がないため色分解系や液晶パネル
から透過して混入する黄色から赤にかけての波長のエネ
ルギーかないため、改善することが可能となり色再現の
良い投写型デイスプレィが実現できる。
Effects of the Invention By the method described above, the large ultraviolet radiation energy of a high-power discharge lamp is utilized for red light emission, which improves the energy efficiency of the lamp and also reduces the color shift due to the gradation of the blue component. Since the blue component is a bright line and there is no emission on the long wavelength side, there is no energy in the wavelength range from yellow to red that is transmitted through the color separation system or liquid crystal panel, making it possible to improve projection with good color reproduction. type display can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例として液晶投写型デイスプレィ
の光源部光学系および色分解光学系の説明図、第2図に
高圧水銀ランプと赤色発光の希土類蛍光体(イットリュ
ウム争オキサイド蛍光体)の発光スペクトル図である。 I・・拳外管バルブに石英ガラスを使った高圧水銀ラン
プ、2・−Φ集光ミラー、3・11Φ石英レンズ光学系
、4Ie・ビームスプリッタ、5・・・波長62Onm
付近にシャープなラインスペクトルを持つ希土類蛍光体
(イットリュウムOオキサイド蛍光体)を塗布したガラ
スパネル、6・0・赤色成分の画像を作りだす第1の液
晶パネル、7・・−第1の投写レンズ、8@・・スクリ
ーン、3・・・ダイクロイックミラー、106・青色成
分の画像を作りだす第2の液晶パネル、11Φ・第2の
投写レンズ、12・勢反射ミラー、13・拳フィルタ、
14・Φ緑色成分の画像を作りだす第3の液晶パネル、
+5−・第°3の投写レンズ。 代理人の氏名 弁理士 中尾敏男 はか18第 2 図 沃 五 ひ町
Fig. 1 is an explanatory diagram of the light source optical system and color separation optical system of a liquid crystal projection display as an example of the present invention, and Fig. 2 shows a high-pressure mercury lamp and a red-emitting rare earth phosphor (yttrium oxide phosphor). FIG. I... High-pressure mercury lamp using quartz glass for the outer tube bulb, 2 -Φ condensing mirror, 3, 11Φ quartz lens optical system, 4Ie beam splitter, 5... Wavelength 62 Onm
A glass panel coated with a rare earth phosphor (yttrium O oxide phosphor) that has a sharp line spectrum in the vicinity, a first liquid crystal panel that produces an image with 6.0 red components, and 7... - a first projection lens. , 8@...Screen, 3...Dichroic mirror, 106.Second liquid crystal panel that creates a blue component image, 11Φ.Second projection lens, 12.Reflection mirror, 13.Fist filter.
14.Φ Third liquid crystal panel that creates an image of the green component,
+5-°3rd projection lens. Name of agent: Patent attorney Toshio Nakao

Claims (1)

【特許請求の範囲】[Claims] 波長450nmおよび550nm近辺に輝線放射を持ち
、かつ波長300nm以下の紫外域で放射を出す光源を
集光光学系に収め、前記集光光学系から出た放射のうち
紫外放射成分のみを分離し赤色発光蛍光体を塗布したパ
ネルに導き発光させ、その放射を赤色画像用の液晶パネ
ルに入射させ、それによってできた赤色画像をスクリー
ンに投影する第一の投写レンズからなる赤色画像投影光
学系と、前記集光光学系から出た放射のうち紫外放射成
分のみを分離除去した可視放射から緑色成分の放射のみ
を分離し緑色画像用の液晶パネルに入射させ、それによ
ってできた緑色画像をスクリーンに投影する第二の投写
レンズからなる緑色画像投影光学系と、前記集光光学系
から出た放射のうち紫外放射成分および緑色成分を分離
除去した青色成分の放射を青色画像用の液晶パネルに入
射させ、それによってできた青色画像をスクリーンに投
影する第三の投写レンズからなる青色画像投影光学系の
、以上三つの色画像投影光学系からなる液晶投射型ディ
スプレイ
A light source that has bright line radiation near wavelengths of 450 nm and 550 nm and that emits radiation in the ultraviolet region with a wavelength of 300 nm or less is housed in a condensing optical system, and only the ultraviolet radiation component of the radiation emitted from the condensing optical system is separated to produce a red color. a red image projection optical system comprising a first projection lens that guides a panel coated with a light-emitting phosphor to emit light, makes the radiation incident on a liquid crystal panel for a red image, and projects the resulting red image on a screen; Of the radiation emitted from the condensing optical system, only the ultraviolet radiation component is separated and removed, and only the green component radiation is separated from the visible radiation and made incident on a liquid crystal panel for a green image, and the resulting green image is projected on a screen. a green image projection optical system comprising a second projection lens, and a blue component radiation from which the ultraviolet radiation component and the green component are separated and removed from the radiation emitted from the condensing optical system, and incident on a liquid crystal panel for a blue image. , a blue image projection optical system consisting of a third projection lens that projects the resulting blue image onto a screen, and a liquid crystal projection display consisting of the above three color image projection optical systems.
JP63113936A 1988-05-11 1988-05-11 LCD projection display Expired - Lifetime JPH07117817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113936A JPH07117817B2 (en) 1988-05-11 1988-05-11 LCD projection display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113936A JPH07117817B2 (en) 1988-05-11 1988-05-11 LCD projection display

Publications (2)

Publication Number Publication Date
JPH01283586A true JPH01283586A (en) 1989-11-15
JPH07117817B2 JPH07117817B2 (en) 1995-12-18

Family

ID=14624912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113936A Expired - Lifetime JPH07117817B2 (en) 1988-05-11 1988-05-11 LCD projection display

Country Status (1)

Country Link
JP (1) JPH07117817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048562A (en) * 2001-12-12 2003-06-25 삼성전자주식회사 Apparatus for projection image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048562A (en) * 2001-12-12 2003-06-25 삼성전자주식회사 Apparatus for projection image

Also Published As

Publication number Publication date
JPH07117817B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
EP0275601B1 (en) Projection device and associated display device
KR100222602B1 (en) Reflective shutter projector in which fluorescent layer is used
EP2255242A1 (en) Light multiplexer and recycler, and micro-projector incorporating the same
EP0481646B1 (en) A colour sequential illumination system
US20190253676A1 (en) Illumination system and projection apparatus
CN1311272C (en) Projecting color display
US7133211B2 (en) Projector with flat light sources
CN1591165A (en) Colour projecting display
CN110221511A (en) A kind of new and effective micro- projection optics framework
JPH01283586A (en) Liquid crystal projection type display
CN1276653C (en) Use of resonant microcavity display CRT for the illumination of a light valve projector
CN112114487A (en) Multi-color laser light source light combination structure, projection device and lighting equipment
KR100447168B1 (en) Projection-type optics system
Springle et al. Novel materials for photo‐luminescent LCD technology
JP2001264880A (en) Projection type display device
CN105915871A (en) Laser TV full-color generation method and device in 3 LCD mode
JP2540248B2 (en) Projection type liquid crystal display
CN110275380A (en) Fluorometer arrangement
JPH02245749A (en) Projection type display device
JPH05203909A (en) Color display device
JP2007052047A (en) Light source device and projector device equipped therewith
CN103513441A (en) Device for generating polarized electromagnetic radiation, and projector
JP2009128856A (en) Projector
KR20000013514A (en) Active phosphorescence type liquid crystal display
CN1300997A (en) Color display