JPH07117259B2 - Heat storage device for air conditioning - Google Patents

Heat storage device for air conditioning

Info

Publication number
JPH07117259B2
JPH07117259B2 JP2229406A JP22940690A JPH07117259B2 JP H07117259 B2 JPH07117259 B2 JP H07117259B2 JP 2229406 A JP2229406 A JP 2229406A JP 22940690 A JP22940690 A JP 22940690A JP H07117259 B2 JPH07117259 B2 JP H07117259B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
air conditioning
storage device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2229406A
Other languages
Japanese (ja)
Other versions
JPH04110534A (en
Inventor
和幸 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2229406A priority Critical patent/JPH07117259B2/en
Publication of JPH04110534A publication Critical patent/JPH04110534A/en
Publication of JPH07117259B2 publication Critical patent/JPH07117259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は幅射パネル等に使用するのに好適な空調用蓄
熱装置に関する。
TECHNICAL FIELD The present invention relates to a heat storage device for air conditioning suitable for use in a radiant panel or the like.

(従来の技術) 従来、蓄熱材に温熱を蓄え、その温熱を冬場の暖房に用
いることは、例えば特開平1−217135号公報により公知
である。また、蓄熱材による冷熱や温熱の蓄熱が可逆的
に行われることはよく知られている事柄であるから、蓄
熱材に冷熱を蓄え、その冷熱を夏場の冷房に用いること
は容易に可能である。
(Prior Art) Conventionally, it is known, for example, from Japanese Patent Application Laid-Open No. 1-217135 to store warm heat in a heat storage material and use the warm heat for heating in winter. Further, it is well known that cold heat and warm heat are reversibly stored by the heat storage material, so that it is easy to store cold heat in the heat storage material and use the cold heat for cooling in the summer. .

(発明が解決しようとする課題) ところで、夏場の冷房用蓄熱適温と冬場の暖房用蓄熱適
温との間には比較的大きな差異があり、例えば冷房適温
が20〜25℃であるのに対し、暖房適温は35〜45℃である
といわれている。一般に、蓄熱材による蓄熱や放熱には
物質の融解や凝固の際の相変化熱が利用されるが、この
蓄熱材の凝固点や融点は近接していることから冷房適温
と暖房適温との両者を得ようとすれば、それぞれの温度
に見合う相変化温度を有する各別の蓄熱材が必要にな
り、単一の蓄熱材で冷房適温や暖房適温を作り出すこと
が困難であるという問題があった。
(Problems to be solved by the invention) By the way, there is a relatively large difference between the heat storage temperature suitable for cooling in the summer and the heat storage temperature suitable for heating in the winter, for example, while the temperature suitable for cooling is 20 to 25 ° C. It is said that the optimum temperature for heating is 35 to 45 ° C. Generally, the heat of heat storage and the heat radiation by using the phase change heat at the time of melting and solidification of the substance, but since the freezing point and melting point of this heat storage material are close to each other In order to obtain it, it is necessary to use different heat storage materials having a phase change temperature corresponding to the respective temperatures, and there is a problem in that it is difficult to create a suitable cooling temperature and a suitable heating temperature with a single heat storage material.

そこで、本願発明者は、蓄熱材の含有水分量の変化、言
い換えると蓄熱材の濃度変化によってその凝固点や融点
が変化するという事実に着目しこの発明を完成させるに
到った。すなわち、この発明は、蓄熱材に濃度変化を生
じさせてその凝固点や融点を変化させ、その変化を利用
することにより単一の蓄熱材で冷房適温と暖房適温との
両者を作り出すことができると共に、さらに簡素に構成
可能な空調用蓄熱装置を提供することを目的とする。
Then, the inventor of the present application has completed the present invention by paying attention to the fact that the freezing point and the melting point of the heat storage material change due to the change of the water content of the heat storage material, in other words, the change of the concentration of the heat storage material. That is, according to the present invention, a concentration change is caused in the heat storage material to change the freezing point and the melting point thereof, and by utilizing the change, both the cooling optimum temperature and the heating optimum temperature can be created with a single heat storage material. An object of the present invention is to provide a heat storage device for air conditioning which can be configured more simply.

(課題を解決するための手段) そこで第1請求項の空調用蓄熱装置は、水分含有量によ
って相変化温度が変化する吸湿性蓄熱材Hと、この吸湿
性蓄熱材Hと大気との間を区画すると共に、水蒸気の通
過を許容する多孔質プレート7とを備え、夏期高湿時に
は大気からの吸湿によって上記吸湿性蓄熱材Hの吸湿水
分量を増大させてその相変化温度を低下させる一方、冬
期低湿時には大気への放湿によって上記吸湿性蓄熱材H
の吸湿水分量を低下させてその相変化温度を上昇させる
べく構成したことを特徴としている。
(Means for Solving the Problem) Therefore, in the heat storage device for air conditioning according to the first aspect, between the hygroscopic heat storage material H whose phase change temperature changes depending on the water content and the hygroscopic heat storage material H and the atmosphere. Along with partitioning, a porous plate 7 that allows passage of water vapor is provided, and the amount of moisture absorbed by the hygroscopic heat storage material H is increased by moisture absorption from the atmosphere during high humidity in the summer to lower the phase change temperature thereof. When the humidity is low in winter, the hygroscopic heat storage material H is released by releasing moisture to the atmosphere.
It is characterized in that it is configured to lower the amount of absorbed moisture of and to raise its phase change temperature.

また第2請求項の空調用蓄熱装置は、上記蓄熱材Hがポ
リエチレングリコール等の多価アルコールであることを
特徴としている。
The heat storage device for air conditioning according to the second aspect is characterized in that the heat storage material H is a polyhydric alcohol such as polyethylene glycol.

さらに第3請求項の空調用蓄熱装置は、収納された蓄熱
材Hの重量を検出する重量検出手段Sを設け、この重量
変化に基づいて水分濃度変化を把握すべく構成したこと
を特徴としている。
Further, the heat storage device for air conditioning according to the third aspect is characterized in that a weight detection means S for detecting the weight of the stored heat storage material H is provided, and the water concentration change is grasped based on the weight change. .

(作用) まず第1請求項の空調用蓄熱装置の作用は次の通りであ
る。すなわち、第2図に蓄熱材Hの水分含有量(蓄熱材
濃度)の変化に伴う蓄熱材Hの凝固点と融点の変化を示
してあるが、これから明らかなように、蓄熱材Hの凝固
点や融点は、水分含有量が多くなると低くなり、、水分
含有量が少なくなると高くなる。したがって、水分含有
量を減少させることによりA点まで蓄熱材Hの凝固点を
上昇させ、その蓄熱材Hに蓄えた温熱を放熱する場合
と、水分含有量を増加させることによりB点まで蓄熱材
Hの融点を下降させ、その蓄熱材Hに蓄えた冷熱を放熱
する場合とでは、放熱温度にtの差異が生じ、この放熱
温度の差異tは特定濃度C1での蓄熱材Hの凝固点と融点
との差異t1よりも格段に大きくなる。そのため、A点と
B点の温度を適切に選定できるような蓄熱材Hを選択し
ておくことにより、凝固点がA点に調節された蓄熱材H
に蓄えた温熱を冬場の暖房に利用し、融点がB点に調節
された蓄熱材Hに蓄えた冷熱を夏場の冷房に利用するこ
とができるようになる。しかもこの空調用蓄熱装置で
は、夏期と冬期とにおいて生じる大気の湿度差を利用し
て水分含有量を調整しているので、その機構は簡素なも
のとなる。
(Operation) First, the operation of the heat storage device for air conditioning according to the first aspect is as follows. That is, FIG. 2 shows changes in the freezing point and melting point of the heat storage material H with changes in the water content (heat storage material concentration) of the heat storage material H. As is clear from this, the freezing point and the melting point of the heat storage material H are shown. Is low when the water content is high, and is high when the water content is low. Therefore, when the freezing point of the heat storage material H is raised to the point A by reducing the water content, and the heat stored in the heat storage material H is radiated, and when the water content is increased, the heat storage material H is reached to the point B. When the melting point of the heat storage material H is lowered and the cold heat stored in the heat storage material H is radiated, there is a difference in the heat radiation temperature of t, and the difference t of the heat radiation temperature is the freezing point and the melting point of the heat storage material H at the specific concentration C 1. The difference is significantly larger than t 1 . Therefore, by selecting the heat storage material H capable of appropriately selecting the temperatures of the points A and B, the heat storage material H having the freezing point adjusted to the point A
It is possible to use the warm heat stored in the heat storage device for heating in the winter, and use the cold heat stored in the heat storage material H whose melting point is adjusted to the point B for cooling in the summer. Moreover, in this heat storage device for air conditioning, since the water content is adjusted by utilizing the humidity difference of the atmosphere that occurs in the summer and winter, the mechanism is simple.

また第2請求項の空調用蓄熱装置におけるポリエチレン
グリコール等の多価アルコールは、入手容易であると共
に、取扱いの容易な蓄熱材Hであることから、第1請求
項の空調用蓄熱装置を安価、かつ容易に構成し得ること
になる。
Further, since the polyhydric alcohol such as polyethylene glycol in the heat storage device for air conditioning according to the second aspect is the heat storage material H which is easily available and easy to handle, the heat storage device for air conditioning according to the first aspect is inexpensive, And it can be easily configured.

さらに第3請求項の空調用蓄熱装置においては、蓄熱材
Hの水分濃度変化を蓄熱材Hの重量から把握するように
しているので、その検出構成を簡素化し得る。
Further, in the heat storage device for air conditioning according to the third aspect, since the change in the water concentration of the heat storage material H is grasped from the weight of the heat storage material H, the detection configuration thereof can be simplified.

(実施例) 次にこの発明の空調用蓄熱装置の具体的な実施例につい
て、図面を参照しつつ詳細に説明する。
(Example) Next, a specific example of the heat storage device for air conditioning of the present invention will be described in detail with reference to the drawings.

この発明では、蓄熱材に冷熱を蓄えるときは、水の添加
により蓄熱材の凝固点や融点を降下させており、蓄熱材
に温熱を蓄えるときは、脱水により蓄熱材の凝固点や融
点を上昇させておく。蓄熱材にはポリエチレングリコー
ルなどの多価アルコールが好適に用いられ、またそのよ
うな蓄熱材に対する水の添加や脱水の方法には、夏場と
冬場の湿度の差異を利用した自然的な水添・脱水方法が
採用される。
In this invention, when cold heat is stored in the heat storage material, the freezing point and melting point of the heat storage material are lowered by addition of water, and when warm heat is stored in the heat storage material, the freezing point and melting point of the heat storage material are increased by dehydration. deep. Polyhydric alcohol such as polyethylene glycol is preferably used as the heat storage material, and the addition or dehydration of water to such heat storage material uses a natural hydrogenation method that utilizes the difference in humidity between summer and winter. A dehydration method is adopted.

第1図は自然的な水添・脱水方法を説明的に示したもの
である。このものは、ケース6に蓄熱材Hを溜めておく
と共に、ケース6に多孔質分離膜で作られたプレート7
を装着したものである。多孔質分離膜には水蒸気を通過
させるが液状の蓄熱材Hや水を通過させない性質を有す
るものが用いられる。これによると、夏場のように相対
湿度の高いときにはそれに応じて多量の水分が蓄熱材H
に吸収されて蓄熱材Hの凝固点や融点が下降する。逆
に、冬場のように相対湿度の低いときには蓄熱材Hから
の水分放出が行われて蓄熱材Hの凝固点や融点が上昇す
る。蓄熱材Hに用いられるポリエチレングリコールは水
との相溶性に優れているため、蓄熱材Hに均一に水分が
分布し、蓄熱材Hの全体に凝固点や融点のばらつきが生
じにくくなる。
FIG. 1 is an explanatory view of a natural hydrogenation / dehydration method. In this case, the heat storage material H is stored in the case 6, and the plate 7 made of a porous separation membrane is provided in the case 6.
Is attached. As the porous separation membrane, one having a property of allowing water vapor to pass therethrough but not allowing the liquid heat storage material H or water to pass therethrough is used. According to this, when the relative humidity is high, such as in the summer, a large amount of water is correspondingly stored in the heat storage material H.
Are absorbed by the heat storage material H and the freezing point and melting point of the heat storage material H are lowered. On the contrary, when the relative humidity is low like in winter, the heat storage material H releases water to increase the freezing point and the melting point of the heat storage material H. Since polyethylene glycol used in the heat storage material H has excellent compatibility with water, water is evenly distributed in the heat storage material H, and variations in the freezing point and melting point hardly occur throughout the heat storage material H.

第2図で説明したように蓄熱材Hの含有水分量が増加す
ると、蓄熱材Hの凝固点や融点が下降する。したがっ
て、第2図のB点で示した融点を有するに至った蓄熱材
Hに冷熱を蓄え、それを放熱することにより夏場の冷房
適温を得ることができる。また蓄熱材Hの含有水分量が
減少すると、蓄熱材Hの凝固点や融点が上昇する。した
がって、第2図のA点で示した凝固点を有するに至った
蓄熱材Hに温熱を蓄え、それを放熱することにより冬場
の暖房適温を得ることができる。第3図にポリエチレン
グリコール(PEG1500)の吸湿水分量を示してある。こ
れより明らかなように、PEG1500の吸湿水分量は、夏場
は30〜40%であって多量の水分を吸収し、冬場は2%で
あってほとんど吸水しない。そのため、ポリエチレング
リコールを蓄熱材Hに用いると、夏場と冬場とでは凝固
点や融点に大きな差異を生じさせることが可能になり、
冷房適温や暖房適温を容易に得ることが可能になる。
As described in FIG. 2, when the water content of the heat storage material H increases, the freezing point and melting point of the heat storage material H decrease. Therefore, by storing cold heat in the heat storage material H having the melting point shown by point B in FIG. 2 and radiating the cold heat, it is possible to obtain a suitable cooling temperature in the summer. Further, when the water content of the heat storage material H decreases, the freezing point and melting point of the heat storage material H rise. Therefore, by accumulating warm heat in the heat storage material H which has reached the freezing point shown by the point A in FIG. 2 and radiating the heat, a suitable heating temperature in winter can be obtained. FIG. 3 shows the moisture absorption amount of polyethylene glycol (PEG1500). As is clear from this, the moisture absorption of PEG1500 is 30 to 40% in the summer, which absorbs a large amount of water, and 2% in the winter, which hardly absorbs water. Therefore, when polyethylene glycol is used as the heat storage material H, it becomes possible to cause a large difference in the freezing point and the melting point between the summer and winter.
It is possible to easily obtain the optimum temperature for cooling and the optimum temperature for heating.

ところで、この発明方法を利用して冷房適温や暖房適温
を得るには、水添や脱水に伴う蓄熱材の凝固点や融点の
変化を適切に制御する必要がある。第2図に示したよう
に蓄熱材の水分含有量とその凝固点や融点との間には一
定の相関関係があるから、水分含有量を知ることにより
そのときの凝固点や融点を知ることができる。水分含有
量すなわち蓄熱材濃度を知るための手段として一般的に
は比重計や光学センサーなどが用いられることが多い
が、それらは高価であるという欠点がある。そこで、簡
単に蓄熱材濃度を知ることのできる方法を次に説明す
る。この方法は、水添・脱水に伴う蓄熱材の重量変化に
基づいて蓄熱材濃度を知ろうとするものであり、上記実
施例と併用するのに好ましい方法である。
By the way, in order to obtain the optimum cooling temperature and the optimum heating temperature by utilizing the method of the present invention, it is necessary to appropriately control the changes in the freezing point and the melting point of the heat storage material due to hydrogenation and dehydration. As shown in FIG. 2, there is a certain correlation between the water content of the heat storage material and its freezing point and melting point. Therefore, by knowing the water content, the freezing point and melting point at that time can be known. . Generally, a hydrometer and an optical sensor are often used as a means for knowing the water content, that is, the heat storage material concentration, but they have the drawback of being expensive. Therefore, a method by which the heat storage material concentration can be easily known will be described below. This method is intended to know the concentration of the heat storage material based on the weight change of the heat storage material due to hydrogenation / dehydration, and is a preferable method to be used in combination with the above embodiment.

第4図はパネル形の蓄熱ユニットを示しており、8はア
ウターケース、9は補強用の篭形インナーケース、10は
多孔質分離膜であり、蓄熱材は多孔質分離膜10を介して
インナーケース9に収容される。アウターケース8の底
骨材11とインナーケース9の底面との間に重量センサー
Sが挟み込まれている。なお、アウターケース8の底骨
材11は第5図のようにX形に設けられている。第6図は
上記蓄熱ユニットをさらに具体的に示したもので、12は
蓄熱材Hの内部に配設された熱媒通路、13は蓄熱材Hの
内部に導入された多孔質分離膜チューブ、14は多孔質分
離膜チューブ13の内部空間に連通された吸引管である。
FIG. 4 shows a panel type heat storage unit, 8 is an outer case, 9 is a basket-shaped inner case for reinforcement, 10 is a porous separation membrane, and the heat storage material is an inner layer through the porous separation membrane 10. It is housed in the case 9. A weight sensor S is sandwiched between the bottom aggregate 11 of the outer case 8 and the bottom surface of the inner case 9. The bottom aggregate 11 of the outer case 8 is provided in an X shape as shown in FIG. FIG. 6 shows the heat storage unit more specifically, in which 12 is a heat medium passage arranged inside the heat storage material H, 13 is a porous separation membrane tube introduced inside the heat storage material H, Reference numeral 14 is a suction tube communicating with the internal space of the porous separation membrane tube 13.

このように蓄熱ユニットによると、第7図に示したよう
に、真空ポンプPが運転されていないときには蓄熱材H
が大気中の水分を吸収してその重量を増加させる。ま
た、真空ポンプPが運転されると吸引管14を介して多孔
質分離膜チューブ13の内部空間が吸引されてその内部圧
力が蓄熱材Hの内部圧力よりも低くなり、蓄熱材Hに吸
収されている水分が脱水される。そして蓄熱材Hの水分
含有量が増大したり減少したりすると、それに伴う蓄熱
材Hの重量変化が重量センサーSに検知される。したが
って重量センサーSから電気信号を出し、その信号によ
って真空ポンプPをON−OFF制御すると、蓄熱材Hの水
分含有量が一定範囲内に制御され、暖房適温や冷房適温
を維持することが可能である。
Thus, according to the heat storage unit, as shown in FIG. 7, when the vacuum pump P is not in operation, the heat storage material H
Absorbs atmospheric moisture and increases its weight. When the vacuum pump P is operated, the internal space of the porous separation membrane tube 13 is sucked through the suction pipe 14, the internal pressure becomes lower than the internal pressure of the heat storage material H, and the heat storage material H absorbs it. The water it contains is dehydrated. Then, when the water content of the heat storage material H increases or decreases, the weight sensor S detects a change in weight of the heat storage material H accompanying it. Therefore, when an electric signal is output from the weight sensor S and the vacuum pump P is ON-OFF controlled by the signal, the water content of the heat storage material H is controlled within a certain range, and it is possible to maintain a suitable heating temperature and a suitable cooling temperature. is there.

蓄熱ユニットは第4図と第5図に示したような四角形に
限らず、第8図と第9図に示したような丸形にしてもよ
い。丸形にする場合、インナーケース9の中心に突起13
を設け、その突起13がアウターケース8の中心に設けた
重量センサーSの上に重なるようにしておくことが可能
である。またアウターケース8やインナーケース9の底
面に膨らみを持たせ、それを住居の天井に取付けておく
と、幅射効果が向上して室内が均等に空調されやすくな
るのみならず、外観に丸みが付与されて落着きのあるデ
ザインとなり、インテリア性に優れたものになる。
The heat storage unit is not limited to the quadrangle as shown in FIGS. 4 and 5, but may be a round shape as shown in FIGS. 8 and 9. When making it round, a protrusion 13 is formed at the center of the inner case 9.
It is possible to provide the protrusion 13 so that the protrusion 13 overlaps the weight sensor S provided at the center of the outer case 8. If the outer case 8 and the inner case 9 have bulges on the bottom and are attached to the ceiling of the house, not only the radiation effect is improved and the interior is more easily air-conditioned, but also the appearance is rounded. It is given a calm design and has an excellent interior.

(発明の効果) 以上のように第1請求項の空調用蓄熱装置によれば、夏
場の冷房適温と冬場の暖房適温を単一の蓄熱材を用いて
実現することが可能になるという効果がある。しかもこ
の空調用蓄熱装置では、夏期と冬期とにおいて生じる大
気の湿度差を利用して水分含有量を調整しているので、
その機構は簡素なものとなり、装置コスト及びランニン
グコストを低減できる。
(Effects of the Invention) As described above, according to the heat storage device for air conditioning of the first aspect, it is possible to achieve the optimum temperature for cooling in the summer and the optimum temperature for heating in the winter by using a single heat storage material. is there. Moreover, in this heat storage device for air conditioning, the moisture content is adjusted by utilizing the difference in atmospheric humidity that occurs in the summer and winter,
The mechanism is simple and the device cost and running cost can be reduced.

また第2請求項の空調用蓄熱装置におけるポリエチレン
グリコール等の多価アルコールは、入手容易であると共
に、取扱いの容易な蓄熱材であることから、第1請求項
の空調用蓄熱装置を安価、かつ容易に構成し得ることに
なる。
Further, since the polyhydric alcohol such as polyethylene glycol in the heat storage device for air conditioning according to the second aspect is a heat storage material which is easily available and easy to handle, the heat storage device for air conditioning according to the first aspect is inexpensive and It can be easily configured.

さらに第3請求項の空調用蓄熱装置においては、蓄熱材
の水分濃度変化を蓄熱材の重量から把握するようにして
いるので、その検出構成を簡素化し得る。
Furthermore, in the heat storage device for air conditioning according to the third aspect, since the change in the water concentration of the heat storage material is grasped from the weight of the heat storage material, the detection configuration can be simplified.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の空調用蓄熱装置の一実施例において
蓄熱材に対する自然的な水添・脱水方法を説明的に示し
た断面図、第2図は蓄熱材の水分量と凝固点と融点の関
係を示すグラフ、第3図はポリエチレングリコールの吸
湿水分量を示すグラフ、第4図はパネル形の蓄熱ユニッ
トの側面図、第5図は上記において用いるアウターケー
スの平面図、第6図は上記蓄熱ユニットの具体的構成を
示す断面図、第7図は蓄熱材の濃度変化と重量センサー
の出力との関係を示すタイムチャート、第8図は丸形蓄
熱ユニットの断面図、第9図は上記丸形蓄熱ユニットの
アウターケースの平面図である。 H……蓄熱材、S……重量センサー(重量検出手段)、
7……多孔質プレート。
FIG. 1 is a sectional view schematically illustrating a natural hydrogenation / dehydration method for a heat storage material in an embodiment of the heat storage device for air conditioning of the present invention, and FIG. 2 is a diagram showing the amount of water, the freezing point and the melting point of the heat storage material. Fig. 3 is a graph showing the relationship, Fig. 3 is a graph showing the amount of moisture absorbed by polyethylene glycol, Fig. 4 is a side view of a panel type heat storage unit, Fig. 5 is a plan view of the outer case used in the above, and Fig. 6 is the above. Sectional drawing which shows the concrete structure of a heat storage unit, FIG. 7 is a time chart which shows the relationship between the density | concentration change of a heat storage material, and the output of a weight sensor, FIG. 8 is a sectional view of a round heat storage unit, and FIG. It is a top view of the outer case of a round heat storage unit. H: heat storage material, S: weight sensor (weight detection means),
7 ... Porous plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水分含有量によって相変化温度が変化する
吸湿性蓄熱材(H)と、この吸湿性蓄熱材(H)と大気
との間を区画すると共に、水蒸気の通過を許容する多孔
質プレート(7)とを備え、夏期高湿時には大気からの
吸湿によって上記吸湿性蓄熱材(H)の吸湿水分量を増
大させてその相変化温度を低下させる一方、冬期低湿時
には大気への放湿によって上記吸湿性蓄熱材(H)の吸
湿水分量を低下させてその相変化温度を上昇させるべく
構成したことを特徴とする空調用蓄熱装置。
1. A hygroscopic heat storage material (H) whose phase change temperature changes depending on the water content, and a porous material which partitions the hygroscopic heat storage material (H) and the atmosphere and allows passage of water vapor. The plate (7) is provided to increase the amount of moisture absorbed by the hygroscopic heat storage material (H) by absorbing moisture from the atmosphere when the humidity is high in the summer to lower its phase change temperature, while releasing it to the atmosphere when the humidity is low in the winter. A heat storage device for air conditioning, which is configured to reduce the amount of moisture absorbed by the hygroscopic heat storage material (H) and raise the phase change temperature thereof.
【請求項2】上記蓄熱材(H)がポリエチレングリコー
ル等の多価アルコールであることを特徴とする第1請求
項記載の空調用蓄熱装置。
2. The heat storage device for air conditioning according to claim 1, wherein the heat storage material (H) is a polyhydric alcohol such as polyethylene glycol.
【請求項3】さらに収納された蓄熱材(H)の重量を検
出する重量検出手段(S)を設け、この重量変化に基づ
いて水分濃度変化を把握すべく構成したことを特徴とす
る第1請求項又は第2請求項記載の空調用蓄熱装置。
3. A weight detecting means (S) for detecting the weight of the stored heat storage material (H) is provided, and the water concentration change is grasped on the basis of the weight change. The heat storage device for air conditioning according to claim 2.
JP2229406A 1990-08-29 1990-08-29 Heat storage device for air conditioning Expired - Fee Related JPH07117259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229406A JPH07117259B2 (en) 1990-08-29 1990-08-29 Heat storage device for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229406A JPH07117259B2 (en) 1990-08-29 1990-08-29 Heat storage device for air conditioning

Publications (2)

Publication Number Publication Date
JPH04110534A JPH04110534A (en) 1992-04-13
JPH07117259B2 true JPH07117259B2 (en) 1995-12-18

Family

ID=16891716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229406A Expired - Fee Related JPH07117259B2 (en) 1990-08-29 1990-08-29 Heat storage device for air conditioning

Country Status (1)

Country Link
JP (1) JPH07117259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE532015C2 (en) 2006-03-10 2009-09-29 Mikael Nutsos Method and apparatus for optimizing the heat transfer properties of heat exchanging ventilation systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161333A (en) * 1986-12-23 1988-07-05 Sanyo Electric Co Ltd Cooling and heating thermal accumulation air conditioner system

Also Published As

Publication number Publication date
JPH04110534A (en) 1992-04-13

Similar Documents

Publication Publication Date Title
US6968711B2 (en) Temperature controlled shipping containers
US3987782A (en) Solar heat holder
US4096861A (en) Solar heat collection
GB1302840A (en)
US4237965A (en) Process and apparatus for modulating temperatures within enclosures
EP1048339A1 (en) Vapor movement controlling device
GB1115642A (en) Space conditioning system
US4003364A (en) Solar heating system
US4089916A (en) Process and apparatus for modulating temperatures within enclosures
US4289115A (en) Heating and cooling of a heavily insulated building through the use only of solar energy
JPH07117259B2 (en) Heat storage device for air conditioning
US4441484A (en) Chemical heat pump
US4446851A (en) Plastic radiant exchanger
US2692483A (en) Refrigeration unit utilizing solar energy
CA1188585A (en) Passive solar panel and construction member
JPS5989935A (en) Structural body for plane heating
JP2008039372A5 (en)
US4305384A (en) Solar panel
JPS59173024A (en) Heat storing and heating method and apparatus of greenhouse by solar energy
JP3522061B2 (en) Steam transfer control device
JPS5851572Y2 (en) Case for solar collector
JPS6218927Y2 (en)
CN202958330U (en) Greenhouse straw screen heat-preserving quilt
JPS60243435A (en) Long-time cold storage apparatus for cooling
GB2165341A (en) Refrigerators

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees