JPH07117047B2 - Stop operation method of water supply pump device - Google Patents

Stop operation method of water supply pump device

Info

Publication number
JPH07117047B2
JPH07117047B2 JP1339726A JP33972689A JPH07117047B2 JP H07117047 B2 JPH07117047 B2 JP H07117047B2 JP 1339726 A JP1339726 A JP 1339726A JP 33972689 A JP33972689 A JP 33972689A JP H07117047 B2 JPH07117047 B2 JP H07117047B2
Authority
JP
Japan
Prior art keywords
water
water supply
pump
minimum flow
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1339726A
Other languages
Japanese (ja)
Other versions
JPH03202684A (en
Inventor
文男 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1339726A priority Critical patent/JPH07117047B2/en
Publication of JPH03202684A publication Critical patent/JPH03202684A/en
Publication of JPH07117047B2 publication Critical patent/JPH07117047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は蒸気タービンプラントに係り、特にプラントの
解列が行なわれる際に停止する給水ポンプのケーシング
の保護を効果的に果たす給水ポンプ装置の停止運転方法
に関する。
Description: [Object of the Invention] (Field of Industrial Application) The present invention relates to a steam turbine plant, and in particular, effectively protects a casing of a feed water pump that is stopped when the plant is disconnected. The present invention relates to a method for stopping and operating a water supply pump device.

(従来の技術) 原子力プラントを一例として従来の蒸気タービンプラン
トの復水給水系統を説明する。第4図において、原子炉
1で発生した蒸気は主蒸気管2に導かれ、流量調節のた
めの主蒸気止め弁3を経て高圧タービン4に導入され、
仕事を行なう。高圧タービン4で仕事をした蒸気はクロ
スアラウンド管5によって湿分分離器6に導かれ、そこ
で湿分が除去され、低圧タービン7に導かれて仕事を行
なう。これらの仕事により発電機8が回転し、電気出力
として取出される。仕事を終えた蒸気は復水器9に排出
され、そこで凝縮し復水となる。なお、通常、この主蒸
気系に対して主蒸気管2の途中より高圧および低圧ター
ビン4、7をバイパスして直接復水器9に蒸気を排出す
るタービンバイパス管10及びタービンバイアス弁11から
なるタービンバイパス系が備えられる。
(Prior Art) A condensate water supply system of a conventional steam turbine plant will be described by taking a nuclear power plant as an example. In FIG. 4, the steam generated in the reactor 1 is introduced into the main steam pipe 2, introduced into the high-pressure turbine 4 via the main steam stop valve 3 for adjusting the flow rate,
Do the work. The steam that has worked in the high-pressure turbine 4 is guided to the moisture separator 6 by the cross-around pipe 5, where moisture is removed and is guided to the low-pressure turbine 7 to perform work. By these works, the generator 8 rotates and is taken out as an electric output. The steam that has finished the work is discharged to the condenser 9 and condensed there to be condensed water. In addition, a turbine bypass pipe 10 and a turbine bias valve 11 that normally bypass the high-pressure and low-pressure turbines 4 and 7 from the middle of the main steam pipe 2 to directly discharge the steam to the condenser 9 with respect to the main steam system. A turbine bypass system is provided.

復水器9で復水となった水は復水管12により抽出され、
低圧復水ポンプ13で昇圧され、復水ろ過脱塩装置14を通
って高圧復水ポンプ15へ送水される。高圧復水ポンプ15
によって再度昇圧された復水は低圧給水加熱器16、17、
18、19、20により順次加熱され、各々タービン21a、21b
により駆動される給水ポンプ22a、22bに送水される。な
お、通常、給水ポンプには予備機としてモータ駆動の給
水ポンプ23a、23bが備えられる。給水ポンプ22a、22bで
更に昇圧された給水(これ以後復水は給水と呼ばれる)
はポンプ吐出管24および給水管25によって高圧給水加熱
器26に導かれ、更に加熱された後、再び原子炉1へ戻さ
れる。ここで、給水ポンプ廻りの構成は1台の給水ポン
プ22aについてのみ詳細に示されるが、他の給水ポンプ2
2b、23a、23bも全く同一の構成である。即ち、給水ポン
プ22aには給水ポンプ吸込弁27、給水ポンプ吐出逆止弁2
8、給水ポンプ吐出弁29、ポンプの暖機用温水管30、逆
止弁31および止め弁32からなる暖機系が備えられる。ま
た、給水ポンプ22aの最小流量を確保するためのミニマ
ムフロー管33が給水ポンプ吐出側から分岐され、ミニマ
ムフロー弁34を介して復水器9へ接続されている。更
に、給水ポンプ22aの軸封系として軸封部へシール水を
導くポンプシール水管35がシール水調節弁36を介して高
圧復水ポンプ15の吐出側より分岐して設けられ、軸封部
に低温のシール水が供給され、給水ポンプ22aは吸込側
から軸に沿って漏れてくる水を中段から抽出する中段抽
出管37が調節弁38を介して低圧給水加熱器19に接続さ
れ、漏れ水が低圧給水加熱器19に回収される。更に、軸
封部より漏れてくる水は低温のシール水によって温度を
下げた後、シール水戻り管39により回収タンク40に戻さ
れた後、回収ポンプ41で昇圧され、回収管42を経由して
復水器9に戻される。
Condensed water in the condenser 9 is extracted by the condensate pipe 12,
The pressure is increased by the low-pressure condensate pump 13, and the water is sent to the high-pressure condensate pump 15 through the condensate filtration desalination device 14. High-pressure condensate pump 15
The condensate that has been boosted again by the low pressure feed water heaters 16, 17,
Sequentially heated by 18, 19, 20 and turbines 21a, 21b respectively
The water is supplied to the water supply pumps 22a and 22b driven by. The water supply pump is usually provided with motor-driven water supply pumps 23a and 23b as spare machines. Water supply whose pressure has been further increased by the water supply pumps 22a and 22b (condensed water is hereinafter referred to as water supply)
Is introduced into the high-pressure feed water heater 26 by the pump discharge pipe 24 and the feed water pipe 25, further heated, and then returned to the reactor 1. Here, the configuration around the water supply pump is shown in detail only for one water supply pump 22a, but the other water supply pumps 2a
2b, 23a, and 23b have exactly the same configuration. That is, the water supply pump 22a includes a water supply pump suction valve 27 and a water supply pump discharge check valve 2
8. A warming system including a water supply pump discharge valve 29, a warm water pipe 30 for warming up the pump, a check valve 31 and a stop valve 32 is provided. Further, a minimum flow pipe 33 for ensuring the minimum flow rate of the water supply pump 22a is branched from the discharge side of the water supply pump and connected to the condenser 9 via a minimum flow valve 34. Further, as a shaft sealing system of the water supply pump 22a, a pump seal water pipe 35 that guides seal water to the shaft sealing portion is provided branching from the discharge side of the high-pressure condensate pump 15 via a seal water adjusting valve 36, and the shaft sealing portion The low temperature seal water is supplied, the feed water pump 22a is connected to the low pressure feed water heater 19 through the control valve 38, which is connected to the low pressure feed water heater 19 through the control valve 38, which connects the middle stage extraction pipe 37 for extracting the water leaking along the shaft from the suction side. Is recovered by the low-pressure feed water heater 19. Further, the water leaking from the shaft sealing portion is lowered in temperature by low-temperature sealing water, returned to the recovery tank 40 by the sealing water return pipe 39, then pressurized by the recovery pump 41, and passed through the recovery pipe 42. And returned to the condenser 9.

一方、低圧給水加熱器16、17、18、19は低圧タービン7
の中段落と抽気管43、44、45、46によって結ばれ、それ
ぞれ抽気によって復水が加熱される。また、高圧タービ
ン4排気口から抽気管47および高圧タービン4から抽気
管48が各々低圧給水加熱器20および高圧給水加熱器26に
連絡しており、復水および給水が蒸気によって加熱され
る。
On the other hand, the low-pressure feed water heaters 16, 17, 18, and 19 are the low-pressure turbine 7
It is connected to the middle paragraph by the extraction pipes 43, 44, 45, 46, and the condensate is heated by the extraction air, respectively. Further, an extraction pipe 47 from the exhaust port of the high-pressure turbine 4 and an extraction pipe 48 from the high-pressure turbine 4 communicate with the low-pressure feed water heater 20 and the high-pressure feed water heater 26, respectively, and the condensate water and the feed water are heated by steam.

(発明が解決しようとする課題) 上述の蒸気タービンプラントにおいて、プラント定格運
転中はタービン21a、21bによって駆動される給水ポンプ
22a、22bが連続運転され、モータ駆動の給水ポンプ23
a、23bは停止している。この時、給水ポンプ吸込弁27は
全開、ポンプ吐出弁29は全開、ミニマムフロー弁34は全
閉、ポンプ軸封廻りの中段抽出管37、シール水管35、シ
ール水戻り管39は各々定常状態で運転され、ポンプ暖機
用温水管30は給水ポンプ22aの吐出圧により停止中のモ
ータ駆動の給水ポンプ23a、23bに暖機用の温水を供給す
る。逆に、給水ポンプ22a、22bが停止し、給水ポンプ23
a、23bを運転する場合は給水ポンプ22a、22bが暖機され
る。
(Problems to be Solved by the Invention) In the steam turbine plant described above, a feed pump driven by the turbines 21a and 21b during the rated operation of the plant.
22a and 22b are continuously operated, and the motor driven water supply pump 23
a and 23b are stopped. At this time, the feed water pump suction valve 27 is fully opened, the pump discharge valve 29 is fully opened, the minimum flow valve 34 is fully closed, the pump shaft sealing middle stage extraction pipe 37, the seal water pipe 35, and the seal water return pipe 39 are each in a steady state. The pump warm-up warm water pipe 30 is operated and supplies warm water for warming to the motor-driven water feed pumps 23a and 23b which are stopped by the discharge pressure of the water feed pump 22a. Conversely, the water supply pumps 22a and 22b are stopped and the water supply pump 23
When operating a and 23b, the water supply pumps 22a and 22b are warmed up.

プラント負荷を徐々に降下し、発電機8を解列してプラ
ントを停止する場合、2台の給水ポンプ22a、22bのう
ち、例えば給水ポンプ22aを停止し、予備機としてのモ
ータ駆動の給水ポンプ23a、23bを起動した後、残りの給
水ポンプ22bを停止し、解列を行なうが、この時、高圧
および低圧タービン4、7の出力も徐々に降下して行
き、主蒸気止め弁3を閉とした後は各給水加熱器16〜2
0、26の加熱蒸気源が無くなるため、給水の加熱が行な
われなくなり、給水の温度が急速に低下し、復水器9の
真空度に近い給水温度となり、低温給水がモータ駆動の
給水ポンプ23a、23bにより給水される。なお、原子炉1
の発生蒸気はタービンバイパス管10を通して復水器9に
排出されている。タービン21a、21b駆動の給水ポンプ22
a、22bはその後も低速(数rpm)でゆっくり回転してい
るが、これはタービン21a、21bのターニング運転を行な
っているからである。このターニングはタービン21a、2
1bのグランド部の軸封を蒸気で行っているため、タービ
ン21a、21bのロータにグランドシール蒸気により熱が加
えられ変形することを防止するように軸封中は継続して
行われる。軸封はタービン21a、21bが復水器9と接続し
ているため、真空度を維持する目的で行なわれ、仮に軸
封が行われないと、タービングランド部より空気を吸込
み、復水器9の真空度が維持できなくなるからである。
給水ポンプ22a、22bは、プラント運転中高温の給水を送
水しているため高温状態となっているが、発電機を解列
すると、前述の通り給水加熱蒸気源が無くなるため、急
速に給水温度が低下し、この低温水が給水ポンプ吸込弁
27の全開により、停止とともに吐出側が閉止状態となっ
ている給水ポンプ22a、22bの内部に少量流入し、シール
水戻り管39を介して回収タンク40に流れる。また、暖機
用温水管30やポンプシール水管35を通して軸封部へ低温
水が流入する。こうした状況において、給水ポンプ22
a、22bは、内部に高温水が滞留している状態のところに
吸込口から低温水が少量だけ流入するため、吸込口から
離れたところには高温水域が残存し、例えば吸込口が下
部にある給水ポンプでは、下部に冷温域、上部に高温域
がそれぞれ形成され、ケーシング上下で数十℃の温度差
を生じて、ケーシングが変形してしまうことがある。ポ
ンプ軸封部はポンプ軸と微小の間隙をもったケーシング
にはめ込まれたブッシュからなるため、このケーシング
の変形によりポンプ軸とブッシュの間隙が不均一とな
り、部分的に間隙の小さくなった箇所では双方の部材に
接触を生じる危険性がある。このため、ターニング運転
で低速回転している給水ポンプ22a、22bにカジリを生じ
たり、あるいは損傷のために部品の交換を余儀無くされ
ることがある。
When the plant load is gradually decreased and the generator 8 is disconnected to stop the plant, for example, of the two water supply pumps 22a and 22b, for example, the water supply pump 22a is stopped and a motor-driven water supply pump as a standby machine. After activating 23a and 23b, the rest of the water feed pump 22b is stopped and disengaged. At this time, the outputs of the high pressure and low pressure turbines 4 and 7 also gradually drop, and the main steam stop valve 3 is closed. After each water heater 16 ~ 2
Since the heating steam sources 0 and 26 are eliminated, the supply water is no longer heated, the temperature of the supply water rapidly decreases, and the supply water temperature becomes close to the vacuum degree of the condenser 9, and the low temperature supply water is the motor-driven supply water pump 23a. , 23b. The reactor 1
The generated steam is discharged to the condenser 9 through the turbine bypass pipe 10. Water supply pump 22 driven by turbines 21a, 21b
The a and 22b are still rotating at a low speed (several rpm) after that, because the turbines 21a and 21b are performing the turning operation. This turning is for turbines 21a, 2
Since the shaft of the gland portion of 1b is sealed with steam, the rotor of the turbines 21a and 21b is continuously sealed during the shaft sealing so as to prevent the rotor from being heated and deformed by the gland seal steam. Since the turbines 21a and 21b are connected to the condenser 9 for shaft sealing, the purpose is to maintain the degree of vacuum. If the shaft sealing is not performed, air will be sucked in from the turbine gland and the condenser 9 This is because the degree of vacuum cannot be maintained.
The water supply pumps 22a, 22b are in a high temperature state because they are supplying high-temperature water supply during plant operation, but when the generator is disconnected, the water supply heating steam source disappears as described above, and the water supply temperature rapidly increases. This low temperature water drops and the feed pump suction valve
By fully opening 27, a small amount of water flows into the water supply pumps 22a and 22b whose discharge side is closed when stopped, and flows into the recovery tank 40 via the seal water return pipe 39. Further, low-temperature water flows into the shaft sealing portion through the warm-up warm water pipe 30 and the pump seal water pipe 35. In such a situation, the water supply pump 22
In a and 22b, since a small amount of low-temperature water flows from the suction port to the state where high-temperature water is retained inside, a high-temperature water region remains at a location away from the suction port, for example, the suction port is at the bottom. In a certain water supply pump, a cold temperature region is formed in the lower part and a high temperature region is formed in the upper part, which may cause a temperature difference of several tens of degrees Celsius above and below the casing to deform the casing. Since the pump shaft seal part consists of a bush fitted in a casing with a small gap between the pump shaft and the pump shaft, deformation of this casing makes the gap between the pump shaft and the bush non-uniform, and There is a risk of contacting both parts. For this reason, the feed water pumps 22a and 22b, which are rotating at a low speed in the turning operation, may be galled, or parts may be forced to be replaced due to damage.

したがって、本発明の目的は蒸気タービンプラントの解
列時に給水ポンプのケーシングに生じる上下の温度差を
微少な範囲に保つことのできる給水ポンプ装置の停止運
転方法を提供することにある。
Therefore, it is an object of the present invention to provide a method for stopping and operating a water feed pump device capable of keeping the temperature difference between the upper and lower sides of the casing of the water feed pump during a parallel disconnection of the steam turbine plant within a minute range.

[発明の構成] (課題を解決するための手段) 本発明による給水ポンプの停止運転方法は、タービンに
よる駆動される給水ポンプと、モータにより駆動される
給水ポンプとを備え、原子炉給水の減少時に各給水ポン
プの最少流量を確保するように一定量の給水を該給水ポ
ンプの吐出側から抽出し、ミニマムフロー系を通して復
水器に還流させるようにした給水ポンプ装置において、
発電機解列後にタービン駆動の給水ポンプに備えられる
ミニマムフロー系の弁の開度を所望量の給水を流せる開
度にし、給水の一部をタービン駆動の給水ポンプからミ
ニマムフロー系を通して復水器に還流させ、その後ミニ
マムフロー系の弁の開度を零にして決められた給水量を
保つようにしたことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) A method for stopping and operating a water supply pump according to the present invention includes a water supply pump driven by a turbine and a water supply pump driven by a motor, and reduces the reactor water supply. In the water supply pump device, which extracts a certain amount of water supply from the discharge side of the water supply pump so as to ensure the minimum flow rate of each water supply pump and recirculates it to the condenser through the minimum flow system,
After the generator is disconnected, the valve of the minimum flow system provided in the turbine-driven water supply pump is set to an opening that allows the desired amount of water to flow, and part of the water supply is condensed from the turbine-driven water supply pump through the minimum flow system. It is characterized in that the flow rate of the water is recirculated to, and then the opening of the valve of the minimum flow system is set to zero to maintain the determined water supply amount.

(作用) 本発明方法においては発電機解列後にタービン駆動の給
水ポンプに備えられるミニマムフロー系の弁の開度を決
められた量の給水を流せる開度にしており、低温の給水
がタービン駆動給水ポンプの内部にミニマムフロー系の
弁開度に応じて所定量流入して、内部に滞留していた高
温水をすみやかに排除し、ケーシングを一様に冷却す
る。このため、ケーシングの上下の温度差は微少な範囲
にとどまり、制限値を超えることはなくなる。
(Operation) In the method of the present invention, the opening degree of the valve of the minimum flow system provided in the turbine-driven feed water pump after the generator is disconnected is set to an amount that allows a predetermined amount of feed water to flow, and the low-temperature feed water drives the turbine. A certain amount of hot water flows into the water supply pump according to the valve opening of the minimum flow system to quickly remove the high temperature water that has accumulated inside, and to uniformly cool the casing. For this reason, the temperature difference between the upper and lower parts of the casing remains in a minute range and does not exceed the limit value.

この後、タービン駆動の給水ポンプの冷却が果せたなら
ば、そのミニマムフロー系の弁の開度を零にして決めら
れた給水量が確保されるようにする。
After that, if the turbine-driven water supply pump can be cooled, the valve opening of the minimum flow system is set to zero so that the determined water supply amount is secured.

(実施例) 本発明の一実施例を図面を参照して説明する。第1図は
発電機解列時のプラントの状態を停止操作以後の経過に
従ってタイムチャート上に示したものである。第1図に
おいて、負荷は曲線A、ポンプ吸込給水温度は曲線B、
従来技術におけるケーシング上下温度差は曲線C、初め
に停止するタービン駆動の給水ポンプの運転状態は曲線
D、2台目に停止するタービン駆動の給水ポンプの運転
状態は曲線E、2台目の給水ポンプ停止前に起動するモ
ータ駆動の給水ポンプの運転状態は曲線Fで各々示され
る。発電機解列直後(X点)にミニマムフロー弁34を決
められた量の給水を流せるある開度に保って給水を給水
ポンプ22a内を通してミニマムフロー管33に導き、復水
器9まで還流させる(曲線G)。この時給水ポンプ22b
についても同様に図示しないミニマムフロー弁を一定の
開度に保って給水を復水器9まで還流させる。この給水
の復水器9への還流過程で給水ポンプ22a、22b内には温
度の低い給水が多量に流れ込み、これによって給水ポン
プ22a、22b内全体が滞留していた高温水と入れ替わって
低温の給水で満たされることになり、給水ポンプの外部
を形成するケーシング全体が一様に冷却される。図中、
直線Hはケーシングの上下温度差の制限値を示してお
り、ケーシングが冷却されたことにより上下温度差は曲
線Iのように従来技術の上下温度差を示す曲線Cよりも
緩やかなカーブを描き、制限値の範囲内に収まる。ミニ
マムフロー弁34の開度調節においてはケーシングの冷却
のために必要とされる流量を確保するのが当然である
が、一定の制限を設けることを要求される。これはミニ
マムフロー弁34の開度を大きく設定した場合、原子炉1
への給水流量が減少してしまうためであり、規定流量を
超えない節度のある開度調節により原子炉水位の変動を
最小限に抑える。この後、ケーシングの上下温度差がな
くなったところでミニマムフロー弁34の開度は零として
当初の給水量が保たれるようにする。
Embodiment An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a time chart showing the state of the plant when the generator is disconnected, along with the progress after the stop operation. In FIG. 1, load is curve A, pump suction feed water temperature is curve B,
In the prior art, the casing vertical temperature difference is curve C, the operating state of the turbine-driven feedwater pump that first stops is curve D, the operating state of the turbine-driven feedwater pump that stops second is curve E, and the water supply of the second unit. The operating states of the motor-driven feedwater pumps that are activated before the pumps are stopped are indicated by the curves F, respectively. Immediately after the generator is disengaged (point X), the minimum flow valve 34 is maintained at an opening that allows a predetermined amount of water to flow, and the water is guided through the water supply pump 22a to the minimum flow pipe 33 and is returned to the condenser 9. (Curve G). At this time, the water supply pump 22b
Similarly, with respect to the above, the minimum flow valve (not shown) is maintained at a constant opening degree, and the feed water is returned to the condenser 9. A large amount of low-temperature feed water flows into the water supply pumps 22a and 22b during the return process to the condenser 9 of the water supply, whereby the entire water supply pumps 22a and 22b are replaced with the high-temperature water that has accumulated and the temperature is low. It will be filled with water and the entire casing forming the exterior of the water pump will be cooled uniformly. In the figure,
The straight line H indicates the limit value of the upper and lower temperature difference of the casing, and due to the cooling of the casing, the upper and lower temperature difference draws a curve gentler than the curve C indicating the upper and lower temperature difference of the prior art like the curve I, It falls within the limits. In adjusting the opening degree of the minimum flow valve 34, it is natural to secure a flow rate required for cooling the casing, but it is required to set a certain limit. This is because when the opening of the minimum flow valve 34 is set large,
This is because the flow rate of water supplied to the reactor will be reduced, and fluctuations in the reactor water level will be minimized by controlling the degree of opening so that it does not exceed the specified flow rate. After this, when the temperature difference between the upper and lower casings has disappeared, the opening of the minimum flow valve 34 is set to zero so that the initial water supply amount is maintained.

また、上記実施例は解列直後からミニマムフロー弁34を
一定開度に保って低温水の復水器9への還流を図るよう
にしたものであるが、第2図に曲線G′として示される
ように解列以前から予めミニマムフロー弁34を開く方法
も可能である。勿論、この場合の開度調節も原子炉水位
の変動を少なくするうえで節度を保つことが要求され、
規定流量を確保する以上には開度を開かない。なお、必
要に応じてケーシング上下の温度差が制限値を超えたな
らば、運転員に警報をもって知らせるように監視手段を
設ける。
Further, in the above embodiment, the minimum flow valve 34 is kept at a constant opening immediately after the disconnection so that the low temperature water is returned to the condenser 9. This is shown as a curve G'in FIG. As described above, it is possible to open the minimum flow valve 34 before the disconnection. Of course, the opening adjustment in this case is also required to maintain moderation in order to reduce fluctuations in the reactor water level,
Do not open the opening beyond ensuring the specified flow rate. If necessary, a monitoring means is provided to notify the operator with an alarm if the temperature difference between the upper and lower casings exceeds the limit value.

更に、本発明の上記と異なる実施例として、第3図に示
すようにケーシング上下温度差(ΔT)が通常運転時は
ほぼ零に近いことから、ΔT=数℃=Δt1に到達した時
点でミニマムフロー弁34を自動的に一定開度に開き、Δ
Tの温度上昇を抑制して制限値(ΔT1imit)以内に冷却
し、Δt1以下となったならば、自動的にミニマムフロー
弁34を全開する方法もある。また、制限値ΔT1imitに余
裕をもって下回った温度差Δt2を設定し、Δt2に到達し
たならばミニマムフロー弁34の開度を更に開けて流量を
増し、制限値内に抑制することもできる。
Further, as an embodiment different from the above of the present invention, as shown in FIG. 3, since the casing vertical temperature difference (ΔT) is close to zero during normal operation, when ΔT = several ° C = Δt 1 is reached. The minimum flow valve 34 is automatically opened to a fixed opening and Δ
To suppress the temperature rise of T cooled within limits (ΔT1imit), Once a Delta] t 1 hereinafter also automatically how to fully open the minimum flow valve 34. Also, setting the temperature difference Delta] t 2 falls below allow enough limit Derutati1imit, if reaching the Delta] t 2 further opened increasing the flow rate of the opening of the minimum flow valve 34, can be suppressed within the limit value.

これにはΔTを検出し、ミニマムフロー弁34との間にイ
ンターロックを設けることにより自動的に制御すること
も可能である。更に、ΔTを監視し、手動でミニマムフ
ロー弁34の開度を調節することも可能である。
It is also possible to detect ΔT and automatically control it by providing an interlock with the minimum flow valve 34. Further, it is possible to monitor ΔT and manually adjust the opening degree of the minimum flow valve 34.

[発明の効果] 以上の説明から明らかなように本発明においては、発電
機解列後にタービン駆動の給水ポンプに備えられるミニ
マムフロー系の弁の開度を所望量の給水を流せる開度に
し、給水の一部をタービン駆動の給水ポンプからミニマ
ムフロー系を通して復水器に還流させるようにしている
ので、タービン駆動の給水ポンプのケーシングの上下の
温度差が微少な範囲にとどまり、ポンプ軸とブッシュと
の接触がなくなる。
[Effects of the Invention] As is apparent from the above description, in the present invention, the opening degree of the minimum flow system valve provided in the turbine-driven feed water pump after the generator is disengaged is set to an opening degree that allows a desired amount of feed water to flow, Since a part of the water supply is returned from the turbine-driven water supply pump to the condenser through the minimum flow system, the temperature difference between the upper and lower casings of the turbine-driven water supply pump remains within a minimal range, and the pump shaft and bushing are kept. Lose contact with.

したがって、本発明によれば、原子炉水位に大きな変動
を与えることなく、原子力プラントの安全な運転が続け
られるという優れた効果を奏する。
Therefore, according to the present invention, there is an excellent effect that the safe operation of the nuclear power plant can be continued without giving a large fluctuation to the reactor water level.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法のための停止操作以後の経過を示す
タイムチャート、第2図は本発明の他の方法のための経
過を示すタイムチャート、第3図はさらに異なる本発明
の方法のための経過を示すタイムチャート、第4図は従
来の原子力プラントのタービン系を示す系統図である。 9……復水器 21a、21b…タービン 22a、22b…給水ポンプ 23a、23b…(モータ駆動)給水ポンプ 27……給水ポンプ吸込弁 29……給水ポンプ吐出弁 30……暖機用温水管 33……ミニマムフロー管 34……ミニマムフロー弁 35……給水ポンプシール水管
FIG. 1 is a time chart showing a process after a stop operation for the method of the present invention, FIG. 2 is a time chart showing a process for another method of the present invention, and FIG. 3 is a further different method of the present invention. 4 is a system diagram showing a turbine system of a conventional nuclear power plant. 9 ... Condenser 21a, 21b ... Turbine 22a, 22b ... Water supply pump 23a, 23b ... (Motor driven) Water supply pump 27 ... Water supply pump suction valve 29 ... Water supply pump discharge valve 30 ... Warm water pipe 33 ...... Minimum flow pipe 34 …… Minimum flow valve 35 …… Water supply pump seal water pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タービンによる駆動される給水ポンプと、
モータにより駆動される給水ポンプとを備え、原子炉給
水の減少時に前記各給水ポンプの最少流量を確保するよ
うに一定量の給水を該給水ポンプの吐出側から抽出し、
ミニマムフロー系を通して復水器に還流させるようにし
た給水ポンプ装置において、発電機解列後に前記タービ
ン駆動の給水ポンプに備えられる前記ミニマムフロー系
の弁の開度を所望量の給水を流せる開度にし、給水の一
部を前記タービン駆動の給水ポンプから前記ミニマムフ
ロー系を通して前記復水器に還流させ、その後前記ミニ
マムフロー系の弁の開度を零にして決められた給水量を
保つようにしたことを特徴とする給水ポンプ装置の停止
運転方法。
1. A water feed pump driven by a turbine,
A feedwater pump driven by a motor, and a certain amount of feedwater is extracted from the discharge side of the feedwater pump so as to ensure the minimum flow rate of each feedwater pump when the reactor feedwater is reduced,
In a feed water pump device configured to recirculate to a condenser through a minimum flow system, an opening of a valve of the minimum flow system provided in the turbine driven water feed pump after the generator is disengaged to allow a desired amount of feed water to flow. A part of the water supply is returned from the turbine-driven water supply pump to the condenser through the minimum flow system, and then the valve opening of the minimum flow system is set to zero to maintain the determined water supply amount. A method for stopping operation of a water supply pump device characterized by the above.
JP1339726A 1989-12-28 1989-12-28 Stop operation method of water supply pump device Expired - Lifetime JPH07117047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339726A JPH07117047B2 (en) 1989-12-28 1989-12-28 Stop operation method of water supply pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339726A JPH07117047B2 (en) 1989-12-28 1989-12-28 Stop operation method of water supply pump device

Publications (2)

Publication Number Publication Date
JPH03202684A JPH03202684A (en) 1991-09-04
JPH07117047B2 true JPH07117047B2 (en) 1995-12-18

Family

ID=18330228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339726A Expired - Lifetime JPH07117047B2 (en) 1989-12-28 1989-12-28 Stop operation method of water supply pump device

Country Status (1)

Country Link
JP (1) JPH07117047B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104632600A (en) * 2014-08-27 2015-05-20 国家电网公司 Control method for minimum flow recirculation valve of water feed pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5816057B2 (en) * 2011-11-11 2015-11-17 三菱日立パワーシステムズ株式会社 Cooling system control method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104632600A (en) * 2014-08-27 2015-05-20 国家电网公司 Control method for minimum flow recirculation valve of water feed pump

Also Published As

Publication number Publication date
JPH03202684A (en) 1991-09-04

Similar Documents

Publication Publication Date Title
US20040131138A1 (en) Brayton cycle nuclear power plant and a method of starting the brayton cycle
JP4127854B2 (en) Steam turbine equipment
US4651530A (en) Method and apparatus for feed-water control in a steam generating plant
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
CN110159365A (en) A kind of sequence starting method of the small steam turbine of two-shipper backheat
JPS6020714B2 (en) Auxiliary cooling system for nuclear reactor
CN106246247B (en) A kind of thermal power plant's Turbo-generator Set lubricating oil system and its start-up and shut-down control method
JPH09112215A (en) Gas turbine power plant and method of operating thereof
JPH07117047B2 (en) Stop operation method of water supply pump device
CN107036454B (en) Vacuum adjusting device of steam turbine condenser and control method thereof
US4343682A (en) Plant having feed water heating means for nuclear units during plant start up and method of operating the same
JPH05340207A (en) Temperature-equalizing apparatus of gas turbine and method for minimizing cover-to-base temperature differential
JP3165619B2 (en) Thermal stress reduction operation method of steam turbine in single shaft combined cycle
GB2193764A (en) Starting a steam turbine from cold
CN112343678A (en) Starting control method of thermal power generating unit
JP3537219B2 (en) Water hammer prevention device for water supply system
CN114738732B (en) One-key start-stop system of high-voltage heater and control method thereof
CN114575943B (en) Shaft seal electric heater control system and method for shaft seal system of ultra-supercritical unit
JP3427733B2 (en) Water supply control method and apparatus for steam generation plant
JPS6136125B2 (en)
JPH09303110A (en) Warming system for steam turbine
JP2006312882A (en) Steam turbine power generation plant and its operation method
Lao et al. Research on operation of low-pressure cylinder zero output heat supply retrofit unit
JP2955383B2 (en) Water supply control device for combined cycle power plant
JPS60119304A (en) Steam turbine